mmdump: A Tool for Monitoring
Internet Multimedia Traffic

Jacobus van der Merwe? Ramoén Caceres! Yang-hua Chu! Cormac Sreenan?
kobus@research.att.com, ramon@vindigo.com, yhchu@cs.cmu.edu, cjs@cs.ucc.ie

Abstract

Internet multimedia traffic is increasing as applications like stream-
ing media and packet telephony grow in popularity. It is important
to monitor the volume and characteristics of this traffic, particu-
larly because its behavior in the face of network congestion differs
from that of the currently dominant TCP traffic. To monitor traf-
fic on a high-speed link for extended periods, it is not practical to
blindly capture all packets that traverse the link. We present mm-
dump, a tool that parses messages from RTSP, H.323 and similar
multimedia session control protocols to set up and tear down packet
filters as needed to gather traces of multimedia sessions. Unlike
tcpdump, dynamic packet filters are necessary because these pro-
tocols dynamically negotiate TCP and UDP port numbers to carry
the media content. Our tool captures only packets of interest for op-
tional storage and further analysis, thus greatly reducing resource
requirements. This paper presents the design and implementation
of mmdump and demonstrates its utility in monitoring live RTSP
and H.323 traffic on a commercial IP network. The preliminary re-
sults obtained from these measurements are presented.

1 Introduction

Recent years have seen increasing use of the Internet to send and re-
ceive audio and video, including streaming playback of music and
news, as well as real-time voice telephony and conferencing. This
traffic is expected to continue growing, driven by improvements in
PC performance, residential access bandwidth, and media coding
algorithms. Whilst the trends and behavior of Web traffic have been
studied extensively, multimedia traffic has yet to be studied in de-
tail. Multimedia applications typically use UDP transport, demand
relatively large and constant data rates, and react slowly, if at all,
to network congestion. As this traffic grows, its impact on network

*AT&T Labs—Research, Florham Park, NJ, USA
*Vindigo, New York, NY, USA

1Carnegie Mellon University, Pittsburgh, PA, USA
$University College Cork, Cork, Ireland

performance may be significant. It is important for network design-
ers to understand the nature of multimedia traffic.

Internet traffic measurements are commonly performed using the
tcpdump utility, which can be used to monitor packets for a partic-
ular application-level protocol by filtering based on the appropriate
TCP/UDP port number. Use of tcpdump for multimedia traffic is
complicated because the majority of multimedia applications use
dynamically assigned UDP port numbers. For example, protocols
such as the Real Time Streaming Protocol (RTSP) [19], the Session
Initiation Protocol (SIP) [6], and H.323 [7] use a well known TCP
port number to initiate a multimedia session. Once the session is es-
tablished, the protocols negotiate other TCP or UDP port numbers
dynamically for media control traffic and media data traffic. To ad-
dress this problem we have created a new utility we call mmdump
that is based on tcpdump but makes use of protocol-specific pars-
ing modules to determine the dynamic set of ports that need to be
monitored.

In this paper we present the design and implementation of mm-
dump. mmdump contains a parsing module for each multimedia
control protocol. All traffic received on the well known control
port is passed to the parsing module in question. The parsing mod-
ule identifies individual control sessions in this aggregate control
stream, and parses the control messages to extract the dynami-
cally assigned port numbers. The parsing module then dynamically
changes the packet filter to allow packets associated with these ports
to be captured. Architecturally, mmdump departs from tcpdump by
maintaining state for each multimedia session. This is necessary be-
cause mmdump needs to associate arriving packets with individual
sessions and later report statistics of the sessions. The situation is
made worse by issues such as packet loss and asymmetric routing.
We present our approach to these problems in the current imple-
mentation of mmdump and suggest improved approaches.

We also present results obtained using mmdump to monitor mul-
timedia traffic in AT&T’s commercial IP network. The version of
mmdump used included RTSP and H.323 parsing modules; we have
since developed a rudimentary SIP parser. The varied types of anal-
ysis that we present for traffic from different multimedia control
protocols highlight the versatility of mmdump.

The rest of this paper is organized as follows. Section 2 provides
background on tcpdump as well as RTSP and H.323. Section 3 ex-
plains the structure and operation of mmdump. Section 4 presents
results demonstrating the use of mmdump on live multimedia traf-
fic. Section 5 summarizes related work, and Section 6 concludes the

paper.

2 Background Information

Given that mmdump is based on and extends tcpdump, we give a
brief overview of tcpdump in this section. In addition, we briefly
discuss two example multimedia control protocols that are used to
negotiate port numbers for streaming content.

2.1 Structure of tcpdump

The tcpdump utility provides a popular mechanism for monitoring
packet transmissions. tcpdump builds on top of the libpcap library,
which provides two key functions: an abstraction for dealing with
different types of network interfaces, and the ability to compile a
filter expression for use by a packet filter. The library provides a
common interface to different ways of performing packet filtering.
For example, on a system with the BSD Packet Filter (BPF) [11],
filtering is done in kernel space and libpcap simply passes the com-
piled filter expression to the kernel. libpcap can also perform the
packet filtering itself (in user space) when required. This is used
on systems where the kernel does not support packet filtering, and
when tcpdump is reading packets from a previously generated raw
dump file, rather than directly from the network.

In normal operation, tcpdump is run with a command-line expres-
sion indicating all packets of interest. The grammar and syntax used
for this expression is fairly high level. For example, the expression
host 135.207.26.201 and tcp port 554 indicates an
interest in all TCP packets using port 554 that are either originating
from or going to the host with the specified IP address. This expres-
sion is passed to the libpcap library at startup where it is compiled
into an intermediary tree structure. The tree is then optimized and
the resulting tree is translated into a contiguous filter expression
which is installed in the operational packet filter.

For tcpdump, all packets that pass through the installed filter will
either be logged to file, or be passed to a printing module in the
tcpdump part of the code. In the latter case, print functions for suc-
cessively higher layers of the protocol stack typically print out parts
of the packet. For example, for a UDP packet carrying a Sun RPC
request, the print-ethernet function will call print-ip, which in turn
will call print-udp and then print-sunrpc. For a more detailed dis-
cussion of tcpdump please refer to [9, 8, 2].

