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ABSTRACT
The main objective of this paper is to demonstrate in the
context of a simple TCP/IP-based network that depending
on the underlying assumptions about the inherent nature of
the dynamics of network tra�c, very di�erent conclusions
can be derived for a number of well-studied and apparently
well-understood problems in the area of performance eval-
uation. For example, a tra�c workload model can either
completely ignore the empirically observed high variability
at the TCP connection level (i.e., assume \in�nite sources")
or explicitly account for it with the help of heavy-tailed dis-
tributions for TCP connection sizes or durations. Based on
detailed ns-2 simulation results, we illustrate that these two
commonly-used tra�c workload scenarios can give rise to
fundamentally di�erent bu�er dynamics in IP routers. Us-
ing a second set of ns-2 simulation experiments, we also illus-
trate a qualitatively very di�erent queueing behavior within
IP routers depending on whether the tra�c arriving at the
router is assumed to be endogenous in nature (i.e., a result
of the \closed loop" nature of the feedback-based congestion
control algorithm of TCP) or exogenously determined (i.e.,
given by some conventional tra�c model { a �xed \open
loop" description of the tra�c as seen by the router).
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1. INTRODUCTION
Tra�c characterization and modeling are generally viewed
as important �rst steps toward understanding and solving
network performance-related problems. At the same time,
there is little disagreement that the resulting understanding
of and solutions to network performance problems are only
as good and complete as the underlying assumptions on the
usage of the network and the nature of the tra�c that it
carries.

The main goal of this paper is to highlight the extent to
which assumptions underlying the nature of network tra�c
can inuence practical engineering decisions. More speci�-
cally, using a toy example of a TCP/IP network and relying
on the ns-2 network simulator [2], we illustrate how by either
implicitly accounting for or explicitly ignoring some aspects
of the empirically observed variability of network tra�c, a
range of di�erent and at times opposing conclusions can be
drawn about the inferred bu�er dynamics for IP routers.
While there are many known causes for the observed vari-
ability in measured TCP/IP tra�c, in this paper we focus on
just two of them (for more details, see [5]). On the one hand,
we explore contributions due to TCP connection-level vari-
ability { heavy-tailed TCP connections are a known cause
for the empirically observed self-similar scaling behavior of
aggregate packet tra�c over large time scales (i.e., larger
than RTT time scales). On the other hand, we consider an
aspect of tra�c variability that concerns the ow of packets
within individual TCP connections { TCP's feedback-based
congestion control algorithm is a suspected contributing fac-
tor to the observed variability of measured TCP/IP tra�c
over small time scales (i.e., on the order of RTT).

As far as large time scale or TCP connection-level variabil-
ity is concerned, the extreme case of no variability can be
achieved by requiring at the application or connection layers
that each active source has to transfer an essentially in�nite
�le for the duration of the entire simulation. This in�nite
source model lacks the natural variability that has been ob-
served in measured data at the application/connection level
and, in turn, lacks any non-trivial large time scale variabil-
ity in the corresponding rate process [17, 4, 7]. In contrast,
large time scale variability that is consistent with self-similar
scaling over those time scales and has become a trademark of
measured tra�c rate processes can be achieved in a parsimo-



nious manner by explicitly accounting for an adequate level
of variability at the application/connection layer [21, 20]. In
fact, by replacing the in�nite source model by a surge-like
workload generator [3], that is, by changing an in�nite �le
transfer into an application that imitates a typical Web ses-
sion (with appropriately chosen heavy-tailed distributions to
match the observed variability of various Web-related items
such as session length and size, size of requested Web pages),
we obtain a Web-user source model that automatically gen-
erates the desired large time scale variability in the aggre-
gate rate process. These workload models are described in
more details in Section 2.

In the �rst set of ns-2 simulation experiments, we demon-
strate in Section 3 how the two source models lead to qualita-
tively very di�erent queueing dynamics in the router. While
the queueing behavior with the in�nite source model shows
pronounced periodic uctuations (commonly referred to as
\synchronization e�ects"), these e�ects essentially disappear
when the sources are Web users. In the context of single bot-
tleneck link networks and in�nite source models, TCP/IP
tra�c \synchronization e�ects" have been well studied in
the past and have led to many inuential papers on un-
derstanding the dynamics of TCP-type congestion control
algorithms, [14, 18, 22, 23]. We contribute in this paper to
the existing body of knowledge by demonstrating how ac-
counting for realistic workload heterogeneity (via appropri-
ate TCP connection level variability) can yield new insights
into actual TCP behavior. In fact, using the terminology
originally due to V. Jacobson, we show how the presence of
many short-lived TCP connections or \mice" { a salient fea-
ture of our Web workload model { completely changes the
bu�er dynamics that has been noted in the past when the
network load is entirely due to the long-lived TCP connec-
tions or \elephants" of the in�nite source model.

In a second set of ns-2 simulation experiments, we focus in
Section 4 on the role of tra�c variability that is due to TCP's
feedback ow control mechanism and that partly determines
the ow of packets emitted from the di�erent sources during
each TCP connection. To this end, we perform a number of
related closed loop and open loop simulations and compare
them on the basis of some commonly-used performance cri-
teria. Here, by \closed loop" we mean a ns-2 simulation
with a �xed networking con�guration, including bu�er size
in the router(s), link bandwidths, delays, etc., and where all
hosts use TCP. Note that because of its closed loop nature,
TCP constantly shapes (with some delay) the packet ow
emitted from the di�erent sources, which in turn alters the
rate process that arrives at the IP router for bu�ering (which
in turn impacts the level of congestion, etc.). In contrast,
\open loop" means we collect a packet trace from a particu-
lar ns-2 simulation run (or alternatively, from a link within
the Internet) and use it to perform a set of trace-driven sim-
ulations of a queueing system that represents our IP router.
Clearly, trace-driven simulations cannot account for the ca-
pabilities of the network to constantly shape and thus alter
the o�ered tra�c to the queue. Although the \open loop"
vs. \closed loop" e�ects on bu�er dynamics seem to be
part of the networking \folklore," they are not well docu-
mented in the literature (for a noticeable exception, see the
recent paper [1] by Arvidsson and Karlsson, who provide
a critical assessment of tra�c models for TCP/IP by com-

paring \live" or closed loop scenarios with the corresponding
\trace" or open loop counterparts). In this sense, our contri-
bution in this paper consists of contrasting the \open loop"
vs. \closed loop" approach in a simple context and demon-
strating that inferring performance of a closed-loop system
based on an analysis of its open loop counterpart can give
rise to irrelevant results and lead to misleading conclusions.

