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Abstract

This paper presents observations of traffic to and from a particular
World-Wide Web server over the course a year and a half. This pa-
per presents a longitudinal look at various network path properties,
as well as the implementation status of various protocol options
and mechanisms. In particular, this paper considers how World-
Wide Web clients utilize TCP connections to transfer web data;
the deployment of various TCP and HTTP options; the range of
round-trip times observed in the network; packet sizes used for
WWW transfers; the implications of the measured advertised win-
dow sizes; and the impact of using larger initial congestion window
sizes. These properties/mechanisms and their implications are ex-
plored. An additional goal of this paper is to provide information
to help researchers better simulate and emulate realistic networks.

1 Introduction

This paper presents observations of traffic to and from a particu-
lar World-Wide Web (WWW) server over the course of 17 months.
This paper has several goals. First, we attempt to evaluate the per-
formance impact and the deployment status of several features of
network stacks as used in the Internet today. Second, we attempt
to determine what protocol extensions or features might be useful
in the future, based on the observed traffic. Finally, we hope the
data presented in this paper will be useful for researchers designing
simulations of Internet traffic in answering key questions about the
values of key parameters (e.g., What is a realistic value for TCP’s
advertised window for web clients?).

World-Wide Web traffic uses the HyperText Transfer Protocol
(HTTP) [FGM+97] application protocol to transfer data from web
servers to user’s browsers. HTTP uses the Transmission Control
Protocol (TCP) [Pos81] as its transport protocol to ensure reliable
delivery (to the extent possible [SP00]). The web server we ob-
served is at NASA’s Glenn Research Center (GRC). The server
provides unofficial web pages for several Internet Engineering Task
Force (IETF) working groups (PILC, TCP-IMPL, TCPSAT). These
pages provide mailing list archives, meeting minutes, draft docu-
ments, etc. to the community. The web server is also used by sev-
eral researchers for personal web pages, as well as small, project-
specific pages.

This study is mainly focused on the characteristics of the
client’s networking stacks and the network paths between the
clients and our web server. Therefore, our results could be biased
by some feature of the server we chose, the underlying operating
system or the network on which the server is located. Several alter-
native measurement methodologies could have been used, as fol-
lows.

� We could have monitored the WWW traffic traversing a link
closer to the center of the network. This would have pro-
duced traces of a large number of network paths with many
endpoints. However, tracing network connections in the mid-
dle of the network may make the analysis more difficult due
to the vantage point of the trace (for instance, determining the
initial congestion window is more difficult). In addition, so
many variables are at play in such traces that direct, mean-
ingful comparisons of the traffic are difficult. However, this
sort of measurement study often produces many useful results
(e.g., on the sizes of web transfers [TMW97]).

� We could have conducted an active measurement study by
tracing web connections from our lab to various WWW
servers. Such a study shares some of the problems with the
study presented in this paper. For instance, all transfers share
a portion of the network path, as well as a web client. This
type of study is quite useful for taking certain measurements
across a wide range of web servers (e.g., checking for web
server conformance with the HTTP standard [KA99]).

� Finally, we could have used a mesh of hosts (such as NIMI
[PMAM98, PA00]) to make active measurements. This mit-
igates some of the problems with taking measurements from
a single client machine or a single server. However, it is not
clear that such a mesh of hosts captures the true connectivity
of a wide range of Internet web clients. Nor does such a mesh
enable the measurement of a range of client network stacks
used in the majority of traffic on the Internet.

While we may have been able to adapt one of the above ap-
proaches to our needs we feel that the strengths of our approach
are ample and provided a rich variety of data about web clients that
would not necessarily be available with other methodologies. The
approach we chose does have several benefits. For instance, we
were able to tweak the configuration of the web server and mea-
sure the effects (e.g., using a larger initial congestion window, as
outlined in section 8). Also, our approach allows for the measure-
ment of properties of a large number of real clients (e.g., which
TCP options are supported in their stacks). While our approach is
not without flaw, we believe (as outlined in [AF99]) there is no per-
fect way to assess Internet behavior and therefore believe that this
survey can provide valuable insight into the performance of the web
as seen from the user’s perspective (since all traffic studied comes
from web browsing as it happens “in the wild”). Throughout this
study we have attempted to measure only properties which are not
subject to large biases due to the use of observations from only a
single web server and note any biases we believe to be in the data
presented. An item for future work will be to take such data from



a number of web servers to gain a richer understanding of more
attributes of client behavior.

The rest of this paper is organized as follows. Section 2 out-
lines our data collection techniques and discusses some preliminary
analysis of the data. Section 3 outlines our measurements into how
web clients utilize TCP connections to transfer web objects. Sec-
tion 4 discusses the deployment status of various TCP options, as
found in our data. Section 5 reports the round-trip times found in
our data. Section 6 discusses the distribution of packet sizes found
in our datasets. Section 7 reports our observations about the adver-
tised window used by web clients and the possible impacts these
window sizes have on performance. Section 8 gives an analysis of
our web server’s use of larger initial congestion windows. Finally,
section 9 gives our conclusions and some future work in this area.

2 Preliminary Analysis

2.1 Data Collection

The data presented in this paper was collected between November
6, 1998 and March 24, 2000. For the large majority of our data col-
lection period the server ran the NetBSD 1.3 operating system. On
February 14, 2000, however, the operating system was upgraded to
NetBSD 1.4. Therefore, roughly the last month of data presented
used a slightly different network stack. We do not believe this in-
fluences the results presented in this paper because the TCP imple-
mentation was not drastically changed between the two versions.
The web server used during the entire data collection period was
Apache 1.2.6.

