
Optimised Batch Patching with Classes of Service
Paul P. White

Visitor
Dept. Computer Science, UCL

Gower St.,London WC1E 6BT, UK
Tel: +44 7679 2000

p.white@cs.ucl.ac.uk

Jon Crowcroft
Professor

Dept. Computer Science, UCL
Gower St.,London WC1E 6BT, UK

Tel: +44 7679 7296

j.crowcroft@cs.ucl.ac.uk

ABSTRACT
In this paper we present a new technique called Optimised Batch
Patching with Classes of Service(OBP with CoS) which can be
used to leverage the benefits of multicast within the context of
‘near’ video-on-demand systems in IP networks. OBP with CoS
builds on an earlier scheme, known as Optimised Patching, but is
different in two respects. Firstly, in OBP with CoS, the server
artificially delays requests in order to increase the probability of
accumulatingduplicates, thereby allowing greater exploitation of
multicast compared to Optimised Patching albeit at the expense of
higher latency until commencement of service. Secondly, the
client is able to request a latency class of service which reflects
how long the client is prepared to wait until playout of the video.
The server scheduling algorithm attempts to minimise network
bandwidth consumption within the constraints imposed by the
class of each request. We present analysis and simulations of our
scheme in order to validate its effectiveness.

Keywords
Multicast, video-on-demand, multimedia.

1. INTRODUCTION
Today IP networks are being used for many applications and
services beyond conventional data transfer. One example is
Video-On-Demand(VOD). VOD describes a system whereby a
user is able to request any video from a library stored on one or
more servers. In response to the request, the server will deliver the
video as an isochronous stream for playout by the user. With
‘true’ VOD the delay between the user submitting a request and
commencement of playout of the requested video should be small,
typically a few seconds. An alternative is what could be referred
to as ‘near’ VOD whereby the delay to commencement of playout
is significant, typically a few minutes, but still acceptable to the
user under certain conditions. For example, in the case of movies-
on-demand, where the playout duration of a movie is say 90
minutes, a delay of several minutes might be acceptable to the
user provided there is an appropriate cost reduction compared to
‘true’ VOD.

A major landmark in the recent evolution of IP
networks is the introduction of multicast routing and forwarding
techniques for group communication. When the same information
needs to be sent to multiple recipients, a single multicast
transmission using a protocol such as Protocol Independent
Multicast(PIM)[4] will consume less network bandwidth and
impose less of a load on the sender compared to a separate unicast
transmission to each recipient.

Although many schemes have been proposed that
attempt to exploit the benefits of multicast for VOD most of them
are based on ‘periodic broadcast’ principles[1][3][5][7] whereby

each video is split into portions which are continuously multicast
over a number of multicast channels and as such are only
bandwidth efficient provided request arrival rate is high.

A multicast scheme that is bandwidth-efficient over a
wider range of request arrival rates is that of Patching[6] which
facilitates ‘true’ VOD as well as ‘near’ VOD.

In the case of near VOD, each request incurs a delay at
the server prior to commencement of service. In [6] this delay is
only ever caused by bandwidth limitations on the server output
link although, as we will explain later, an alternative is for delay
to be artificially imposed by the server scheduling algorithm in
order to increase the likelihood of obtaining duplicate requests
thereby allowing further exploitation of multicast.

By the time service of a delayed request is about to
commence the server may have accumulated additional requests
for the same video. Each such group of identical requests is
known as a batch. Following the service point of each request
batch as determined by the server scheduling algorithm, the batch
must then be served over 1 or 2 channels, that is multicast groups,
either a so-called regular channel alone, or the combination of a
regular channel and a so-called patching channel. A regular
channel delivers a full video from start to finish while a patching
channel delivers only the missing part of the video from the start
until the point at which the clients of a batch join the regular
channel. In [6] the multicast groups were realised at the
application layer in order to minimise congestion on the internal
server bus. However the technique would also work using
network layer multicast which would result in network bandwidth
savings in a multicast-capable IP network.