We conclude in Section 5 by commenting on a number of
admittedly unrealistic assumptions regarding our toy net-
work simulation models. Clearly, the special appeal of these
toy models is that they can serve as reasonable starting
points for understanding TCP dynamics in large-scale com-
plex topologies under realistic tra�c scenarios, but they are
certainly not meant to faithfully model real-world environ-
ments. Therefore, one of their primary purposes should
be their ability to detect, identify, or point out those as-
pects of a real-world environment (e.g., the presence of many
short-lived TCP connections, TCP feedback control, net-
work topology) that are likely to play a crucial role in gain-
ing a solid understanding of how modern TCP/IP-based net-
works such as the Internet work. We believe that the �nd-
ings reported in this paper will increase the overall aware-
ness that it is in general easy to draw conclusions based on
in�nite source models and/or open loop systems and their
performance in a simple setting, but that the real challenges
lie { as succinctly discussed in [11] { in convincingly demon-
strating that these conclusion either still hold or become in-
valid for realistically loaded real-world networks and/or the
corresponding closed loop systems and their performance.

2. THE SIMULATION SETUP
In this section, we give a description of the networking con-
�guration used throughout this paper and spell out the de-
tails of our workload models. In addition, we discuss the
simulation engine used for our studies and review some TCP-
speci�c features that are necessary to present and discuss the
�ndings of our simulation experiments.

2.1 A simple networking configuration
All of the simulation experiments reported in this paper in-
volve the simple network topology depicted in Figure 1. Our
toy network consists of a single server (node 1), a set of low-
speed clients (nodes 5 � 405), and a number of links. The
clients are connected to the network via 40�100 Kbps links,
the server has a 100 Mbps connection to the network, and
two additional links (A, B) comprise the rest of the net-
work. Link A is used to limit the capacity of the network
to a value between 1:5 Mbps and 3 Mbps and represents, in
fact, the bottleneck link in our simulation setup. The link
B bandwidth is set at 100 Mbps, and we use this link to
observe the dynamics of the tra�c before it traverses the
bottleneck link A. To gauge the impact of the bu�er size in
the router, we vary the number of bu�er spaces available for
bu�ering packets1 in node 3 for link A; depending on the
particular experiment, this number can vary anywhere from
10 to 1000. If the router's bu�er is full, it deterministically
drops a newly arriving packet (\drop tail"). All simulations
are based on \drop tail," with the exception of two experi-
ments (see Section 3), where we will consider the \random

1Ns-2 allocates bu�er space in terms of number of packets
and not number of bytes.
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Figure 1: Network con�guration

early detection" or RED algorithm for dropping packets [8,
9].

Note that this network con�guration allows for no variabil-
ity as far as delays, round-trip times and cross tra�c are
concerned. While all of these three aspects of realistic net-
work tra�c are known to be crucial for matching the vari-
ability inherent in measured Internet tra�c [5], our focus in
this paper is on an extreme case of networking homogeneity,
where there is a single bottleneck through which all the traf-
�c has to go and where all packets experience one and the
same delay in the network, namely 1:4 seconds (to compare,
we also experiment with a link delay of 0:14 seconds). We
chose this admittedly unrealistic network con�guration be-
cause we wanted to illustrate our �ndings in a setting that
has been used (with di�erent parameter values, though) in
a number of previous studies of the dynamics of TCP (e.g.,
[18, 22, 23]).

2.2 Two different workload models
In contrast to our homogeneous network con�guration, our
workload models for the clients are heterogeneous in nature
and allow for a spectrum of variability at the user level.
On the one side of the spectrum, we deal with the case of
no user level variability by considering 50 in�nite sources
that always have data to transfer for the duration of the
entire simulation (that is, 4200 seconds). To eliminate any
transient e�ects, the sources start their transfers at random
times { picked according to a uniform distribution { during
the �rst 600 seconds of the simulation, and when analyzing
the output of our simulations, we focus on the remaining
3600 seconds of each simulation run when all 50 source are
known to be active.

To cover the other side of the spectrum, we rely on a Web
workload model considered in [5] that is very similar to
surge developed at Boston University [3]. The main idea
behind these Web workload models is that during a Web
session, a user typically requests several Web pages, where
each Web page may contain several Web objects (e.g. jpg

images or au �les). To parsimoniously capture the observed
variability within the di�erent layer of this natural hierar-
chical structure of a typical Web session (e.g., see [4, 7, 3]),
we consider certain types of probability distribution func-
tions for the following session attributes: number of pages

per session, inter-page time, number of objects per page,
inter-object time, and object size (in KB). The speci�cs of
these distributions, including the corresponding parameter
values, are given in Table 1. Note that the empirically ob-
served high variability associated with these Web session at-
tributes is naturally captured via Pareto-type distributions
with appropriately chosen parameter values.