We used two main sources of information for the data presented
in this paper. The first set of data used, denotedL, consists of the
Apache generated logs of each request made to the server. The
second source of data is packet-level traces of the web traffic to and
from the server, denotedP. The packet-level traces were taken with
tcpdump[JLM89] on the web server itself. We captured the first
100 bytes of 610,146,959 packets, withtcpdumpreporting another
1,799 packets, or roughly 0.003%, dropped by the kernel1. We
consider this an acceptably low amount of kernel packet loss that
we did not attempt to correlate the kernel packet losses with specific
connections in the trace file, as any effects of kernel drops should
have a very negligible, if any, effect on our results.

We begin our investigation by examining the overall traffic pat-
tern of the web server and removing data from our analysis for
various reasons. The traffic patterns are unique to the particular
web server we observed and therefore we cannot make any general
claims from the patterns observed. This section is provided as an
explanation of the datasets used and as background for the analysis
outlined in the remaining sections.

Most of the analysis in this section is done in terms of web
server hits. The number of hits is straightforward to obtain from
theL dataset. However, without capturing the full packet contents
(which we did not) and doing a good bit of analysis we cannot
directly get the number of hits from theP dataset. So, for theP
dataset we report the number of TCP connections traced.

Table 1 shows the number of server hits (or connections) as
reported by each data set. For the purposes of this paper we are
only interested in the web hits that traverse the wide-area Internet.
Therefore, before the data analysis is conducted we remove all hits
received by the server from hosts on the GRC network. As shown in
the table, the number of local hits is relatively small. Note the num-
ber of local hits is greater in theP dataset when compared to theL

1One of our trace files, consisting of 3,578,781 packets, failed to report the number
of kernel drops (probably due totcpdumpbeing shutdown improperly). However,
based on the likelihood of kernel drops in the other traces, we do not believe this
presents a significant problem for the data analysis.

Category L P

Total Hits/Cnns 767,589 751,542
Local Hits/Cnns 20,172 45,516
WAN Hits/Cnns 747,417 706,026

Zero Length 21,536 23,189
Valid Hits/Cnns 725,881 682,837

Table 1: Web server Hits

dataset due to the lenient filter used ontcpdump. The filter captured
all traffic to or from port 80. Therefore, roughly 25,000 random
web transfers that occurred on the web server’s network but had
nothing to do with the web server in question were captured. We
additionally remove any connections that did not transfer at least
1 byte of data in each direction. Such connections indicate some
sort of failure in the client machine, the server host or the network
between the two endpoints. While it is important to note that such
connections do exist, we will not analyze them further. Therefore,
unless otherwise indicated, the remainder of this paper includes
analysis of only the valid wide-area hits. Finally, we note that the
valid hits came from 50,194 distinct IP addresses. We expect this
indicates that the hits cross a wide-variety of network paths, even
though all connections share a portion of the path to the web server.

In several of the following sections the analysis could be sig-
nificantly altered if a single host (or small group of hosts) were
involved in a large portion of the connections we examine. There-
fore, we created a second dataset from theP dataset by removing
any connection to a host that was involved in over 1% of the con-
nections in theP dataset. We denote this second datasetP

0. We
removed 185,005 connections involving 11 IP addresses to obtain
theP 0 dataset consisting of 497,832 TCP connections.

We used a slightly modified version oftcptrace5.2.2b [Ost97]
to analyze theP (andP 0) dataset. The changes made totcptrace
were to make the output easier to analyze or to make the tool re-
port a particular piece of information that the standard version of
the program does not report. We will note any additions made to
tcptraceto do the analysis contained in the remainder of the paper.
The output fromtcptrace, as well as the data from setL is further
analyzed using several short Perl and Bourne shell scripts.

2.2 Overall Traffic Patterns

Figure 1 illustrates the server activity as a function of time. The
number of hits reported from theL dataset is greater than the num-
ber of TCP connections in theP dataset. This is explored in greater
depth in section 3. As shown, the datasets are nearly identical in
the number of bytes transmitted by the server. Both plots show an
increase in traffic over the observation period. This is likely due to
periodic addition of content to the server.

The server’s transfer sizes are dictated by the content available
on the particular server we observed. For instance, the median re-
sponse size observed on our server is roughly two-thirds the size of
the median response size reported in [Mah97], while the mean re-
sponse size in our dataset is more than twice the value reported by
Mah’s data. This illustrates that response sizes could be much dif-
ferent if another server was observed. However, they provide some
context for the results in the following sections. Figure 2 shows the
mean and median transfer sizes over time. As illustrated, the mean
transfer size is an order of magnitude greater than the median size.
Meanwhile, the median transfer size is on the order of 1–5 packets.
Figure 3 shows the distribution of transfer sizes for the last month
of the dataset. As shown, over 90% of the transfer sizes are less
than the mean transfer size reported in the previous figure. Also
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(b) Bytes sent by the web server each month.

Figure 1: Web server activity over time.
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Figure 2: Web transfer sizes over time.
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Figure 3: Distribution of transfer sizes for March 2000.

note that nearly 30% of the transfers are between 100–200 bytes
long. These transfers mostly consist of HTTP headers and short
HTML pages that indicate errors (file not found, forbidden, etc.).

While we do not delve into the reasons behind some of the
spikes and dips in the above plots because we expect that such
phenomena are a property of this particular server and its content,
rather than based on some general network behavior. However, fu-
ture studies should consider a more diverse set of web server data
to verify this assumption.