In [6], the preferred method of patching, known as grace
patching, works as follows. At the service point of a batch, the
server identifies the newest regular channel that is serving the
requested video and equates the channel’s age to a corresponding
buffer space, e.g. to store 10 minutes of Mpeg video requires
approximately 100 Mbytes of buffer space. If the corresponding
buffer space exceeds the buffer capabilities of the clients in the
batch then patching cannot be used for the batch in which case a
new regular channel must be opened instead and its identity
conveyed to the clients in the batch. Each client then joins the
regular channel in order to receive the entire video.

Assuming the buffer space of the clients is sufficient
then patching can be used as follows. The server opens a new
channel known as a ‘patching’ channel which will deliver only the
early part of the requested video that the clients will miss upon
joining the video’s newest regular channel. The server then
conveys the identity of both patching channel and newest regular
channel to each client in the batch. Each of these clients then joins
both channels and buffers the regular channel while playing out
the patching channel. When the patching channel has been

exhausted each client then switches to playout of the buffered
regular channel.

For ‘true’ VOD the delay of each request at the server
prior to commencement of service must be negligible which
means there is little or no time for the server to accumulate
duplicates before servicing a given request. In this case each batch
would contain just a single request and any patches could be
delivered via unicast.

The ‘batch and multicast’ approach to delivery of a
patch as used by near VOD results in a lower incremental
bandwidth consumption per request compared to true VOD albeit
at the expense of higher latency until start of transmission as
perceived by the user.

[6] compared the performance of a VOD multicast
system using patching with one that always started a new
transmission of the full video for each batch of requests, and
found significant performance improvements in the patching case.
For example, [6] found that compared to a no-patching approach,
patching was able to support ‘true’ VOD at 4 times the request
rate for a typical server configuration.

Apart from the number of requests in each batch, with a
patching scheme there is an additional factor that determines
bandwidth efficiency, namely whether a batch is served via a new
regular multicast or the combination of a patch and an existing
regular multicast. The scheme presented in [6] bases this decision
entirely on the buffering capabilities of the clients. In other
words, to serve a batch [6] always uses a patch provided each
client in the batch has sufficient buffering capabilities. This
strategy is not optimal with regard to bandwidth consumption
since the amount of traffic contained in a patch increases as the
age of the latest regular multicast increases. Once the regular
multicast reaches a certain age it becomes more efficient to start a
new regular multicast rather than to continue patching to the
existing latest regular multicast.

[2] presents a proof of this for true video-on-demand
patching and refers to the scheme as Optimised Patching. The
time interval following commencement of a regular multicast
during which it is more efficient to patch to that regular multicast
than begin a new regular multicast is known as the Patching
Window. The Patching Window therefore defines the minimum
time interval between successive regular multicasts of the same
video.

In [2], service of any pending batch commenced as soon
as a free channel became available on the server output link. Such
a scheme is biased towards minimising latency to commencement
of service which is obviously desirable from a user’s point of
view.

An alternative approach would be to minimise
bandwidth consumption on the server output link which in turn
would minimise network load and as such would be desirable
from a network provider’s point of view. Network bandwidth
consumption can be minimised if the server delays
commencement of service of a batch beyond the point at which a
free channel first becomes available. In other words the server
artificially delays service of each request in order to increase the
number of requests contained in each batch and as a result the
number of requests satisfied by any resultant patch. In what we
refer to as a ‘simple batching scheme’ the server aggregates

duplicate requests over a fixed batching interval before
commencing service of each batch ofduplicates at the end of the
interval.

With a simple batching scheme the batching interval is
equal to what we refer to as the maximum holding time(MHT) of
a request which is the amount of time that a request may be
artificially held for by the server before commencing service. The
higher the MHT of each request, the greater the probability that a
request matches on a duplicate before it is serviced. Since
accumulatedduplicate requests can be served via a single
multicast patch rather than a number of unicast patches,
increasing the MHT will increase the bandwidth saving. It is
therefore reasonable to expect the network provider to charge
more for providing a lower MHT. Consequently there is a tradeoff
between latency and cost.