In practice, a Web session will request a set of pages (usually
300) in the following manner.2 After the completion of the
download of all objects in the last page, it will wait for a ran-
dom amount of time (sampled from the inter-page time dis-
tribution) before requesting the download of the next Web
page. At the start of the next Web page download, the client
determines the server, which in our setup is always node 1.
In addition, the client chooses the number of objects in the
next Web page by picking a random number according to
the objects-per-page distribution. For each object, the client
determines the size of the object (by sampling from the ob-
ject size distribution) and then sends a request to the server
to download the object. The time between the request for
two di�erent objects within a Web page is chosen accord-
ing to the inter-object-time distribution. Once all objects
of a Web page have been downloaded, the process repeats
itself, i.e., after a waiting time (sampled from the the inter-
page-time distribution), the next Web page is downloaded,
etc.

In our simulations, we use 350 Web sessions, all of which
start at a random point in time within the �rst 600 seconds
of each simulation run. Also note that the in�nite source
model can be viewed as a special case of our Web workload
model, where the number of pages per client is 1, the number
of objects per page is 1, and the object size is set to a very
large value (e.g., 10000000) to ensure that the client does not
run out of data to send for the duration of the simulation.
In this sense, Table 1 provides a complete speci�cation of
the two workload models used in our experiments below. It
is also worth pointing out that our two workload models
are comparable in the sense that, for example, for a typical
RTT on the order of 1 second, the o�ered load (i.e., the load
measured on link A for the same con�guration as shown in
Figure 1, but where A is no longer the bottleneck) generated
by the 50 in�nite sources is about 66% of that generated by
the 350 Web sources; even though it needs about 75 in�nite
sources to generate approximately the same o�ered load, the
results discussed in this paper are largely insensitive to such
di�erences in the o�ered load.

2.3 Some TCP details – for later reference
The simulation engine used throughout this study is ns-2
(Network Simulator version 2) [2]. This discrete event sim-
ulator provides a rich library of modules such as UDP, dif-
ferent avors of TCP, bu�er scheduling algorithms, rout-
ing mechanism, and trace collection support. For the pur-
poses of this paper, we rely on the fact that ns-2 comes

2Note that in a typical HTTP 1.0 transaction, a Web client
sends a request to the Web server for a Web object after
establishing a TCP connection. The Web server responds
with a reply header and then continues to send the data.
To circumvent some limitations in the original ns-2 TCP
connection module we emulated the exchange of the HTTP
header information with two TCP connections.



Name number inter{page objects/page inter{object object size

Infinite source Constant Constant Constant | Constant
50 1 1 10000000

Web source Constant Pareto Pareto Pareto Pareto
350 mean 50 mean 4 mean 0.5 mean 12

shape 2 shape 1.2 shape 1.5 shape 1.2

Table 1: Summary of the relevant distributions (with parameter values) for the two workload used in our
simulation experiments.

with a thoroughly-checked and well-studied implementation
of TCP Reno, the most widely used version of TCP today,
and in the following, we list and discuss some of the protocol-
speci�c details that relate directly to what is presented and
explained in the subsequent sections. For a comprehensive
treatment of the di�erent versions of TCP, see for exam-
ple [19].

One of the main themes in Sections 3 and 4 below will be
how TCP exploits available network resources (e.g., limited
bu�er space in end-systems, or limited bandwidth along end-
to-end paths). To this end, recall that TCP provides end-
to-end ow control using a sliding window protocol. As far
as a bu�er-limited receiver is concerned, it sends an adver-
tised window informing the sender how many segments it
can have in ight beyond the latest one acknowledged by
the receiver. An important property of a sliding window
protocol is that it leads to self-clocking; that is, no matter
how fast the sender transmits, its data packets will arrive at
the receiver spaced out in a way that reects the network's
current carrying capacity. In addition, to control how the
sender attempts to consume the available network path ca-
pacity, TCP maintains a congestion window, or cwnd. At
any time, the sender can transmit up to the minimum of
the advertised window and cwnd. At the start of a TCP
connection, the advertised window is initialized to the bu�er
size of the receiver, and the congestion window is limited to
one or two segments. Each received acknowledgment, unless
it is a duplicate acknowledgment, is used as an indication
that data has been transmitted successfully and allows TCP
to move the advertised window and to increase cwnd. How-
ever, increasing the congestion window depends on the state
of the TCP connection. If the connection is in slow start,
it is increased exponentially per round-trip time (RTT), or
more precisely, by one segment for every acknowledgment.
If the connection is in congestion avoidance, it is increased
linearly by one segment per RTT. TCP switches from slow
start to congestion avoidance if the size of the congestion
window is equal to the value of a variable called the slow
start threshold, or ssthresh, for short.

Another important functionality provided by TCP is relia-
bility. To insure that each segment is transmitted reliably,
TCP { among other precautions { maintains a retransmis-
sion timer, or rto, for the di�erent segments. If no ac-
knowledgment for the segment is received by the sender
from the receiver within the timer period rto, TCP assumes
that the segment has been lost and retransmits it. An-
other way for TCP to detect losses is based upon duplicated
acknowledgments. Since acknowledgments are cumulative,
and since every segment that is received out of order (i.e.,
non-consecutive segment numbers) triggers an acknowledg-

ment, TCP assumes that four duplicated acknowledgments
indicate that a segment was lost. As before, TCP in this
case retransmits a segment if it detects a lost segment. If
TCP detects a packet loss (which in today's Internet is in-
terpreted as an indication of congestion), either via timeout
or via duplicated acknowledgments, ssthresh is set to half
of the minimum of cwnd and the advertised window size.
If the loss was detected via timeout, the congestion win-
dow is set to one segment, and TCP returns to slow start;
note that in this case, the self-clocking pattern has been
destroyed and entering slow start o�ers the potential for
rapidly re-discovering the network's current carrying capac-
ity. In contrast, if the loss was detected via duplicate ACKs,
then the self-clocking pattern is still present, and TCP does
not cut back the rate as drastically as before, though it im-
mediately enters congestion avoidance.