While extremely popular and successful as a monitoring tool, tcp-
dump is unable to efficiently monitor multimedia traffic, since the
majority of multimedia applications use dynamically assigned UDP
or TCP port numbers for media transfer. This is the case with popu-
lar multimedia protocols such as RTSP and H.323, in which a con-
trol interaction using a well known port is used to negotiate the set
of dynamic port numbers to be used for media transfers. By their na-
ture, dynamically assigned port numbers cannot be specified from
the command line, meaning that tcpdump in its current form cannot
be used to monitor this type of traffic. If a given multimedia pro-
tocol normally picks a port from a small range of port numbers, it
is of course possible to statically specify the whole range from the
command line and perform post-processing to extract the data of
interest. As we will discuss in Section 4.1, using tcpdump in this
manner is very inefficient in terms of disk space and does not scale
to processing packets on fast network links.

2.2 Real Time Streaming Protocol (RTSP)

client server

'
M P
i

T — 3 Contains dynamic

1 SETUP I port numbers

control
—— data

Figure 1: Dynamic port number assignment with RTSP

The Real Time Streaming Protocol (RTSP) is becoming the domi-
nant control protocol for streaming content on the Internet. Figure 1
depicts a sample interaction between an RTSP client and server.
RTSP is used to set up and control (pause, forward, etc.) the play-
back of streaming content across the Internet. RTSP is a classic
request-response protocol, but also allows pipelining of messages
to reduce latency. Protocol interaction starts with an OPTIONS re-
quest/response whereby the client and server establish mutual capa-
bilities. The client then issues a DESCRIBE request for the media
stream it is interested in. The response from the server contains me-
dia specific information about the stream, e.g. the encoding used,
the clip length and the average bit rate. Depending on the particular
session, more than one media stream might be described in a single
DESCRIBE response message.

After DESCRIBE, the client issues a SETUP request which con-
tains the set of protocols and port numbers (or range of port num-
bers) on which the client is willing to the receive the media stream.
For RTSP this is normally UDP and a dynamically chosen port
number, although it is also possible to use RTSP in “interleaved
mode” where the data stream is interleaved on the original TCP
control connection. This interleaving is typically only used to al-
low streaming through a firewall. The server selects one of these
options and a port number and sends it back to the client in the
response message.

Following these exchanges the client can issue a PLAY request to
start the streaming and can issue PAUSE and other control requests
for the stream. The session normally ends with a TEARDOWN re-
quest at which time the TCP connection is also terminated®.

1This summary of the RTSP protocol reflects our monitoring of
its usage in practice. It is compliant with the RTSP specification, but
the specification allows several variations, for example the use of
UDP as the transport mechanism for RTSP and the tearing down of
the RTSP control connection without terminating the RTSP session.

2.3 H.323 conferencing control protocols

Conferencing and packet telephony represent another class of appli-
cations that make use of a separate control protocol to dynamically
negotiate port numbers for media transfer. H.323 is a popular ex-
ample of such a protocol. In principle H.323 operates in a manner
similar to RTSP, but we describe the details here for the sake of
completeness. Figure 2 depicts a sample H.323 exchange between
caller and callee. Interaction starts with the caller sending a SETUP
message on a well known TCP port to the callee. This exchange is
on the first of two TCP connections which is called the Q.931 chan-
nel. The callee responds with an ALERTING message followed by
a CONNECT message. The CONNECT message contains the port
number for the second TCP connection between caller and callee
which is called the H.245 or conference control channel. At this
point the first TCP connection may be disconnected. Interaction on
the H.245 channel starts with an exchange of messages to deter-
mine terminal capabilities and for determining the master and slave
roles between the two terminals. The sender (of subsequent media)
then sends an Open Logical Channel message to the receiver. In the
Internet environment this message contains the RTCP port number
on which the sender wants to receive RTCP reports about the qual-
ity of reception [18]. The receiver responds with an Ack message
which contains the RTP port number on which the media stream
should be received and an RTCP port number on which to receive
RTCP sender reports. The Open Logical Channel message always
originates from the sender of a data. As indicated in Figure 2 a two-
way conversation will therefore require an Open Logical Channel
and Ack pair of messages in both directions. The second TCP con-
nection remains in place for the duration of the call and terminates
after sending an End Session message.

Q.931 channel H.245 channel
(on well known TCP port) (on dynamic TCP port no)
caller callee caller callee
— | — A
;T SETUP : | Terminal capability |
| i | | //meﬁg?es\ |
| ALERTING ——| — T
— . I~ L
! CONNECT — ! Méster/slaygd\g,termmanon !
P : : o ‘

I I I _— |
| . " T

B Open Logical Channel
Contains port no T
for second TCP

connection

Contains port nos Open Logical Channel——
for media stream = //;; |
—— _Ack

control
— data

T EndSession

Figure 2: Dynamic port number assignment with H.323

3 Design, implementation and operation of
mmdump

mmdump extends tcpdump by adding parsing modules for multi-
media session control protocols and by allowing these parsers to
dynamically change the packet filter to accept packets on the dy-
namically assigned port numbers. As per the normal functioning
of tcpdump, packets that pass through the filter can be displayed
by means of protocol-specific print modules, or can be logged to a
file for post processing. This arrangement is depicted in Figure 3
and discussed in more detail in this section. We describe below our
parsing modules for both RTSP and H.323. Note that all existing
tcpdump functions remain in mmdump and the latter is therefore a
superset of tcpdump. However, in order to explain the functional-
ity of mmdump it is easier to refer to it as if it were a completely
different tool.

When gathering lengthy traces on high-speed links, mmdump is
commonly used in two stages. During the first stage, only the mes-
sages containing dynamically assigned port numbers are parsed, the
packet filter is updated and all packets that pass through the filter are
dumped into a file for later analysis (this includes all control packets
and all data packets). In this mode of operation the parsing modules
are only concerned with messages containing the dynamically as-
signed port numbers. Raw dump files generated in this manner can
be post processed again using mmdump. In these cases the parsing
module might extract information from other messages, e.g. in the
case of RTSP the URL of media objects, the type of encoding used
and the length of objects might be of interest. It is also possible
to use mmdump in a one stage process whereby all information of
interest is printed online and no packets are logged.