A simple batching scheme applies the same MHT to
each request for a given file and as a result is unable to achieve an
optimal latency/cost tradeoff for each client. For some clients the
MHT or associated cost might be more than they are willing to
tolerate.

A more efficient approach would support heterogeneity
among the MHTs of different requests for the same video. The
MHT of a given request could then be set by the client according
to their desired latency/cost tradeoff.

In this paper we present a scheme known as Optimised
Batch Patching with Classes of Service(OBP with CoS) which
combines the concepts of Optimised Patching, simple batching
and client-control of the latency/cost tradeoff.

In order to present our work in the most logical fashion
we build it up from its core components and assess it ateach
stage. We begin in section 2 by describing the basic technique of
Batch Patching in more detail. Then in section 3 we derive
equations that can be used by a Batch Patching server to calculate
the optimal patch window size for a given request arrival rate,
video run time and batching interval. We call the resultant scheme
Optimised Batch Patching(OBP) and validate our analysis using
simulation.

In section 4 we extend OBP so that each client can
specify a latency class which reflects a MHT in accordance with
their desired latency/cost tradeoff. We call the resultant scheme
OBP with Classes of Service(OBP with CoS) and present
simulation results in order to illustrate its behaviour and
performance.

We also discuss how the analysis results of classless
OBP could be used to estimate the optimal window size for the
more general case of OBP with CoS .

2. BATCH PATCHING
With Batch Patching the server divides time into epochs of
duration b seconds. Duringeach epoch the server accumulates
requests and stores them in batches of duplicates. At each epoch
boundary the server commences service ofeach batch. Any
transmissions will be done at the same rate in terms of frames/s as
the actual playout rate of the video itself. We now analyse such a
scheme for a server hosting a single video file and assuming that
each client has an identical amount of buffer space equal to B
bytes. We also assume that the server always allows kb seconds

(k<1) for clients to join any multicast channel that they are
instructed to join by the server. The timing diagram for the
scheme is shown in Figure 2-1 and will now be explained in
detail.

Start
MRRC

b
kb teb

MRRC traffic that
patch must recover

Clients join MRRC
group

kb

Unicast patch

Mcast patch

time

epoch boundaries

tbU

tbM

kb

Clients start
buffering MRRC

Figure 2-1: Timing Diagram for Classless Batch Patching

We let teb denote the time at an epoch boundary where a non-
empty batch exists. Here a decision must be made as to the
manner in which service of the batch should occur, namely either
a new regular multicast or a patch to an existing regular multicast.

Should the server choose to start a new regular
multicast, it will inform each client in the batch of the multicast
address of the new regular channel. The server will then wait kb
seconds before commencing transmission of the full video over
the new regular channel.

Should the server choose to deliver a patch then it will
inform each client in the batch of the multicast address of the
Most Recent Regular Channel(MRRC) and use a patch to recover
the early part of the file that has already been transmitted over the
MRRC. If the number of clients in the batch exceeds 1 then the
patch will be delivered by multicast in which case the clients will
also be informed of the multicast address of the patching channel.
In the case of a batch containing a single client the patch will
simply be delivered via unicast.

Although the server begins informing clients of the
multicast address of the MRRC at time=teb, the time could be as
late as teb+kb before each client has joined the channel and begun
receiving traffic on it. This means that the patch is responsible for
recovering all packets that were transmitted over the MRRC
before teb+kb. Assuming that the patch is transmitted at the same1

rate as the regular channel then the duration, dpatch of the patch
will be given by

MRRC)ofe(start tim-kb)t(dpatch eb+=

(1)

1 Same with regard to frames/s. The rate(frames/s) of a regular
channel is the same as the playout rate of the video itself.
Transmitting the patch at this same rate will require the least
amount of client buffering.