Finally, we will also consider di�erent strategies for manag-
ing the router's bu�er at node 3 for link A. For the major-
ity of simulation experiments conducted in this paper, we
employed the \drop tail" strategy which deterministically
drops a newly arriving packet whenever the router's bu�er
is full. To contrast, for two simulation experiments discussed
in Section 3, we considered the \random early detection", or
RED strategy [8, 9]. Note that in the case of RED, whenever
an arriving packet sees that the bu�er is �lled to more than
a certain fraction of its total size, the packet is dropped by
the router with a certain probability.3

3. IMPACT OF VARIABILITY AT THE AP-
PLICATION LAYER

In this section we demonstrate how the TCP ow control
algorithm can lead to artifacts in the router bu�er dynamics
at node 3, depending on which of the two workload models
are used to generate the network tra�c { only long-lived
TCP connections or \elephants" or a mixture of \elephants"
and short-lived \mice."

3.1 No variability and the occurrence of peri-
odic fluctuations

We �rst consider the case where 50 clients generate tra�c
according to the in�nite source workload model. For a ran-
domly selected 40 second long portion of our simulation, the
top plot in Figure 2 shows the tra�c rate process (i.e., num-
ber of packets per second) as it arrives at the queue at node

3While the RED simulations in this paper could bene�t
from a more careful choice of the underlying parameter set-
tings [12], we consider here only RED simulations, where
the parameter settings are the ns-2 default values; namely
thresh=5 and maxthresh=15.



3, to be forwarded through the bottleneck link A to the dif-
ferent destinations, and the instantaneous bu�er occupancy
of the queue at node 3. Here, the link C delay is 640 mil-
liseconds, the maximum bu�er occupancy of the queue at
node 3 is assumed to be 50 packets, the bottleneck link A

has a bandwidth of 1:5 Mbps, and the queueing discipline is
\drop-tail." Each packet drop is viewed by TCP as an indi-
cation of network congestion and results in a signal back to
the sender of the dropped packet to reduce its sending rate,
which in turn reduces the overall packet rate process arriv-
ing at the node 3 queue. This feedback dynamic is an in-
herent feature of TCP's end-to-end ow control mechanism,
and its e�ect, in the presence of in�nite sources, shows up
as pronounced periodic uctuations in the aggregate packet
rate process and the queue occupancy process. To explain,
shortly after the queue is �lled and packets are dropped,
the rate process stops increasing and drops after some time
from a maximum of around 215 packets per second to about
150 packets per second. Such a drastic reduction in the rate
process arriving at the queue allows the queue to completely
drain its bu�er. Upon experiencing no dropped packets, the
individual TCP connections start to increase their sending
rates again, which in turn results in an increase of the over-
all packet rate process (from about 150 to 215 or so packets
per second) as seen by the queue. As a direct result of this
higher arrival rate, the bu�er at the node 3 queue starts
to �ll up again. Once the bu�er is full, another round of
packet drops will cause the a�ected connections to again
reduce their sending rates, and the same process as before
repeats itself. These predominant periodic uctuations of
the packet rate process and the bu�er occupancy process
are fully consistent with some of the original studies of the
dynamics of TCP as described, for example, in [18] [23],
where the term \synchronization" was used to describe these
periodic uctuations.

To demonstrate that these pronounced periodic uctuation
for the packet rate and bu�er occupancy processes are not an
artifact of the extremely large delay value of 640 milliseconds
for link C, we show in the bottom plot of Figure 2 the results
for of the same simulation experiment, except that the link C
delay is now reduced to 40 milliseconds. Note that we still
observe pronounced periodic behavior, but since the feed-
back to the clients is now much more immediate, the queue
does not have time to drain completely, the cycle length is
signi�cantly shorter, the overall link utilization is larger, and
the rate process is somewhat less variable. Nevertheless, the
arguments for the observed periodic uctuations remain the
same as before.

Figure 3 shows the results of the same simulation experi-
ments as in Figure 2, but with the \drop tail" bu�ering strat-
egy replaced by \random early detection" or RED mecha-
nism described in Section 2. Even though this change in
how packets are dropped at the router's bu�er introduces a
certain amount of randomness, Figure 3 illustrates that this
additional randomness is not strong enough to signi�cantly
alter the periodic uctuations in Figure 2. However, RED
clearly succeeds in maintaining smaller queues in the bu�er
as compared to using the \drop tail" bu�er management
strategy.
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Figure 2: Packet rate process (dotted line) and
bu�er occupancy process (solid line) under \drop
tail" (top: 50 in�nite sources, link C delay 640 mil-
liseconds; bottom: 50 in�nite sources, link C delay
40 milliseconds).

3.2 High variability and the absence of peri-
odic fluctuations

To demonstrate how allowing for realistic variability at the
application level changes the qualitative features of Figure 2,
we replace the in�nite sources with clients that generate traf-
�c according to our Web workload model. Intuitively, while
retaining a few \elephants," this source model ensures that
a signi�cant portion of the TCP connections are short-lived
(i.e., representing many \mice"). The results are shown in
Figure 4, where we again depict the packet rate and bu�er
occupancy processes for a 40 second portion of our simula-
tions for the case of a 640 milliseconds (top plot) and 40
milliseconds (bottom plot) link C delay, respectively. In
stark contrast to the case of in�nite sources and the re-
sulting periodic uctuations, the inherent variability of the
TCP connections in the case of the Web sources gives rise to
packet rate and bu�er occupancy processes that completely
lack any sort of periodic components.4

4In addition to relying on visual means for checking for the
absence or presence of pronounced periodic components in
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Figure 3: Packet rate process (dotted line) and
bu�er occupancy process (solid line) under RED
(top: 50 in�nite sources, link C delay 640 millisec-
onds; bottom: 50 in�nite sources, link C delay 40
milliseconds).