3 HTTP Connection Usage

HTTP utilizes TCP connections in several different ways. Some
HTTP browsers useparallel TCP connections to transfer the vari-
ous objects that make up a web page (HTML code, graphics, etc.).
Using this method the browser opens several connections at the
same time and requests different objects on each connection. An-
other method that is supported in the HTTP protocol is for a client
and server to usepersistentTCP connections [Mog95]. Using this
method, a TCP connection can be used to transfer multiple web ob-
jects. In this section we attempt to quantify the degree to which par-
allel and persistent connections are being utilized to transfer data
from our web server. Our web server supports HTTP/1.1 persistent
connections, as well as pipelining. However, this does not neces-
sarily mean that web clients will request these features.

The use of HTTP connections can have performance, conges-
tion control and resource utilization implications. For instance,
using persistent connections with the pipelining option has been
shown to improve web transfer speeds over satellite channels
[KAGT00]. Meanwhile, using parallel connections can have a neg-
ative impact on end-to-end congestion control [BPS+98, FF99].
Specifically, a single loss causes one TCP connection to reduce
cwndby half. However, a single loss within a group ofN connec-
tions causes the aggregatecwnd to by reduced by1=2N yielding
a more aggressive congestion control response. Finally, busy web
servers have to manage system resources effectively. For instance,
a web server may not want to keep an idle, persistent connection
around as the connection requires memory and may slow control
block lookups.

Figure 4 shows the percent difference between the number of
hits reported in theL dataset and the number of TCP connections



0

2

4

6

8

10

12

14

16

18

20

Dec/1998 May/1999 Oct/1999 Feb/2000

Pe
rc

en
ta

ge
 D

if
fe

re
nc

e/
M

on
th

Month

Figure 4: Percent difference betweenL reported hits and number
of TCP connections inP dataset.

found in theP dataset. The figure indicates that persistent connec-
tions are being used to transfer multiple web objects on the same
TCP connection. While noisy the figure seems to indicate that the
use of persistent connections is reducing over time. However, ad-
ditional data from a diverse set of web servers is needed to make a
stronger conclusion.

Next we discuss the use of parallel HTTP connections. We
define thedegree of parallelism(DOP) as the maximum number of
TCP connections open at the same time between the web server and
a particular client over the course of our observation period. Our
server communicated with 50,194 clients (IP addresses) during our
observation period. Of these, 27,954 clients (� 56%) made only a
single connection with our server. These have been removed from
further analysis in this section as there is no chance for the client to
use parallel TCP connections.
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Figure 5: Use of parallel HTTP transfers.

Figure 5 shows the use of parallel TCP connections as a func-
tion of the least number of transfers between the server and a par-
ticular client considered. In other words, the far right-hand bar on
the chart includes only data from clients that took part in at least
7 TCP connections in theP 0 dataset. They-axis shows the percent-
age of clients using a particular DOP. The first thing to note is that

nearly all connections used a DOP of 4 or fewer TCP connections
(although, we observed DOPs as high as 25 connections2). As il-
lustrated in the figure, the DOP increases as the number of transfers
to a given client increases. This may indicate that clients making a
small number of connections to the server (e.g., 2–3 connections)
may do so at wide intervals and thus cannot make use of parallel
connections. However, as clients transfer more objects the likeli-
hood of using multiple parallel connections increases, and hence
we note an increase in the percentage of connections using a DOP
of more than 1 connection. From figure 5 we can see that approx-
imately two-thirds of web clients use parallel TCP connections to
download web pages, with the most popular DOP being 2 connec-
tions.

We found that quantifying the use of persistent and parallel
HTTP connections was difficult with our datasets. The analysis
above is tentative and all of our questions could not be answered
conclusively by our data. We are currently modifying our web
server’s logging routines to include more information, such that fu-
ture analysis will be more straightforward and more accurate. One
particular addition to the logs will be a uniqueconnection identifier
(CID) that will be logged with each object request. The CID will
allow for correlation of exactly which connections were persistent
and which were utilized in parallel.

4 Use of TCP Options

As TCP has evolved, several options have been added to the pro-
tocol to make it perform better in certain environments. The goal
of the analysis presented in this section is to assess the deployment
status of various TCP options. This serves two purposes. First, it
gives network engineers a good idea about the features they may be
able to expect from end hosts in the Internet. In addition, this anal-
ysis sheds light on what options researchers may want to simulate
when investigating TCP.

Note that the discussion of TCP’s maximum segment size
(MSS) option is deferred until section 6.

The features supported on a particular connection in our dataset
are likely to be largely determined by what operating system the
user is running. [Mah99] provides a list of which features are sup-
ported in current operating systems. Therefore, the data presented
in this paper may also indicate the proportion of hosts using vari-
ous operating systems or how up-to-date user’s OS version is kept.
While interesting, we do not delve into this topic further in this
paper.

In this section we analyze several TCP options by looking at
the percentage of connections and bytes transmitted by the server
to clients that support the given option. The number of bytes trans-
mitted using a given option may be somewhat biased by the size of
content provided by our web server. Likewise, the percentage of
connections may also be biased by the number of hits required to
load the web pages on our server (which could be different from the
make-up of pages on different servers). In addition, if a large num-
ber of connections come from a relatively small number of clients,
theP dataset could be biased. Hence, we also measure the the per-
centage of hosts using the given option which should not be biased
by our particular web server. Our results could be biased if the
sample of clients found in our dataset is not representative. How-
ever, our dataset is large enough that we do not believe this to be
the case.