3.1 Structure of mmdump

The multimedia control protocols make use of well known port
numbers. When started, mmdump sets up a default filter to capture
all packets that belong to these control connections to bootstrap the
monitoring process. This filter is set up to receive all packets for all
connections traversing the probe point that mmdump is monitoring.

For each of the multimedia applications of interest a parsing mod-
ule has to be supplied. All packets that arrive on a particular well-
known port number are passed to the corresponding parsing module
for processing. Figure 4 shows the functionality that each parsing
module needs to supply.

mmdump maintains state for each active “session”. As shown in
Figure 4, the first action required by a parsing module is to do a
session lookup. A session is defined as a unique instance of a con-
trol protocol interaction, e.g. an RTSP client communicating with a
RTSP server, or two H.323 peers communicating. A session lookup
therefore involves a matching of source and destination addresses
and port numbers in the received packet against the equivalent val-
ues in the stored session state. For H.323, the second TCP control
connection (the H.245 connection), has to be associated with the
first control connection (the Q.931 connection). In this case, the
session lookup therefore has to match the incoming packet against
both these control connections associated with the same session.
While the basic session lookup is fairly generic, i.e. matching IP

PRI NTERS

TCP UDP.

PARSERS

RTSPINNESH. 332

N

Change packet
filter

i bpcap
t cpdunp
mdunp

From net wor k

Figure 3: Architecture of mmdump in relation to tcpdump

addresses and port numbers, protocol-specific variations such as the
aforementioned make it awkward to efficiently separate this func-
tionality out in a generic way. If the session lookup was successful,
the retrieved session state is used, or if it failed, a new session struc-
ture is allocated.

Maintaining state in the tool is a significant departure from the
largely stateless operation of tcpdump. tcpdump does maintain
some state, e.g. in order to print out relative rather than absolute
sequence numbers for TCP packets. The state maintained by mm-
dump is different in that it keeps track of multimedia sessions, each
of which can have more than one TCP or UDP connections. This
means that mmdump keeps a lot more state than tcpdump and fur-
ther needs to match different connections with the same multime-
dia session. As indicated above, new session state can be created
when the first TCP packet for a particular session is received. Ses-
sion state can be removed when the TCP FIN packet is received
on the control connection for RTSP, and on the H.245 connection
for H.323. Depending on the mmdump mode of operation, a sum-
mary of a session will typically be produced when session state is
removed. Because of the size of the state that is maintained for each
session, performing garbage collection of stale session state is es-
sential in mmdump.

Next, mmdump has to determine if a complete higher layer protocol
message has been received. This function is by necessity protocol-
specific. RTSP, which is a text-based protocol, requires a fairly
complicated set of rules to determine when the end of a message
is found. An H.323 control messages, on the other hand, is encap-
sulated in a lower level frame which has a message-length field. If
a complete control protocol message has been received, the mes-
sage is passed to a parsing engine, if not, the packet is stored in
a per-session buffer to be used together with subsequent packets
received for this session. The current implementation of this per-
packet buffer does not take TCP sequence numbers into account
and simply treats packets in the order in which they were received.
This is clearly problematic in an IP environment where both packet

Message Session
Received > Lookup

Create New
Session

Existing
Session ?

Find Message |
Boundaries

Store Partial
Message With
Session State

N T Return

Garbage Collection
Return

Figure 4: Functioning of a parsing module

Change Filter

reordering and packet loss can happen. Especially for RTSP traffic
where different RTSP messages often span several IP packets, or
have fragments of different RTSP messages in the same IP packet.
For H.323, control messages seem to be contained in one (or two) IP

packets, with a single H.323 message per packet. Since both con-
trol protocols in question (and indeed others that are of interest)
make use of TCP, it should be possible to extend the implementa-
tion with a generic TCP module, which could pass to the parsing
modules only in-order TCP segments. We are currently investigat-
ing this possibility.

The protocol-specific parsing engine tries to parse the message
passed to it, putting extracted information in a session structure
supplied by the parsing module proper. This separation of func-
tionality allows a different parsing engine to be used without the
need to change any of the mmdump logic and functionality?. At
the very least the parsing engine will try to determine any dynam-
ically negotiated port numbers. Depending on the way the tool is
used (i.e. one-step online, or two-step online and off-line), the pars-
ing engine also extracts other information from the control proto-
col. Should the parsing engine fail to correctly parse a message that
was believed to be intact, perhaps because of the simple reassem-
bly described above, the message is discarded and an event count is
incremented.

If the parsing engine was able to extract any negotiated port num-
bers, this fact is relayed back to the main parsing function by means
of a flag in the shared session structure. The parsing module can
now invoke new functions exported by the libpcap library to dy-
namically change the filter expression so that packets associated
with this port number can also pass through the packet filter.

The interface between the parsers and the packet-filter level is very
simple and consists of two function calls: change-filter()
and do-Filter(). change-filter() allows a parser to ei-
ther add or delete a port number for a particular address and pro-
tocol type to the filter expression. Alternatively a parser can re-
quest that all ports associated with a particular address be deleted.
Calling change-filter() does not result in the immediate
update of the real packet filter, rather the requested change is
noted at the packet-filter level, and when a parsing module calls
do-filter(), the actual filter change takes place. This allows
the parsing module to make a number of related changes to the
packet filter in one go, for example to add both RTP and RTCP
port numbers to a specific address. This is desirable, because as
explained below, the actual generation of a new packet filter is cur-
rently an expensive operation which should not be performed un-
necessarily.

As explained in Section 2.1, for regular tcpdump a command-
line filter expression is compiled once (using the function
pcap-compi le()), into an intermediate tree structure which is
then optimized to produce a contiguous filter expression in a form
which can be installed in a packet-filter state machine. In our ini-
tial proof-of-concept implementation, we made use of this same
interface by producing a long ASCII filter expression for input to
pcap-compi le() every time that do-Filter() was called.
Generating the intermediate tree structure is however a very expen-
sive operation and this approach was therefore very inefficient.

2For example, a new H.323 library, capable of parsing the Fast-
Connect option in the latest version of the specification was recently
added to mmdump for monitoring voice traffic in a voice over IP
trial.