The di�erence between the two workload scenarios is es-
pecially striking for the case of a link C delay of 640 mil-
liseconds. While in the presence of many \mice", the bu�er
never has a chance to completely drain, it does so on a regu-
lar basis for the \elephants-only" case. Also note that while
in the case of the Web sources, the packet rate process ar-
riving at the node 3 queue never drops below 190 or so, it
drops to about 140 in the case of in�nite sources. Together,
these e�ects result in a signi�cantly higher overall utiliza-
tion when there exists a proper mixture of \mice" and \ele-
phants." In the \elephants-only" case, even if we were to
increase the number of long-lived connections, because of
the presence of periodic uctuations caused by the interac-
tions between workload and TCP feedback, the overall link
utilization would not increase signi�cantly.

the bu�er occupancy process, we also used more quantita-
tive methods (e.g., straight-forward frequency domain-based
techniques) to con�rm our qualitative �ndings.
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Figure 4: Packet rate process (dotted line) and
bu�er occupancy process (solid line); top: 350
Pareto 1-type Web clients, link C delay 640 mil-
liseconds; bottom: 350 Pareto 1-type Web clients,
link C delay 40 milliseconds.

3.3 On why “mice” can get rid of periodic fluc-
tuation

In contrast to the in�nite source model, our Web workload
model { via its built-in Pareto-type distributions for the dif-
ferent Web session attributes { guarantees that a signi�cant
amount of TCP connections are very small and hence short-
lived. Although in today's Internet, the \elephants" are
responsible for a major portion of the overall workload (i.e.,
number of bytes), the total number of packets due to the
\mice" generates su�cient tra�c to create losses at random
points in time. This feature and the fact that the arrival
patterns of the \mice" tend to be highly bursty (e.g., see
[6]) suggest that the presence of signi�cantly many \mice"
makes it nearly impossible for the tra�c rate and bu�er
occupancy processes to exhibit pronounced periodic uctu-
ations.5 In this subsection, we explain why the presence of

5Another known cause that works against the presence of
periodic features in real network tra�c is the observed vari-
ability in round-trip time [5], but this cause is not accounted
for in our simulation setup.
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Figure 5: E�ect of synchronization: Fraction of con-
nections that experience packet losses (top: 50 in-
�nite sources, link C delay 640 milliseconds, \drop
tail"; bottom: 350 Pareto 1-type Web clients, link
C delay 640 milliseconds, \drop tail").

short-lived ows essentially gets rid of the periodic uctua-
tions that are encountered when assuming in�nite sources.
To this end, we consider our Web workload model and pro-
vide detailed information about how individual connections
are a�ected by and/or react to packet drops. In terms of
network con�guration, we discuss in the following the case
where the link C delay is 640 milliseconds.

In order to gauge the di�erence in the way congestion (i.e.,
packet drops) a�ect ows, we check what percentage of con-
nections (out of all connections) experiences a loss of (at
least) one packet during a time interval of size �T . Figure 5
shows the densities of these fractions for our two di�erent
workloads models and for di�erent values of �T . Note that
for the in�nite source model (top plot), as �T increases from
1 second to 5 and 10 seconds, the densities become more cen-
tered around 60%, and when �T is increased even more to
20 seconds, the corresponding density function shifts toward
100%, with a mean larger than 90%. Given that the bu�er
occupancy process in Figure 2 (top plot) has a periodicity
of about 10 seconds, we can conclude that about 60% of all
connections lose at least one packet within this period and
that almost every connection loses at least one of its packets
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Figure 6: E�ect of synchronization: Fraction of lossy
connections that were in slow-start at the time of
packet loss (top: 50 in�nite sources, link C delay
640 milliseconds, \drop tail"; bottom: 350 Pareto

1-type Web clients, link C delay 640 milliseconds,
\drop tail").

within two such periods.6 In contrast, for the Web workload
model (bottom plot), the density functions corresponding to
the di�erent �T values turn out to be essentially identical to
one another (the plot only shows the density corresponding
to �T = 10), and they are all sharply concentrated around
25%. Note that \mice" can start when other connections
are reducing their sending rates, and they often �nish be-
fore they experience any dropped packet. This also explains
why the fraction of connections (out of all connections) expe-
riencing packet drops is signi�cantly smaller in the presence
of \mice" than in their absence.

For another way to illustrate how the presence of many
\mice" manifests itself in the observed TCP dynamics, we

6Thus, even if a connection managed to avoid dropping a
packet during one congestion epoch, it is almost certain to
experience a packet drop during the subsequent cycle. The
fact that in the in�nite source model, every TCP connec-
tion is almost certain to experience a packet drop suggests
that each TCP connection receives a reasonable share of the
bottleneck bandwidth; that is, the simulation setup is not
likely to exhibit the tra�c phase e�ects described in detail
in [10].
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consider all connections that had (at least) one of their pack-
ets dropped and depict in Figure 6 the fraction 0 � p � 1
of those connections that were in slow-start at the time of
packet drop (note that 1 � p gives the fraction of connec-
tions in congestion avoidance); the top plot is for the in�nite
source model, the bottom plot shows the same information
for the Web source model.7 The di�erences between the
plots are again telling. In the presence of many \mice"
(bottom plot), most of the connections were in slow-start
at the time of packet drop, meaning that they were either
very short or experienced multiple dropped packets; a closer
look (see Figure 7, bottom plot) reveals that both cases usu-
ally contribute to this dominant slow-start e�ect. In general,
these connections detect congestion via timeout (thereby los-
ing the self-clocking pattern) which is less e�cient than fast
retransmit. Intuitively, with many of the connections going
through slow-start and thereby increasing their bandwidth
usage much more aggressively compared to those that are in
congestion avoidance, the Web sources generally succeed via
the presence of many \mice" to claim any unused bandwidth

7These percentages are calculated for successive time inter-
vals of length two seconds, ignoring intervals without any
dropped packets. Di�erent choices for the length of the time
interval yield essentially identical plots.

and utilize the network resources e�ciently. In contrast, the
top plot in Figure 6 shows that in the absence of any \mice,"
lots of the a�ected connections are in congestion avoidance
and increase their bandwidth usage more gradually. Indeed,
if we consider the size of the congestion window when losses
occur for the in�nite source case (see Figure 7, top plot), it
tends to be signi�cantly larger than when the sources gen-
erate tra�c according to our Web workload model.