2The web server logs indicate that the use of a large number of parallel TCP con-
nection is usually caused by a client harvesting a large number of e-mail messages
from our web archives of various mailing lists.



4.1 High Performance Options

We first focus our attention on the options added to TCP by
RFC 1323 [JBB92] for high performance over network paths with
large amounts of bandwidth and/or long delays. RFC 1323 added
the window scaling and timestamp options. The window scaling
option is used during the three-way handshake that starts each TCP
connection. Each host announces a scale factor. The sending host
right shifts the desired advertised window by the scale factor before
transmitting the advertised window. The receiving host will then
left shift the advertised window in all incoming packets by the scale
factor before using the advertised window size. This allows TCP
connections to utilize an advertised window of more than the 64 KB
provided by the original TCP specification [Pos81], which is re-
quired for operation over long, high-bandwidth networks [JBB92].
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Figure 6: Use of window scaling option over time.

To gain an idea about the deployment of the window scaling
option we analyzed theP dataset to determine prevalence of the
option. Figure 6 shows the use of the window scaling option over
the measurement period. As shown in the plot, the percentage of
hosts supporting the window scaling option was fairly stable over
the measurement period at 15-20%. The percentage of connections
using window scaling varies widely over the survey. However, dur-
ing the last three months of the survey the number of connections
supporting window scaling rose sharply to roughly 50%. Since we
do not see similar percentages for the number of hosts supporting
window scaling the plot indicates that a relatively small number
of hosts have likely upgraded to support window scaling and are
responsible for a disproportionate number of connections. We ver-
ified this by analyzing the trace files and noting that the majority
of the connections using window scaling came from two clients (IP
addresses) that recently started using window scaling. Finally, the
number of bytes transmitted by the server using the window scaling
option varied somewhat during the measurement period.

Next, we analyzed the scale factor advertised by the web
clients. We found that just over 84% of the clients advertised a
scale factor of zero. This indicates that they are willing to scale
their peer’s (the server’s) advertised window, but would not be scal-
ing their own advertised window. Nearly all of the remaining hosts
advertised a scale factor of one, however, we observed scale factors
as high as 12 (in two hosts). Note the implications of the adver-
tised window sizes found in theP dataset are explored further in
section 7.

RFC 1323 also introduces the timestamp option to be used in
conjunction with window scaling. Since a TCP with the window
scaling option can cycle through the sequence space provided by

TCP much faster than when the advertised window is limited to
64 KB, TCP needs additional protection against passing old data to
the application. The timestamp option calls for the sender to insert
a timestamp in each packet that is transmitted. In addition, the most
recent timestamp received from the remote host is also echoed. The
timestamp option has two purposes. First, timestamps are used in
conjunction with window scaling in theProtect Against Wrapped
Sequences(PAWS) algorithm. Second, timestamps are used to ob-
tain better and more frequent RTT measurements (although there is
recent evidence that this use of timestamps is not particularly useful
[AP99]).
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Figure 7: Use of timestamp option over time.

Figure 7 shows the prevalence of the timestamp option in web
clients. The history of timestamp option use is similar to that of the
window scale option. The percentage of connections using times-
tamps varies widely and becomes quite large towards the end of our
dataset. One of the two hosts that made the majority of the connec-
tions to the server and started to support window scaling in recent
months (as discussed above) also started using timestamps. This
explains the increase in connections supporting the timestamp op-
tion towards the end of the dataset. As with the window scaling op-
tion, it appears as though the percentage of hosts using timestamps
is roughly stable (or slowly increasing) throughout the observation
period.

Finally, we note that in total, 11% of the web clients observed
in our survey used both timestamps and window scaling, while an-
other 2.8% used only timestamps and 5.7% used only window scal-
ing.

4.2 Selective Acknowledgments

Next we focus on the selective acknowledgment (SACK) option de-
fined in RFC 2018 [MMFR96]. SACKs are used to improve upon
TCP’s original method of informing the sender about which seg-
ments have arrived at the receiver. As defined in [Pos81], TCP uses
a cumulative acknowledgment that informs the sender of the last in-
order byte of data that has arrived at the receiver. Using the SACK
option, the receiver can inform the sender about arbitrary segments
that have been received, regardless of the order in which they ar-
rived. This allows the sender’s TCP to employ more advanced loss
recovery and congestion control algorithms [FF96].

Figure 8 shows the prevalence of the SACK option in theP

dataset. Note that our web server does not support SACK. There-
fore, the percentages reported are the number of connections (hosts,
bytes) that would have used selective acknowledgments had the
server supported them. In other words, the number of clients that
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Figure 8: Use of SACK option over time.

advertised “SACK permitted” in the three-way handshake. As
shown, the number of clients supporting SACK is steadily grow-
ing from roughly 8% at the end of 1998 to nearly 40% by March,
2000. The number of connections and bytes utilizing SACK is lag-
ging behind the percentage of hosts supporting the option. This in-
dicates that a number of the web crawlers that hit our server many
times per month do not support the SACK option yet. We believe
the SACK deployment shown in this plot is consistent with the rec-
ommendation made in [AF99] that SACK should be a part of all
TCP investigations, as SACK is clearly steadily being deployed in
the Internet.