In our current implementation we bypass the standard compilation
process by exploiting the fact that the filter expressions that we gen-
erate always follow a simple pattern. In particular, a command-
line version of the filter expression used by mmdump will al-
ways be of the following nature: tcp port X or (host A
and port Al or host A and port A2) or (host B
and port Bl) etc. We therefore generate the intermediate
tree structure directly by simply walking through the list of cur-
rent entries in the filter table and AND’ing or OR’ing the build-
ing blocks of the tree structure together as needed. As before
this intermediate tree structure is then optimized (through a new
simple-pcap-compile() function) and turned into a contigu-
ous filter expression for the actual packet filter.

While much more efficient than our initial attempt, the optimiza-
tion process still needs to be run for the complete filter expression
every time a parsing module calls do-filter(). A better solu-
tion, keeping the intermediate tree structure that can be modified
based on instructions from the parsers, is not possible with the cur-
rent libpcap implementation, as the intermediate tree structure is
“consumed” in the optimization process. We understand that a new
version of the tcpdump family of tools [2] is being written and that
the needs of mmdump (and indeed other measurement work) for
dynamic and incremental filters will be incorporated in the libpcap
library.

Returning to Figure 4, the final function that a parsing module may
have to perform is garbage collection. As described above, session
state is normally removed when a TCP FIN message is received for
the control connection. However, because of effects such as packet
losses or route changes, the probe point might never receive the
FIN packet and garbage collection has to be performed to remove
stale session state. In our current implementation, garbage collec-
tion can be performed when triggered by some “scarcity” of re-
sources, such as the number of sessions reaching a certain threshold
or based on a timeout. Similarly, in the absence of more accurate in-
formation, sessions are deemed stale when their duration exceeds a
certain threshold, or when they have not seen any activity on all the
streaming ports for a certain period of time. The latter approach,
while being more accurate, adds considerable overhead as it means
that a session lookup has to be performed for every (or every nth)
data packet.

3.2 Using mmdump

Selection of a particular multimedia protocol to monitor is by a
command-line option: =R n for RTSP and -H n for H.323, where
n is a small number controlling the amount of online processing and
the verbosity of the output that mmdump produces. For example,
—-H 0, will do the minimal amount of online extraction of informa-
tion and is often used in conjunction with the raw-write tcpdump
option (-w <Filename>), which saves the packets to disk for
later processing when mmdump is used in two stages. -H 1 causes
mmdump to perform online extraction of protocol specific infor-
mation and can be used either online or off-line, the latter typically
with the tcpdump raw-read option (-r <fi lename>). With n>0,
mmdump produces session specific records: For RTSP each session
record shows the session related information, such as the start and
end time, and the client and server addresses. In addition media-

specific information (e.g. format, size) for each media element (e.g.
an audio clip, a background image) is shown including the URL
and the clip length of each element. For H.323, each session record
contains the IP addresses and phone numbers of the participants,
the call duration and information about the audio codec and H.323
vendor whose software was used.

Normal tcpdump operation includes the notion of a “snaplen”
(snapshop length), the maximum number of bytes from each packet
that will be captured. tcpdump allows snaplen to be specified from
the command-line or uses a default snaplen if none is specified.
With mmdump, we need to capture the complete control messages
in order to parse them correctly. The snaplen should therefore be set
to the MTU (Maximum Transmission Unit) on a particular medium.
In general, however, there is no need to capture the complete data
packets. We have therefore added an option (-D), again used in con-
junction with the —-w option, to reduce the snaplen applied to data
packets to include only header information of such packets. This
dramatically reduces the storage requirements when raw dump files
are used.

4 Resaults

In this section we present preliminary results obtained from our use
of the mmdump tool. In Section 4.1 we present results of using
mmdump to monitor RTSP traffic: Section 4.1.1 contains results
of a single RTSP presentation in a controlled environment, while
Section 4.1.2 presents measurement results from a probe point in
AT&T’s commercial IP network. In Section 4.2 we present a similar
set of results for the use of mmdump on H.323 traffic: Section 4.2.1
is for a single H.323 session in a controlled environment and Sec-
tion 4.2.2 presents results for H.323 traffic from the same probe
point in the AT&T network.

The results presented are meant to show some of the possibilities
of the tool rather than conclusive results about the use of streaming
media in the Internet.

4.1 RTSP Results

4.1.1 Individual sessionin controlled environment

In this case a single RTSP presentation was viewed by means of a
RealPlayer [15] client from a PC running Microsoft Windows. A
Linux PC on the same Ethernet segment was running the mmdump
tool to capture the interaction. The presentation in question was
CNN Headline News [4], which was streamed from the Internet.

The CNN Headline news presentation consists of a small video sec-
tion in the top left corner of the display area. Below the video sec-
tion is a text window for presenting the latest news in text format
(this normally contains a link to the CNN web site), in addition to an
advertising section and a hyperlink to provide feedback. The right-
hand side of display area consist of hyperlinks to other news-related
streaming presentations.

While not visible to the user the presentation in question is served
from two separate servers in different domains. This requires two
RTSP sessions, the details of which are presented in Tables 1 and 2

and in Figure 5.

Table 1 shows the “base-URL” served by each server as well as the
number of RTSP control packets going between the client and each
server. Note that because of the location of the mmdump machine
relative to the client machine, this traffic trace contained packets
going in both directions between the client and server machines.
Because of asymmetric routing in IP networks this is not the case
in general.

Table 2 shows the URL extension, which together with the base-
URL presents the complete URL for each object that is part of the
presentation. Also shown in the table is the UDP port number cho-
sen by the client, the number of UDP packets used to stream each
object to the client, as well as a file-type field.

Figure 5 shows the packet arrival information for all UDP streams
on a common timeline. The offset on the y-axis is used to depict
the port number used for streaming the media. Each small vertical
line on a horizontal line indicates a packet arrival event. Figure 5
clearly shows how the first object “streamed” to the client is a SMIL
file [20], index.smi. This object in fact contains a description of the
presentation which includes the layout of the presentation display,
the various objects associated with each region of of the display, the
location of each such object and optionally a timeline indicating
when different objects should be be displayed. It is thus from the
SMIL file that the client learns that some of its media should be
retrieved from a different server. As indicated in Table 2 the actual
“interesting” media content is streamed from the cnn.com domain,
while several “support objects” like the background and links to
other SMIL files are streamed from the real.com domain.