These observations also suggest that the dynamics of packet
drops may be qualitatively di�erent for the two workload
scenarios. To con�rm this conjecture, we consider in Fig-
ure 8 the distribution of the number of consecutively dropped
packet (for the aggregate packet stream) for the in�nite
source and Web source models. As expected, the in�nite
source model results in a distribution that implies a less
bursty drop process than for the Web source model. To
explain, \elephants" are more likely to be in congestion
avoidance than in slow-start, which means that they can
only send one packet for every received acknowledgment. In
contrast, we have seen that the presence of many \mice"
results in many connections being in slow-start, which in
turn increases the likelihood that more than one packet of
a given ow can be dropped within a short period of time.
In other words, while the loss dynamics induced by TCP
when there is no variability at the application layer results
in small bursts of consecutive packet drops, these bursts can
be signi�cantly larger when allowing for application-layer
variability in accordance with our Web workload model.
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Figure 8: Dynamics of packet losses: distribution of
number of consecutive packet losses for the aggre-
gate packet stream.

To summarize, our simulation experiments have demonstrated
that the dynamics of TCP can interact in intricate ways
with the dynamics of the underlying workload model for
the sources. Static workloads such as in�nite sources al-
low for no variability at the source/connection level and are
destined to produce pronounced periodic uctuations in the
packet rate and bu�er occupancy processes. Even chang-
ing the queueing discipline at the router from \drop tail"
to a simple version of RED does not appear to be su�-
cient to eliminate this phenomenon. However, as soon as



the workload model accounts for su�cient variability at the
source/connection level, the \elephants" are forced to com-
pete with many \mice" for the available network resources.
The resulting heterogeneity in TCP states is su�cient to
eliminate any potential for periodic uctuation, and, as a re-
sult, the available resources are used more e�ciently. In con-
trast, periodic uctuations generally lead to lower link uti-
lization, less bursty losses, and more homogeneity in terms
of TCP states.

4. ON THE IMPACT OF FEEDBACK FLOW
CONTROL

In the previous section, we used a set of ns-2 simulation
experiments to demonstrate that drastically di�erent bu�er
dynamics in routers can arise, depending on the assumed
nature of variability exhibited at the application/connection
level. Our second set of ns-2 simulation experiments is in-
tended to increase the awareness within the performance
modeling community that traditional performance evalua-
tion (consisting of either assuming a given model for de-
scribing the tra�c arriving at the queue or by perform-
ing trace-driven simulations) may have little or nothing to
say about user-perceived end-to-end performance in the In-
ternet, where a dominant fraction of tra�c is governed by
feedback control. Note that feedback constantly shapes and
changes the packet ows emitted from the di�erent sources,
which in turn alters the rate processes that arrive at the
IP routers for bu�ering, which in turn impacts the levels of
congestion, etc.

To this end, we performed a number of related closed loop
and open loop simulations and compared them on the ba-
sis of some commonly-used performance criteria. Here, by
\closed loop" we mean a ns-2 simulation with a �xed simple
topology, including bu�er size in the router(s), link band-
widths, delays, etc. and where all hosts use TCP; that is,
for a given workload model at the source level, the TCP/IP
protocol suite is used to exchange data between the di�er-
ent hosts, which in turn determines the ow of packets over
the di�erent links within the network. In contrast, \open
loop" means that we collect a packet trace from a particular
ns-2 simulation run and use it to perform trace-driven sim-
ulations of a queueing system that represents our IP router.
On the one hand, running trace-driven or open loop simu-
lations is like assuming UDP-type sources in the sense that
there is no feedback between the network and the sources
generating the tra�c; on the other hand, trace-driven or
open loop di�ers from UDP because the timing of packet
arrivals at the router is determined by the trace at hand
and is generally not regular as is the case with UDP. Note
that by their very nature, open loop or trace-driven simula-
tions cannot account for the capabilities of the network to
shape and thus alter the o�ered tra�c to the queue (e.g., as a
result of changing congestion levels in the network through,
say, increasing the bu�er in the router or by means of chang-
ing the capacity of the bottleneck link). For a related study
that focuses on the bu�er occupancy distributions resulting
from a set of comparable open loop/closed loop simulations,
we refer to [1].

4.1 Changing the bottleneck link capacity: Open
loop vs. closed loop
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Figure 9: Open loop vs. closed loop (changing the
bottleneck link capacity): Bu�er occupancy pro-
cesses from a ns-2 simulation, with a 1.5 Mbps link
A bandwidth, and corresponding open loop simula-
tion assuming a link A bandwidth of 2.25 Mbps (top
plot); same ns-2 simulation, but with a 2.25 Mbps
link A bandwidth (bottom plot). The horizontal ref-
erence lines indicate the maximum bu�er size of 50.