5 Round-Trip Times

This section focuses on examining the distribution of round-trip
times (RTT) between the server and the clients. We usedtcptraceto
produce the average and median RTT for each connection in theP

dataset. The tool takes an RTT sample for each non-retransmitted
segment and the corresponding ACK. Our purpose in investigating
the distribution of RTTs is twofold. First, such data provides re-
searchers with realistic RTTs to build into their simulations. As
suggested in [PF97, AF99] a range of parameters should be used
in simulating networks. The data presented in this section provides
some guidance on what a reasonable range of RTTs might look
like. The second goal is to assess the degree that saving RTTs in
transfers is important (i.e., if the RTT is negligible and cannot be
detected by a user maybe we do not need to spend time trying to
squeeze every possible extraneous RTT out of transport and appli-
cation layer protocols).

There are two instances of bias that may be introduced into our
measurements. First, all transfers between the server and the re-
mote clients share a portion of the network path. Therefore, if
that portion of the path is congested or imposes a large delay the
measurements will all be biased by the location of the server. We
note that we observed very few (less than 1%) RTT samples under
15 ms in theP dataset. In theP 0 dataset the minimum RTT appears
to be approximately 40 ms. This indicates the the location of the
server generally imposes a modest minimum RTT on the samples
obtained. (Note: This may be true ofanyserver, but more data is
required to make such a claim.) Since the distribution of RTTs is
not concentrated around the minimum RTT for a given dataset we
believe that the shared portion of the network path is not seriously
biasing our measurements.

The second form of bias is fromtcptrace’s use of Karn’s al-

gorithm [KP87] to take the RTT measurements. If a particular
segment was needlessly retransmitted we do not observe the RTT
associated with the original data packet and its corresponding ac-
knowledgment. [AP99] shows that the standard BSD retransmis-
sion timeout (RTO) mechanism rarely causes needless retransmis-
sions. However, [BPS99] shows that reordering is not necessarily
a rare occurrence in the Internet. Reordering can cause TCP to
retransmit segments prematurely via the fast retransmit algorithm
[Jac88]. However, we do not believe that such an event necessar-
ily triggers a change in RTT thattcptracemisses by ignoring the
ambiguous RTT sample.
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Figure 9: Distribution of average RTTs.

Figure 9 shows the distribution of average RTTs for each con-
nection in theP andP 0 datasets. Note that the RTT reported is
composed of not only the time required for the data packet and cor-
responding ACK to traverse the network path, but also processing
time at the receiver. For instance, a client using delayed ACKs
[Bra89, APS99] may refrain from transmitting an ACK for up to
500 ms, which would inflate the RTT. The delayed ACK mech-
anism could, therefore, skew the average RTT reported. Many
implementations use a 200 ms heartbeat timer to trigger delayed
ACKs. This causes a 100 ms delay on average when transmitting
timer-based ACKs. We expect this effect to be small as the transfer
size increases and we get a larger number of RTT samples. How-
ever, most of our transfers are short and therefore the delayed ACK
timer may be skewing our data a bit, however quantifying the skew
is difficult with out dataset.

While both distributions shown in the figure have the same ba-
sic shape we note that the connections in theP

0 dataset have longer
RTTs than when considering all the connections inP. This indi-
cates that the connections removed fromP to yield theP 0 dataset
were skewing the distribution towards smaller RTTs. The host
names of the IP addresses not included in theP

0 dataset indi-
cate that the clients are web crawlers, surveying the content on our
server for search engines. We expect such clients to enjoy good
connectivity to the Internet, explaining why they have generally
lower RTTs than the rest of the clients. As indicated in the fig-
ure, approximately 85% of the RTTs are between 15–500 ms. This
gives a nice range of RTT values for researchers constructing inter-
networking simulations.

Figure 10 provides a comparison of the minimum RTT ob-
served and the median RTT for each connection. Thex-axis is the
minimum RTT in milliseconds, while they-axis is the median RTT
for the same connection as a multiple of the minimum RTT. The
data from theP 0 dataset is shown in this plot. To highlight the
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Figure 10: Comparison of the minimum and median RTTs a con-
nection observes.

behavior of the vast majority of the connections thex-axis is lim-
ited to 2 second minimum RTTs, as in the last plot. While our
dataset shows median RTTs as high as 200 times the observed min-
imum RTT we limited they-axis to a factor of 20 to better illustrate
the behavior of the vast majority of the connections in the dataset.
The median RTT was within a factor of 2 of the minimum RTT in
slightly over 90% of the connections when considering all connec-
tions in theP 0 dataset. However, the plot illustrates that for shorter
RTTs the variability within connections is sometimes quite large.
(We found one connection with a median RTT of 200 times the
minimum RTT!) One explanation for this decrease in variability as
the RTT grows is the use of a network link with a high delay (e.g.,
a satellite channel) that has the effect of drowning out the variabil-
ity in the rest of the network path. However, this cannot be further
investigated without additional data.

Another note about this data is that the minimum RTT may
come from a short segment (e.g., a SYN). On slow links the trans-
mission time of a short packet can be significantly shorter than that
of a full-sized data segment, which could explain some of the vari-
ability shown in the figure. However, most TCP implementations
we are aware of do not take packet size into account when measur-
ing RTTs. Therefore, we believe this figure presents an accurate
view of the network from the perspective of a TCP data sender.

We also note that as shown in section 2 the majority of the trans-
fers from our web server are very short. Together with figure 10 this
indicates that RTTs can change significantly on short time scales
over some network paths. A possible area of future work is to as-
sess the stationarity of RTTs in the network (much as has been done
for routes, loss rate and throughput [ZPS00]).