With reference to Figure 5, the presentation starts with a short
signature tune (sting.rm) with an accompanying short animation
(2.swf). Next the background image (back.jpg), the static adver-
tisement (ad.gif) and text supporting text (left.rt) is streamed and
presented. This is followed by an audio/video advertisement clip
(ad1-28.rm) and text to make up the hyper-links in the presenta-
tion (links.rt). In the mean time more text is streamed (nowplay-
ing_headlinenews.rt) and finally the audio and video clip for the
actual headline news is streamed (headlines.rm28.rm).

4.1.2 Sessionsin the public Internet

We gathered packet traces from a measurement probe inside the
public Internet, more specifically from a T3 private peering link
inside AT&T’s commercial IP network. This placement of the
probe machine means that in general both directions of interac-
tion between two hosts will not necessarily be visible at the probe
point due to asymmetrical routing. In all cases the traces were
anonymized as soon as they came off the link under study, before
writing any packet headers to stable storage. We collected traces on
a dedicated 500MHz Alpha workstation that ran Digital UNIX and
was attached to the link under study.

The traces analyzed in this section were gathered from our probe
point in New York City for the week 15 April 1999 to 22 April
1999. Since at the time mmdump was still being tested the traces
were gathered with a regular tcpdump capturing all packets on TCP
port 554 and all UDP packets in the port ranges from 6970 to 7040

7000

6995

6990

Port Numbers

6975
6970

6965
0

6985

6980

Session Session base URL TCP packets
No Client to server | Server to client
0 albany-b.real.com/showcase/channels/cnn_headlines/gold/ 66 75
1 realchannel.cnn.com/ 65 47
Table 1: Two RTSP sessions associated with single CNN headline news presentation
Session | Media | Client URL extension UDP UDP File type
No Stream | Port packets Bytes
0 0 6970 index.smi 5 1656 SMIL
1 6972 audio/sting.rm 26 13620 Real Audio/Video
2 6974 flash/1.swf 18 5357 Shockwave Flash
3 6976 pix/back.jpg 30 14532 JPEG
4 6978 text/left.rt 8 2014 Real Text
5 6980 pix/ad.gif 17 6796 GIF
6 6982 text/links.rt 11 4032 Real Text
7 6984 text/feedback.rt 5 472 Real Text
8 6992 | text/nowplaying_headlinenews.rt 4 384 Real Text
1 0 6986 ads/ad1.28.rm 81 23609 Real Audio/Video
1 6994 channel/headlines.rm28.rm 3991 1578597 | Real Audio/Video
Table 2: Eleven media streams associated with single CNN headline news presentation
inclusive, and mmdump was used exclusively in post processing
mode. This proved a useful means to gather data to test mmdump,
but also served to convince us about the need for a tool like mm-
dump. We captured the whole packet length for all TCP packets,
as this is required for the RTSP protocol parsing, but only the first
136 bytes for UDP packets. The trace files for the week resulted in
approximately 15 Gbytes worth of gzip’ed files. A new trace file
Rednet 19 May 1999 was generated each 30 minutes and typically varied from below
' ' ' 10 Mbytes to well over 100 Mbytes depending on the time of day.
channel/headlines.rm28.rm (truncated) —~g | Later using mmdump to trim these files to the traces it would have
oo . created from the original data resulted in a 60% to 80% reduction
in required disk space per file.
itk ads/ad1-28.m Traffic Characteristics
+ text/feedback.rt
- m"' textfinks.it One of the main questions we hope to address with this work is to
+H textlleft.rt determine the amount of streaming media relative to other Internet
MW pix/back.jpg traffic and to monitor any changes in the longer term.
t oy T audolsingm The issue of asymmetric routing has been mentioned a number of
times in this paper. It turns out that for RTSP-related traffic a very
small percentage of traffic at the probe point was in fact visible

L
10

L L L L L L
20 30 40 50 60 70 80
Time (seconds)

Figure 5: UDP activity for each media stream for CNN headline
news from Real Networks (80 seconds shown)

in both directions between client and server. This can potentially
lead to erroneous conclusions about the relationship between con-
trol and data traffic for streaming media. For example, the network
locality of a popular server might generate a lot of control traffic
seen going from clients to servers, without a reciprocal contribu-
tion in data streamed from the server if that traffic does not pass the
probe point. In Figure 6 we therefore show the control (RTSP/TCP)
and data (UDP) traffic volumes (in number of packets) going only
from servers to clients. This appears to be a reasonable compari-
son of the relationship between control and data. As before packet
counts were generated for every half hour of the trace data.

NYC probe (15 April 99 - 22 April 99)

250000 T— T
TCP traffic server to client

UDP traffic server to client ------

200000

150000

Number of packets

100000

50000

%4/15 04/16 04/17 04/18 04/19 04/20 04/21 04/22
05:00 05:00 05:00 05:00 05:00 05:00 05:00 05:00
Thur Fri Sat Sun Mon Tues Wed
Time

Figure 6: RTSP and related UDP packet counts

One observation regarding Figure 6 is that peak hours are drasti-
cally shifted towards the late evening hours. This contrasts with
aggregate TCP traffic characteristics (not shown) which normally
have very clear peaks during office hours. From Figure 6, activity
over weekends are not significantly lower than over weekdays, only
more evenly spread over all hours.

Figure 7 shows the packet length distribution for RTSP-related
(i.e. streaming) UDP traffic. Significant peaks are at packet lengths
much shorter than typical Maximum Transmission Unit (MTU)
sizes. Some of these can probably be attributed to concerns about
delay and latency for fairly low bitrate voice encoders and the distri-
bution will in general be influenced by popular voice and video en-
coding and packetization schemes. Packet lengths for RTSP-related
TCP traffic follow the familiar distribution with 40 bytes corre-
sponding to TCP ACK, FIN, and SIN packets, and two MTU related
peaks at 576 and 1500 bytes.