To illustrate how open loop or trace-driven simulation re-
sults can give rise to misleading or wrong engineering rec-
ommendations, we consider in the following the problem of
sizing the bottleneck link capacity under certain Quality-
of-Service (QoS) constraints. To this end, a commonly used
method in traditional performance evaluation of �nite bu�er
queueing systems is to consider an actual packet-level traf-
�c trace, collected from some link in, say, the Internet, and
use it as input to the queueing system under consideration
for a number of open loop or trace-driven simulations. For
example, since changing the (constant) service or drain rate
of the queue is equivalent to changing the bandwidth of the
output link of the queue (which is assumed to be the bot-
tleneck link), it has become common practice to study this
way, for example, the average queue length or the (long-
term) packet loss probability as a function of the bottleneck
link bandwidth. Moreover, it is commonly argued that the
�ndings from such a study apply directly to the tra�c engi-



neering problem of sizing link capacities in the presence of
certain QoS requirements (i.e., small packet loss probability
or small average queuelength).

In the following, we consider the network con�guration de-
picted in Figure 1 and focus on the node 3 bu�er receiving
packets from link B. The maximum size of this bu�er is 50,
the bottleneck link A has capacity 1.5 Mbps, and we assume
that the clients generate tra�c according to our Web work-
load model (see Section 3). Next we collect the packet-level
tra�c trace that arrives at the bu�er in question and that
gives rise to a bu�er occupancy processes that is depicted in
the top plot in Figure 9 (solid line). Using this very trace to
run a trace-driven simulation of the node 3 queueing system
where now the bottleneck bandwidth has been increased to
2.25 Mbps results in the queue size process shown in the
top plot of that same �gure as a dotted line. Not surpris-
ingly, the higher service rate of the queue ensures that the
arriving tra�c is processed faster. In fact, the resulting plot
shows that the bu�er tends to contain less than 20 or so
packets{way below the maximum bu�er size of 50{and that
in contrast to the 1.5 Mbps bottleneck scenario, none of
the connections alive during the depicted time interval ex-
perience any packet loss. Thus, based on these simulation
results, a sound engineering recommendation would be to
increase the bottleneck link capacity to reduce the average
queue size as well as to guarantee essentially zero packet loss
probability.

To compare, let us consider the identical ns-2 simulation set-
ting as above (i.e., same network con�guration, same work-
load model) but where the bottleneck link A has now a
capacity of 2.25 Mbps instead of the 1.5 Mbps considered
earlier. Running this ns-2 simulation experiment results in
a node 3 bu�er occupancy process that is shown in the bot-
tom plot of Figure 9. Note that in contrast to the open
loop simulation where the tra�c arriving at the queue is
the same irrespective of the assumed capacity of the output
link, the feedback control mechanisms of TCP guarantees
that a given source \learns" about the available (in this
case, less stringent) bottleneck bandwidth and will adjust
its sending rate accordingly. As a result, despite assuming
an identical workload model at the application layer, the
packet-level tra�c trace arriving at the node 3 queue and
generated in the closed loop environment of our ns-2 sim-
ulation setting (with the 2.25 Mbps bottleneck speed) can
be expected to be very di�erent from that used to run the
corresponding open loop simulation experiment. In fact, by
constantly \probing" for their available share of the 2.25
Mbps bottleneck link bandwidth, the di�erent competing
TCP connections are not only able to send packets in gen-
eral at a higher rate than in the 1.5 Mbps case, but the
packets-within-connection dynamics is also likely to be dif-
ferent due to the di�erent packet loss patterns exhibited
by the various connections in the 1.5 Mbps vs. the 2.25
Mbps bottleneck link scenarios. In summary, the ns-2 sim-
ulation experiment illustrates that assuming a �xed arrival
stream of packets at a queue is generally ill-suited for per-
formance modeling of closed loop systems, and that TCP is
very successful at utilizing available resources (e.g., bu�er
and bandwidth){at the cost of incurring potentially high
loss rates, though. Clearly, based on these open loop/closed
loop simulation experiments, what looked like a sound engi-
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Figure 10: Open loop vs. closed loop (changing
the maximum bu�er size): Bu�er occupancy pro-
cesses from a ns-2 simulation, with a maximum node
3 bu�er size of 20 (lower reference line), and cor-
responding open loop simulation assuming a maxi-
mum node 3 bu�er size of 250 indicated by the upper
reference line (top plot); same ns-2 simulation, but
with a maximum node 3 bu�er size of 250 (bottom
plot).

neering recommendation in view of the open loop simulation
results has turned into a potentially misleading and useless
�nding when accounting for more networking reality{in this
case, TCP. In particular, using such open loop/closed loop
simulation experiments, it can be easily demonstrated that
depending on the networking conditions under which the
tra�c trace used in running the trace-driven simulations
was gathered, the estimated performance (e.g., expressed in
terms of packet loss probability) can be either overly opti-
mistic or way too pessimistic.

4.2 Changing the maximum buffer size: Open
loop vs. closed loop

To show that the open loop/closed loop issue is relevant irre-
spective of the assumed workload model, we consider again
the network con�guration depicted in Figure 1, focus again
on the node 3 bu�er receiving packets from link B (the bot-
tleneck link C has capacity 1.5 Mbps), but assume in�nite



sources. Performing identical experiments as in Section 4.1
but changing the maximum bu�er size instead of the bottle-
neck link bandwidth results in the three bu�er occupancy
processes depicted in Figure 10: The solid curve in the top
plot results from an ns-2 simulation run, where the node
3 bu�er has a maximum size of 20; the dotted line in the
top plot results from performing a trace-driven simulation of
the node 3 queue in question with a maximum bu�er size of
250 and with the packet-level tra�c trace that was collected
from the afore-mentioned ns-2 simulation (i.e., the tra�c ar-
riving at the node 3 bu�er of size 20); the bottom plot was
obtained running the same ns-2 simulation but with a max-
imum node 3 bu�er size that has been increased from 20 to
250.