We now turn our attention to the second goal of this section.
RFC 1144 [Jac90] suggests 100–200 ms as the amount of time
that users can perceive in regards to responses from networks. We
note that figure 9 shows that nearly 75% of the connections in the
P

0 dataset experience average RTT delays over 100 ms and nearly
40% of the RTTs observed exceed 200 ms. This indicates that pay-
ing careful attention to making transport and application protocols
use fewer RTTs (when possible) is important. For instance, pro-
posals such aslimited transmitwhich allows TCP to transmit new
data segments on the first two duplicate ACKs to save retransmis-
sion timeouts [ABF00] can be important changes. As indicated by
the data, saving even several RTTs may represent a significant im-
provement for users.

An additional note about the RTT distribution is that slightly
over 2% of the connections in our dataset observed at least one

RTT over 3 seconds. Furthermore, slightly more than 1% of the
connections averaged RTTs of over 3 seconds. This indicates that
TCP’s minimum initial retransmission timeout (RTO) of 3 seconds
as specified in [Bra89, PA00] continues to be a conservative choice.

6 Packet Sizes

Next we analyze the packet sizes used by the server when transfer-
ing data to the clients in our dataset. We will use this analysis to
draw conclusions in the next two sections. In addition, understand-
ing the packet sizes used in real networks will enable researchers
to simulate wisely.
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Figure 11: Distribution of packet sizes.

Figure 11 shows the distributions of the maximum segment size
(MSS) requested by the clients in the SYN exchange, the largest
packet size used by a connection and the transfer size for theP

dataset. As shown, nearly 90% of connections advertised an MSS
of roughly 1460 bytes in the SYN segment. Roughly 5% of the
connections advertised a lower MSS (around 500 bytes). Approx-
imately 6% of the transfers advertised maximum segment sizes of
around 4000 bytes. We found 27 connections that advertised an
MSS over 17,000 bytes (although, 15 connections were to a single
client host). We used SNMP [CFSD88] to query the last hop router
to the clients advertising an MSS of over 17,000 bytes. The one
router that answered our query supported an MTU of 4,180 bytes
on two of its six interfaces and an MTU of 1,500 bytes on the rest.
This does not explain the large advertised MSS. This suggests ei-
ther a bug in the TCP stack causing a large MSS to be advertised or
that the network has changed between the time the connection was
made and our SNMP query.

The figure shows that, as expected, the maximum packet size
and the total transfer size track quite well when the transfer size is
less than 500 bytes. When transfer sizes exceed roughly 500 bytes
the transfer size no longer tracks the maximum packet size. We
see that roughly 5% of the transfers use a maximum packet size
of approximately 500 bytes, as expected from the MSS advertise-
ments. The remaining transfers use a maximum segment size of
roughly 1460 bytes (also, as predicted by the MSS options ob-
served). We note that no transfers use packet sizes greater than
1500 bytes because the server is connected via a 10 Mbps Ethernet
with a 1500 byte MTU and hence does not send larger packets.

We conclude that in our sample 1500 byte packets are used the
vast majority of the time (when the transfer size is large enough to
support their use). While this would be a stronger result if we had



datasets from additional servers we believe researchers are fairly
safe using 1500 byte packets in simulations and emulations.

7 Advertised Windows

This section focuses on the advertised window size used by web
clients. The advertised window represents the data receiver’s upper
bound on the amount of outstanding data, or data that has been
transmitted but for which an acknowledgment has not yet arrived.
Therefore, the advertised window can have a direct impact on the
performance of a data transfer, as outlined in [SMM98, AF99].

In addition to the advertised window, thecongestion window
(cwnd) is a sender-side state variable that represents the actual
amount of outstanding data the sender is permitted to inject into
the network. The value ofcwnd is limited by the advertised win-
dow. TCP uses theslow startalgorithm [Jac88, APS99] to increase
the value ofcwnd at the beginning of a transfer. The algorithm
starts by settingcwndto 1 segment and then sending 1 segment (or,
sometimes a small number of segments, see the next section) and
waiting for the corresponding acknowledgment (ACK). For each
ACK received during slow startcwnd is increased by 1 segment.
The algorithm ends when congestion is detected (either inferred
from observing packet drops or from Explicit Congestion Notifi-
cation (ECN) [Flo94, RF99]) or whencwndreaches the advertised
window.
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Figure 12: Advertised windows used by web clients over time.

Figure 12 shows the advertised window sizes from theP

dataset over time. The advertised windows represent the maximum
advertised window during the connection, as reported bytcptrace.
As shown, the mean and median advertised window size has re-
mained approximately the same over the course of our observa-
tion. The median transfer size is 8,760 bytes, or 6 packets if we
use 1,460 byte segments, as suggested by the data presented in the
last section. Meanwhile, the average advertised window is roughly
18 KB, or approximately 12 packets. The mean advertised window
jumps noticeably in January and February, 2000. These two spikes
are caused by 3 connections which use a very large advertised win-
dow (as shown by the maximum advertised window line). When
these 3 connections are removed from the analysis, the two months
in question are no longer distinguishable from the other months
of the study, in terms of average advertised window. Note that an
analysis using theP 0 dataset yields nearly identical results.

TCP uses the fast retransmit algorithm to quickly detect packet
loss [APS99, Jac88]. TCP receivers will sendduplicate acknowl-
edgmentsin response to segments arriving out-of-order. TCP

senders use the receipt of 3 duplicate ACKs as an indication that
a given segment has been lost. The segment is retransmitted and
cwnd is halved because the drop is assumed to indicate network
congestion. Therefore, acwnd of less than 4 segments prevents
TCP’s fast retransmit algorithm from being triggered. For instance
if cwnd is 3 segments and one segment is dropped by the net-
work the sender will receive only two duplicate ACKs (assuming
no ACK loss) and will then wait for the retransmission timer to
expire to resend the dropped packet.