Content Analysis

In addition to looking at the traffic generated by streaming me-
dia in a general sense, mmdump allows us to look at a number of
application- or protocol-specific issues. Figure 8 presents informa-
tion about the URLSs extracted from our week-long trace. Only 3074
unique URLs were observed in the trace. Only domain names com-
bined with the requested object names were taken into account in
determining uniqueness. l.e. the same object being served from two
different machines in the same domain would not be considered
unique. Figure 8 shows the number of references to each of the most
popular 1000 objects. This Zipf-like distribution, showing that rel-
atively few objects are extremely popular, has strong implications
for caching strategies for multimedia objects.

Rate Adaptation

As a final example of the capabilities of mmdump, we have investi-
gated the transmission rate of a single media stream and considered
its interaction with the application control protocol. The RTSP pro-
tocol has a SET_PARAMETER method that can be used to set arbi-

NYC probe (15 April 99 - 22 April 99
3.5e+08 p' (p- 7)

Packet length dist: RTSP related UDP ——

3e+08
2.5e+08 |
2e+08
1.5e+08

1e+08

Number of packets

5e+07

0 b o b n Il L L

" L L
0 200 400 600 1000 1200 1400 1600

800
Packet length

Figure 7: UDP packet length distribution for RTSP related traffic

NYC probe (15 April 99 - 22 April 99)

12000 } Distribution of 385742 objects (1000/3074 unique shown)
10000 |
8000 |

6000

4000

Number of references

2000

200 400 . 600 800 1000
Unique objects

o

Figure 8: Distribution of URLs

NYC probe (15 April 99 - 22 April 99
450 T P .(P T P).

UDP packets
400 F.

350

w

o

]
T

N
a
o

N
o
]

BW set to 21400

Number of packets

BW set to 19777

150 |

100

50 |

0 10 20 30 40 50 60 70
Time (seconds)

Figure 9: Packet arrivals for a single live UDP stream

trary parameters. One use of this method by the RealMedia player
(i.e. client) is to request a particular delivery bandwidth from the
server. The details of how a decision is made to change the band-
width and on how the server manages to adjust the bandwidth of
an existing stream are not publicly known. However, by correlat-
ing the relevant RTSP SET_PARAMETER method instances with
the packet arrival times at the probe point, we can observe the in-
teraction from an mmdump-generated trace. One such example is
shown in Figure 9 and explained below. (Note that RealMedia uses
a proprietary transport protocol on top of UDP for media stream-
ing. It was therefore not possible to monitor the sequence numbers
of the media stream as would be possible for an RTP-based media
stream.)

From the NYC trace data we extracted the control and data pack-
ets for a particular RTSP session for which we saw traffic in both
directions between client and server. The session in question was
streamed from a live source and contained only a single media
stream. In Figure 9 we plot the timestamp of each UDP packet of
the media stream as it was captured by mmdump. The total duration
of the trace is 75 seconds. Time is on the X-axis while the Y-axis
reflects the number of the corresponding packet. The slope of this
plot is therefore an indication of the rate at which UDP packets
where logged by mmdump (and the rate at which packets were sent
by the source), with a steeper slope corresponding to a higher rate.
The slope of the first part of the plot, packets 0 to 200, is clearly
steeper than for the final part of the plot, packets 250 to 450.

Superimposed on the plot of UDP packet timestamps, is a number
of horizontal dotted lines. Each horizontal line corresponds to the
arrival of a SET_PARAMETER method for a bandwidth parame-
ter as seen by the probe point. The value shown is the requested
delivery bandwidth in bits per second. The sequence of these pa-
rameter requests goes from 21400 to 9361 to 17260 and 1977 in the
first part, to 21400 and 13781 in the middle part and ends with a
more modest sequence of 9163 to 7554 to 6621 to 12140 to 9870
and 6563 in the final part of the plot. This corresponds with the
observed flatter slope of the last part of the plot. (Note that since
the probe point is somewhere in the network between the client and
the server, there will be a time lag between the time that mmdump
records a SET_PARAMETER method, and the time that the server
will have responded to it.)

4.2 H.323 Results
4.2.1 Individual sessionin controlled environment

First we first show how mmdump captures an H.323 session in a
controlled environment. In the lab three machines are connected
over a shared Ethernet link. Two Windows PC machines run Mi-
crosoft NetMeeting 3.1 and they make a video conferencing session
with each other using the H.323 protocol. A third machine runs mm-
dump to capture the session on-line. The session lasts for approxi-
mately 35 seconds. Figure 10 shows packet arrival events grouped
by channels. Each horizontal line indicates a channel, and there are
five channels created in the duration of the session. Each small ver-
tical line on a horizontal line indicates a packet arrival event. The
session begins with the establishment of the Q.931 channel, fol-
lowed by the H.245 channel. Then, NetMeeting uses H.245 to ne-

Q.931 Channel

H.245 Ci|1annel

+
-+t i
il

| TCP Dalta Channel
|
I |

RTP Control Channel
| || | il Nl |
1T [l I

RTP Data Channel

0 5 10 15 20 25 30 35
Time (seconds)

Figure 10: Packet arrival events for each channel of one H.323 ses-
sion

gotiate ports for three data channels, namely the TCP data channel,
the RTP control channel and the RTP data channel. The latter two
channels use UDP. In NetMeeting, the TCP data channel carries file
transfer, chat, and whiteboard messages. The RTP data channel car-
ries multimedia traffic such as voice and video. The RTP control
channel carries metadata for the RTP data. Because this session ex-
changes video images in real-time, the bulk of the packets are RTP
data, identified by the thick line of the RTP Data Channel.

It is important to note that except for the Q.931 channel, whose
callee port number is well-known, the port numbers associated with
the other 4 channels are dynamically negotiated. The callee port
number of the H.245 channel is embedded in the CONNECT mes-
sage of a Q.931 packet. The port numbers for the data channels are
negotiated by the H.245 Open Logical Channel messages.

4.2.2 Sessionsin the public Internet

Next, we present some H.323 results gathered over the public In-
ternet. As in the RTSP case, the results presented here are from
traces captured at the NYC probe point in AT&T’s commercial IP
network.