As expected and discussed in Section 3, the periodic uctu-
ations due to the in�nite source assumption at the applica-
tion layer dominates all three curves. However, the impact
of the TCP feedback control that is explicitly accounted for
in the ns-2 simulations but completely ignored in the trace-
driven simulation is as clear and qualitatively the same as
in the experiments discussed in the previous section. Again,
TCP fully exploits and utilizes (to the extent possible when
dealing with in�nite sources) the increased node 3 bu�er ca-
pacity but does so at the cost of incurring packet losses at
times of congestion; that is, when the overall rate at which
the packets arrive at node 3 exceeds the output rate for too
long of a period. Similar conclusions as in the previous sec-
tion apply: While at �rst sight, the open loop simulation re-
sults suggest a clear advantage of increasing the maximum
bu�er size from 20 to 250, their closed loop counterparts
fully discount this observation as an illusion due to relying
on simpli�ed models that miss out on aspects of tra�c (e.g.,
the TCP feedback mechanism) that turn out to be of crucial
importance for understanding network performance.

4.3 Changing the workload model: Open loop
vs. closed loop

Finally, we comment on another commonly-used approach
for inferring bu�er dynamics in an Internet-like setting from
open loop trace-driven simulations, where in addition, the
workload model comes into play. It is common engineering
practice to use the complementary probability distribution
of the bu�er occupancy in an in�nite bu�er queue as an ac-
curate substitute for the loss probability in a �nite bu�er
system. To check the validity of this practice in our simple
networking setting, we run a number of identical ns-2 simu-
lations, except that we considered di�erent maximum bu�er
occupancies at node 3, namely 10; 20; 30; 50; 250 and 1000,
and obtained the actual loss probabilities as a function of
the bu�er size at the node 3 queue. As our in�nite bu�er
system, we take the simulation with maximum bu�er size of
1000 and infer from it the complementary probability dis-
tribution function that the bu�er exceeds a certain value x.
The results are depicted in Figure 11 (the solid lines corre-
spond to the in�nite bu�er approximation, while the crosses
indicate the actual loss probabilities), where the top plot is
for the in�nite source case and the plot at the bottom is
based on the Web sources. For the in�nite sources and a
maximum bu�er size of 1000, the queue length process re-
sulting from the ns-2 simulation run (i.e., closed loop) turns
out to tightly uctuate around 725. In fact, the maximum
bu�er capacity is never exceeded, resulting in no losses and
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Figure 11: Open loop vs. closed loop (changing the
workload model): Packet loss probability vs./ bu�er
size, for the in�nite source model (top plot) and the
Web source model (bottom plot).

implying that in this scenario, the sources are bandwidth
limited on their access links. In contrast, the ns-2 simulation
for the 1000 bu�er size case with Web sources does occasion-
ally �ll the whole bu�er resulting in signi�cant losses of more
than 5%. On the other hand, note that the in�nite bu�er
approximations are by de�nition open loop based and pre-
dict, for example, almost 100% packet losses for the 50 bu�er
case, even though the actual packet losses are below 15% for
Web sources and below 3% for the in�nite sources. Overall,
Figure 11 illustrates that the in�nite bu�er approximation
can lead to extremely conservative performance prediction,
making this open loop-based approach to inferring aspects
of a closed-loop system essentially useless.

5. CONCLUSION
Even though the networking con�guration considered in our
simulation experiments is admittedly unrealistic and over-
simpli�ed, experimental evidence presented in this paper ex-
empli�es the risk associated with conventional analysis or



simulation of large-scale internetworks such as the Internet.
As cogently discussed in [11, p. 2], this risk concerns the
wide-spread tendency to rely on and \use models simpli-
�ed to the point where key facets of Internet behavior have
been lost, in which case the ensuing results could be useless
(though they may not appear to be so!)." While simple toy
networks, in�nite source models, and open loop systems can
provide deep insight into and physical understanding of the
performance of real networks, we believe that their cred-
ibility should be substantially enhanced by demonstrating
that after accounting for realistic network, source model,
and feedback behavior, the insight and understanding they
provide (i) remain essentially unchanged, or (ii) may require
substantial modi�cations, or (iii) are no longer applicable.
For example, our experimental results clearly indicate that
conventional analysis or simulation cannot be expected to
automatically apply in Internet-like settings where a major
portion of the tra�c is generated by Web users (and hence
gives rise to high variability TCP connections) and uses TCP
(and hence is inherently closed loop in nature).

Looking ahead, it will be interesting to see whether or not
some of the generic di�erences observed in our abstract set-
ting will remain valid for more realistic network con�gura-
tions. Another less obvious shortcoming of our experiments
presented in this paper is that we completely ignore the po-
tential of feedback from the network all the way back to the
application layer; that is, the congestion state of the network
may have a direct impact on our Web-user source model be-
cause it may directly inuence the Web-browsing behavior
of individual users. While there exists mainly anecdotal ev-
idence for the presence of such types of feedback behavior
(e.g., Internet \storms" [13]), we have seen little empirical
evidence for the widespread existence of such feedback in our
analysis of a wide variety of Internet tra�c measurements.
Nevertheless, the potential pitfalls associated with assuming
an open loop characterization at the source level should be
kept in mind and may require revamping the current ap-
proach to source modeling, depending on how the Internet
develops in the near future. Other aspects not considered
in our experimental studies concern incorporating TCP fea-
tures such as sack (selected ack) or delayed acks [15]; deal-
ing with the problem of two-way or cross tra�c (e.g., see
[23, 5]); allowing for more realistic networking topologies;
and a more comprehensive analysis of the bu�er occupancy
in routers running RED. Part of our ongoing e�orts to un-
derstand the dynamics of TCP tra�c in a realistic network-
ing setting deals with some of these aspects and how they
impact our current understanding, and will be published
elsewhere.
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