Morris [Mor00] extends to above argument further. In order
to stay out of the regime where TCP frequently uses the RTO to
recover from loss the minimumcwnd should be 4 segments. In
order to always have 4 segments in the network thecwndneeds to
be able to grow to at least 8 segments, such that when congestion is
detected andcwndis halved,cwndis still at least 4 segments. From
the data we have collected it seems that the advertised window will
likely prevent thecwnd from reaching 8 segments in the majority
of the cases. This argues that default advertised windows should be
increased.

Rather than increasing the advertised window size, several re-
searchers have suggested that TCP send new segments upon the re-
ception of the first two duplicate ACKs [BPS+98, LK98, ABF00].
This will trigger additional duplicate ACKs (if appropriate) and
therefore fast retransmit will be invoked.

However, the above algorithm does not aid short connections
that have no new data to transmit in response to duplicate ACKs.
ECN [Flo94, RF99] provides a possible mitigation to this problem.
Rather than dropping the segments, the network could simply mark
them as experiencing congestion. This would allow the connection
to quickly complete without requiring a costly retransmission time-
out. Another possibility is for TCP to detect that(i) one duplicate
ACK has arrived,(ii) there is no more data to send and(iii) based
on the number of outstanding segments 3 duplicate ACKs cannot
be expected. In this case, the TCP would trigger fast retransmit on
a smaller number of duplicate ACKs.

Semke [SMM98] argues for the use of an automatic socket
buffer tuning algorithm and the notion that the network should dic-
tate the performance of a TCP connection, rather than being lim-
ited by some arbitrary limit placed on the transfer by one of the
endpoints (i.e., the advertised window). (Note that the advertised
window is not always arbitrary, but we believe it often has little to
do with the current network or host conditions).

As noted above, the advertised window can limit a connection’s
performance. The maximum throughput a TCP can obtain is given
by equation 1 [Pos81], whereT is the throughput,W is the ad-
vertised window size andRTT is the round-trip time between the
sender and the receiver.

T =
W

RTT
(1)

As indicated by the equation, ifW is too small, such thatT is
less than the available bandwidth, the connection will not be able
to utilize the available resources of the network. Using automatic
buffer tuning [SMM98] effectively removes the advertised window
limitation in all cases except when the end host needs to limit the
buffer size due to memory constraints.

Assuming no congestion indications, TCP is required to send at
least2 �W bytes of data to open and fill a congestion window equal
to an advertised window ofW bytes. Connections whose conges-
tion window reaches the advertised window are likely limited by
the end systems in the connection, rather than by the capacity of
the network. We are interested in assessing how often this happens.

Many of the transfers in theP dataset are not long enough
for the advertised window to become a factor. This is likely
caused by the content our web server provides. However, we note



that [TMW97] shows typical web transfers are between 9–12 KB,
which is also too small to fill and utilize the median advertised
window sizes. We found that 644,102 connections from theP

dataset failed to send enough data to become limited by the adver-
tised window. Of the remaining 38,735 connections, we found that
27,066 connections, or nearly 70%, were limited by the advertised
window size. This indicates that in the cases where TCP would
likely have been able to obtain better performance the advertised
window size hindered the throughput obtained. We believe this re-
sult provides further evidence that default advertised window sizes
should be increased, or automatic buffer tuning [SMM98] should
be employed.

In related work, [BPS+98] reports that 14% of connections to
a busy web server are limited by the client’s advertised window
size. In our sample, only 4% of the total number of connections
are limited by the advertised window. However, looking at the total
percentage of connections without regard to transfer size can distort
the results.

8 Larger Initial Congestion Window

The current TCP congestion control specification [APS99] allows
TCP implementations to use an initial congestion window of up to
2 segments. Thecwnd is increased from this initial value using the
slow start algorithm. RFC 2414 [AFP98], an experimental docu-
ment within the IETF, proposes allowing TCP to use initialcwnd
values of up to 4 segments, depending on the segment size. Specif-
ically, [AFP98] proposes using equation 2 to set the initialcwnd
size.

cwnd = min(4 �MSS;max(2 �MSS; 4380 bytes)) (2)

NetBSD 1.3 implements larger initial congestion windows as
given in equation 2 as an option that can be enabled by the system
administrator for experimentation. We enabled the option on our
web server to investigate the impact of using a larger initialcwnd
with realistic Internet traffic. We hope this provides some input to
the IETF community if and when the proposal to use an initialcwnd
of 3–4 segments moves onto the standards track.

NetBSD keepscwnd in terms of bytes rather than segments.
This distinction is important because while the spirit of equation 2
places an upper bound on the number of segments in the initial burst
of data sent into the network, the NetBSD implementation does not
necessarily do so. An example we found in our data quite often
occurs when using an MSS of 1460 bytes. According to equation 2
this should yield an initialcwndof 4380 bytes (or 3 full-sized seg-
ments). But, the server uses thewrite() system call to write
2 chunks consisting of 2048 bytes each. This yields 4 segments in
the initialcwndrather than 3 segments. The first and third segments
are each 1460 bytes, while the second and fourth are 588 bytes. So,
by not writing a large chunk of data initially, the server causes the
initial burst of data into the network to be more segments than al-
lowed, yet less bytes than allowed by equation 2.

In addition, NetBSD 1.3 contains a well-known TCP bug,
whereby the ACK of the SYN-ACK in the three-way handshake
causescwnd to be incremented as if the connection were in slow
start [All97, PAD+99]. This allows for initial congestion windows
of one segment more than allowed by equation 2. We found that
in our dataset the size of the initial value ofcwnd in bytes is al-
ways less than or equal to the value predicted by equation 2 plus
one MSS, however the number of segments ranged between 1–7.