The trace analyzed in this section was started on Sunday August 22
1999 at 3:25pm EDT and lasted for 72 hours. We captured 2667
H.323 sessions containing 540MB of data. As in case of RTSP, we
saved the entire length of TCP packets, but we saved only the first
136 bytes of UDP packets to reduce data size. Less than 1% of
packets were lost in the kernel according to statistics produced by
tcpdump.

There are two issues that may affect our result. First, the cur-
rent implementation of the H.323 module assumes peer-to-peer
communication. It does not work correctly if three or more par-
ties are involved in a session. The module, however, is known to
work with various types of H.323-enabled software, including Intel
Video Phone, MediaRing GoldenEye, Microsoft NetMeeting, and
VocalTec Telephony Gateway. Second, the traffic observed at the

262144

H.323 control traffic
H.323 data traffic -
A)

65536 [|

16384

4096 |-

1024 |

256

Number of packets in log scale

64 -

16

08/22 08/23 08/23 08/24 08/24 08/25 08/25 08/26

12:00 00:00 12:00 00:00 12:00 00:00 12:00 00:00
Time

Figure 11: Packet counts for H.323 control versus data traffic

probe point is highly asymmetric. Therefore we incorporate vari-
ous heuristics to the H.323 module so that it can track a session
while seeing traffic flowing in only one direction. For example, if
we only see the traffic from caller to callee and not from callee to
caller, we will not get the CONNECT message sent by the callee,
which contains the callee’s port number to follow the subsequent
H.245 channel. In this case, we guess that the H.245 port number
of the caller is a small increment (one or two) of the caller’s Q.931
port number. This appears to work reasonably well in practice.

Traffic Characteristics

Figure 11 shows the amount of aggregated H.323 control traffic
(traffic exchanged in Q.931 and H.245 channels) and H.323 data
traffic (traffic exchanged in H.323 data channels) over time. Not
unexpectedly, the figure shows that the amount of control traffic is
significantly lower than the amount of data traffic (note the loga-
rithmic scale on the y-axis) and that there is a positive correlation
between the amounts of control traffic and data traffic. Unexpect-
edly, there does not appear to be any notable pattern in the times of
day when sessions occur. This is something we intend to investigate
further.

900000 T

Packet length distribution: H.323-related UDP
800000 R

700000 b
600000 b
500000 - b

400000 r b

Number of packets

300000 b

200000 b

100000 b

0 Al) L L L L L L
0 200 400 600 800 1000 1200 1400 1600
Packet length (bytes)

Figure 12: UDP packet length distribution for H.323 related traffic

Packet Length Distribution

Conferencing and packet telephony multimedia applications gener-
ally require good real-time performance. Therefore, we expect that
these applications prefer to exchange smaller packets with higher
packet rate rather than larger packets with lower packet rate. Here
we show the packet length distribution for H.323 related UDP traf-
fic in Figure 12. We observe that significant peaks are at packet
lengths smaller than 200 bytes, which are shorter than typical MTU
sizes.

As for the RTSP results, the packet length distribution for TCP traf-
fic has a familiar distribution with a large peak at 40 bytes corre-
sponding to TCP ACK, FIN, and SIN packets, and several peaks
related to different MTU sizes.

Per-Session Statistics

One advantage of using mmdump is its ability to track each session
individually. We will show an example that derives results based on
per-session statistics.

20

18 — 1
16 1
14 + 1
12 + 1
10 b 1

Percentage of sessions

o N S (2] [oe]
T
L

1 4 16 64 256 1024 4096 16384
Duration of H.323 sessions in log scale (seconds)

Figure 13: Duration of H.323 sessions

One question of interest is how long an H.323 session lasts. Figure
13 shows a histogram of different ranges of session duration with
the percentage of sessions in that range. Here we consider only the
subset of sessions for which mmdump was able to capture some
UDP packets, and discard sessions for which mmdump did not cap-
ture any UDP packets. The latter can happen if the callee of a ses-
sion did not answer or had incompatible terminal capabilities with
the caller. Session duration is computed as the time between the
first packet received (usually the Q.931 SETUP packet) and the last
packet received (usually the H.245 FIN packet). The figure shows
a majority of calls last between 16 seconds and four minutes. The
figure also shows several sessions lasting longer than an hour.

5 Redated Work

A recent paper [12] presents a preliminary analysis of streaming
media traffic originating from a popular Internet audio service. It is
one of the first studies of its kind. However, the set of IP addresses
corresponding to the media servers under study was known a priori.
In addition, the link under study was close to these servers and was

known to carry all the traffic of interest. Under those conditions,
it is not difficult to set up static packet filters to capture this traf-
fic without overwhelming the trace collector with irrelevant traffic.
That work therefore does not address the challenges of monitoring
unknown multimedia traffic on an arbitrary link as ours does.

A large body of Internet traffic capture and analysis software has
been developed over the years. Here we survey the subset that we
feel is most relevant to our work.

The tcpdump [9] tool and its underlying packet capture library libp-
cap [8] have been widely used by the Internet research commu-
nity. We have already described tcpdump in detail and noted that
it does not handle dynamically negotiated port numbers. mmdump
adds this capability to tcpdump.

Online extraction of application specific information, mainly to
reduce the volume of generated data, has been reported in [5]
and [10]. A software engineering approach similar to our own, is
presented in [5] where tcpdump has been extended to perform on-
line extraction of HTTP information. A more generic measurement
platform, called Windmill, is described in [10]. This platform is
meant to run continually providing the means to perform several
“experiments” without ever terminating the Windmill instantiation.
Since different experiments might be interested in different packet
streams, the platform has the ability to dynamically modify the
packet-filter expression. This change in packet filter expression is
however performed at the time granularity of different experiments,
not on the per-multimedia-stream timescales that mmdump deals
with.

CoralReef [3] is an evolving suite of tools for collecting and ana-
lyzing Internet traffic. It is built upon the libcoral packet monitor-
ing library and aims for flexibility and high performance. To our
knowledge, CoralReef does not yet handle dynamically negotiated
port numbers.

Narus [13] and Packeteer [14] have introduced commercial traffic
capture and analysis products that reportedly handle dynamically
negotiated port numbers. However, we have not had the opportunity
to evaluate these products. To our knowledge, their internal details
have not been made public and their source code is not available.