Assessing the performance impact of using a larger initialcwnd
from our data is difficult. All connections had the opportunity to

use a larger initialcwndif enough data was transmitted on the par-
ticular connection. So, the connections using small initialcwnd
values also transferred a small amount of data. This makes for a
difficult comparison with connections using a larger initialcwnd
(and hence transfered more data). We are currently taking a sec-
ond set of data that only enables the larger initialcwndoption on
some of the transfers. This should allow us to more easily compare
the performance of connections using various initialcwnd values
in future studies.

Initial cwnd % Using % With Loss In
(segments) cwnd Initial cwnd

0 1.9/2.5 N/A
1 40.0/28.9 1/1
2 13.7/17.2 2/3
3 13.6/15.4 2/2
4 8.4/8.4 2/2
5 20.8/25.7 3/3
6 1.6/1.8 5/5
7 0.0/0.0 3/3

Table 2: Initialcwndsizes and corresponding loss rates.

We can, however, analyze the amount of additional loss a larger
initial burst of data creates in the first burst of traffic. Table 2 shows
the percentage of connections in the dataset that used each initial
cwndsize. The first percentage given is the percentage of all con-
nections in theP dataset, while the second value is the percentage
from theP 0 dataset (i.e., after removing the heaviest users of the
web server, as detailed in the previous sections). The last column
of the table shows the percentage of connections using the given
initial cwndvalue that retransmitted segments from the initial win-
dow of data3 (again, percentages forP andP 0 are given). The first
row of the table, reporting an initialcwndof zero indicates the per-
centage of connections in which the SYN is lost. The distribution
of initial cwndvalues is determined by the segment sizes used (as
discussed in section 6), as well as by the amount of data being sent
on a particular TCP connection.

As shown in the table, we observed initialcwndsizes of more
than 4 segments due to the implementation issues discussed above.
The table shows that 40% of the connections inP used an initial
window of 1 segment. This agrees with the transfer size distri-
bution shown in figure 11 in which roughly 40% of the transfers
are less than 1500 bytes (or 1 segment in most cases). The table
shows that using initialcwndvalues of 2–4 segments, as suggested
in [AFP98], slightly increases the percentage of connections that
experience loss in the first window of data transmitted when com-
pared to using a 1 segment initialcwnd. This is consistent with
previous studies (e.g., [AHO98]).

Finally, table 2 shows that using a 3–4 segment initial window
does not increase the chance of loss in the initial burst of data over
that of using 2 segments. This is an indication that using 3 or 4 seg-
ment initial windows is safe for general use in the Internet. How-
ever, initialcwndsizes of more than 4 segments seem to increase
the initial loss rate more when compared to a standard initial win-
dow size. This indicates that using such initialcwndsizes may be
inappropriate in shared networks.

Figure 13 shows the distribution of the value of the initialcwnd
in terms of bytes. We expected more pronounced plateaus in the
plot, representing the initialcwndobtained by using popular seg-
ment sizes with equation 2. As discussed above, there are two prob-

3Note thattcptracerequired modifications to report the number of retransmits in
the initial window of data.
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Figure 13: Distribution of initialcwnd in terms of bytes.

lems with this expectation. First, the sizes of the transfers often
dictated the initialcwndutilized. Second, the web server’s use of
thewrite() system call to cause short segments to be transmitted
also influences the results.

We cannot say with certainty that Apache’s writing of small
chunks at the beginning of a transfer is common, given that we
only observed a single server (even though Apache is a popular
web server). However, we recommend that application developers
send larger chunks of data to TCP, rather than writing data in such a
way that causes TCP to send small segments when more data is im-
mediately available. This is especially important for the first write
of the transfer, which should be at least 4380 bytes (when possible)
to handle larger initial congestion windows. Or, at a bare minimum
roughly 3000 bytes to cover the initial congestion window allowed
by RFC 2581, when using the popular 1500 byte segment size.

9 Conclusions and Future Work

The following are the key results and recommendations from the
analysis performed for this paper.

� The SACK option is being steadily deployed in web client
TCP stacks. Researchers conducting TCP simulations should
include SACK based TCPs, as suggested in [AF99].

� Our data indicates that web client’s advertised window sizes
are currently too small, in general. The small advertised win-
dows likely limit performance in roughly 70% of the transfers
that are long enough to fully utilize the advertised window. In
addition, small advertised windows may hinder loss recovery.
This can be mitigated by increasing the advertised window
size or improving TCP’s loss recovery algorithms, as outlined
in section 7 and [ABF00].

� Using larger initial congestion windows, as proposed in
[AFP98], does not drastically increase the number of TCP
connections that experience loss in the first burst of data, in-
dicating that using larger initial values forcwndis appropriate
in most network paths.

� Approximately 85% of the average RTTs observed are be-
tween 15–500 ms, giving researchers a nice range of RTTs to
use in simulations.

� WWW clients use of persistent connections seems to be de-
clining, while the use of parallel TCP connections to transfer

web objects has remained fairly stable. However, more data
would be useful in clarifying these points.

In addition, this paper has suggested several items for future
work, as follows.

� Collecting data from multiple web servers for analysis would
provide stronger results and allow more general conclusions.

� A survey of many web servers for some of the same informa-
tion would be useful, as well.

� Instrumenting web servers to better study client use of parallel
and persistent connections would be useful.
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