There are a number of tools tailored to monitoring and analyzing
multimedia traffic. Among these are rtpdump [17] and rtpmon [1].
rtpdump decodes and displays RTP packets. rtpmon monitors RTP
sessions and displays statistics based on the contents of RTCP pack-
ets. Neither tool parses session control protocols like RTSP and
H.323, or handles dynamically negotiated port numbers.

We have focused on techniques for gathering information about
multimedia sessions. We believe these techniques can be extended
and applied to other related topics including monitoring session
QosS, recording session duration and bandwidth usage for account-
ing purposes, and monitoring session activity for network intrusion
detection purposes, e.g. by recording all FTP transfers.

6 Conclusionsand Future Work

We have presented the design, implementation, and use of a new
tool for monitoring multimedia traffic on the Internet. mmdump is
based on tcpdump and further incorporates several novel features
that make it practical to monitor multimedia traffic on an arbitrary
link. One, it employs protocol-specific parsers to determine which
port numbers are dynamically selected for media transport by multi-
media session control protocols. Two, it maintains per-session state
to record information such as session start/end times, media types,
associated traffic. Three, it uses heuristics to deal with incomplete
information due to asymmetric routing.

We have been using mmdump to monitor traffic from RTSP and
H.323 sessions in AT&T’s commercial IP network. The tool has al-
ready helped uncover a number of interesting features of this traffic:

e Multimedia sessions have a rich structure. We have seen ex-
amples of seemingly simple news clip presentations which are
composed of more than 10 objects transferred over different
port numbers and from multiple servers in different domains.
As with web pages, this is partly due to the inclusion of ad-
vertising.

e Access patterns for multimedia objects follow distribution in
which popularity drops off quickly outside a relatively small
number of extremely popular objects. This has implications
for caching.

e The RTSP protocol has a generic “SET_PARAMETER”
method. In our measurements we observed that RTSP clients
use this to request that servers adjust the transmission rate
for ongoing sessions, based for example on observed packet
losses. This finding begins to address the issue of whether
multimedia traffic exhibits appropriate congestion-control be-
havior.

e The duration of H.323 sessions vary greatly, from a few sec-
onds to over an hour. A majority of sessions last between 16
seconds and four minutes. This distribution of call durations
is similar but not identical to that of traditional long-distance
telephone traffic.

In terms of ongoing and future work, we have recently added to
mmdump a different and more complete H.323 parser than the one
described in this paper. We are experimenting with using it to mon-
itor the quality of service in a commercial voice-over-IP trial. We
have also developed a rudimentary SIP parser to add to the existing
RTSP and H.323 parsers. In order to improve the performance of
dynamic port processing, we are looking into adopting a modified
BPF+ [2] that includes compiler support for incremental filter up-
dates. Finally, we continue to use mmdump to monitor multimedia
traffic on the public Internet and plan to perform a more thorough
analysis of this traffic’s growth and characteristics.

Acknowledgements

The RTSP parser was derived from a public-domain RTSP imple-
mentation by RealNetworks [16]. The initial H.323 parser was de-
rived from software developed at Columbia University by Christo-

pher Kang. A later version of mmdump used the H.323 parser de-
veloped in the OpenH323 project (www.openh323.0rg).

References

(1]

(2]

(3]

[4]

[5]

(6]

[7]

(8]

9]

[10]

[11]

[12]

[13]
[14]
[15]
[16]

[17]

(18]

[19]

[20]

BACHER, D., SWAN, A., AND ROWE, L. A. rtpmon: A
Third-Party RTCP Monitor. http://bmrc.berkeley.
edu/people/drbacher/projects/mm96-demo/
index._html.

BEGEL, A., MCCANNE, S., AND GRAHAM, S. L. BPF+:
Exploiting Global Data-flow Optimization in a Generalized
Packet Filter Architecture. Proc. ACM SIGCOMM ’99, Au-
gust 1999.

CAIDA. Coralreef. http://www.caida.org/Tools/
CoralReef/.

CNN. http://www.cnn.com.

FELDMANN, A. Continuous online extraction of HT TP traces
from packet traces. Proc. W3C Web Characterization Group
Workshop, November 1998.

HANDLEY, M., SCHULZRINNE, H., SCHOOLER, E., AND
ROSENBERG, J. SIP: Session Initiation Protocol. RFC 2543,
March 1999.

Recommendation H.323: Visual Telephone Systems and
Equipment for Local Area Networks Which Provide a Non-
guaranteed Quality of Service. ITU-T, 1996.

JACOBSON, V., LERES, C., AND MCCANNE, S. pcap -
Packet Capture library. UNIX man page.

JACOBSON, V., LERES, C., AND MCCANNE, S. tcpdump -
dump traffic on a network. UNIX man page.

MALAN, G. R., AND JAHANIAN, F. An Extensible Probe Ar-
chitecture for Network Protocol Performance Measurement.
Proc. of ACM SIGCOMM’98, August 1998.

MCcCANNE, S. R., AND JACOBSON, V. The BSD Packet Fil-
ter: A New Architecture for User-level Packet Capture. Proc.
1993 Winter USENIX Technical Conference, January 1993.

MENA, A., AND HEIDEMANN, J. An Empirical Study of In-
ternet Audio Traffic. Proc. IEEE Infocom 2000, March 2000.

NARUS. http://www.narus.com.
PACKETEER. http://www.packeteer.con/.
REALNETWORKS. http://www.real .com.

REALNETWORKS. RTSP: Reference Implementation.
http://www_real .com/devzone/library/
fireprot/rtsp/index.html.

SCHULZRINNE, H. rtpdump. http://www.cs.
columbia.edu/~hgs/rtp/rtpdump.html.

SCHULZRINNE, H., CASNER, S., FREDERICK, R., AND JA-
COBSON, V. RTP: A Transport Protocol for Real-Time Ap-
plications. RFC 1889, January 1996.

SCHULZRINNE, H., RAO, A., AND LANPHIER, R. Real
Time Streaming Protocol (RTSP). RFC 2336, April 1998.

W3C. SMIL: Synchronized Multimedia Integration Lan-
guage. http://www.w3.org/AudioVideo/#SMIL.