We assume that the server commences any unicast patch at
time=teb but delays commencement of any multicast patch until
time=teb+kb. Transmission of the patch will then cease at
teb+dpatch in the case of a unicast patch and teb+kb+dpatch in the
case of a multicast patch.

Although a client will join the MRRC and begin
receiving packets over it at any time between teb and teb+kb, any
packets received over the MRRC before teb+kb are discardable
since such packets will be recovered by the patch anyway. Once
the patch finishes, playout of the buffered MRRC channel will
begin at the client and lag network transmission of the MRRC by
dpatch seconds in the case of a multicast patch and dpatch-kb in
the case of a unicast patch. The time-transformed buffer
requirements at the client in the two cases are then as follows

dpatchtbM =

(2)

kb-dpatchtbU =

(3)

where tbM and tbU are the time transformed buffer requirements for
the multicast patch and unicast patch cases respectively. The
actual buffer requirements, BM and BU bytes, for a multicast and
unicast patch respectively will then be as follows:

)(* tratedpatchB bMM =

(4)

)(*)(tratekbdpatchB bUU −=

(5)

where rate(tb) bytes/s is the maximum of the mean rate of the
video over any interval equal to tb. tb can be any value {b, 2b,
3b…} in the case of a multicast patch and any value {(1-k)b, (2-
k)b, (3-k)b…} in the case of a unicast patch. The larger the value
of tb the smaller the value of rate(tb). However it is unrealistic to
assume that the value of rate would be made available to the
server for every value of tb. It is more likely that only the worst
case values of rate, denoted rate1 and rate(1-k) for tb = 1 and (1-k)
epochs respectively would be made available to the server. These
values could be measured for each video and stored at the server.
Rearranging equations (4) and (5) and inserting the worst case
values of rate gives the following

rate

B
dpatchM

1
<

(6)

kb
rate

B
dpatch

k
U +<

−)1(

(7)

where dpatchM and dpatchU are the maximum duration multicast
and unicast patches that a client buffer of size B can
accommodate. If a potential patch violates equation (6) in the case
of multicast or equation (7) in the case of unicast then the server
is precluded from sending it and must instead begin a new regular
multicast in the next epoch.

3. OPTIMISED BATCH PATCHING(OBP)
Equations (6) and (7) impose an upper limit on the duration of a
patch in accordance with the client buffer capabilities. If the value
of B is large, then allowing a patch duration as large as that
determined by equations (6) and (7) will not yield the maximum
bandwidth efficiency. This was discussed briefly in section 1.
Instead, higher bandwidth efficiency will be achieved by limiting
the patch duration to some lower value known as the Patching
Window size which we denote as W. We call such an approach
Optimised Batch Patching(OBP). With OBP, the duration, dpatch
of any patch, whether unicast or multicast, must satisfy the
condition of equation (8) as well as (6) and (7).

Wdpatch≤

(8)

We will now derive an equation that relates the
bandwidth consumption of Optimised Batch Patching with the
parameters b, W, request arrival rate,λ, and mean video rate, r.
The derived equation will allow us to calculate the optimal value
of W for specific values of b,λ and r. In the following analysis we
consider a single video file and assume that clients have ample
buffer space for all values of dpatch. In other words we assume
that equations (6) and (7) are never violated.

We refer to an RM-epoch as one in which a regular
multicast was started and a non-RM-epoch as one in which a
regular multicast did not begin. In order to calculate the mean
transmission rate on the server output link we need to determine
both the mean interval between RM epochs and the mean of the
aggregate number of bytes contained in all patches commencing
between two adjacent RM epochs chosen at random.

Following an RM epoch, the next RM epoch will be
triggered by the next occurrence of a non-empty batch whose
associated value of dpatch exceeds W and so violates equation
(8). Now the value of dpatch for a patch commencing in non-RM
epoch numberi is given by the following

bidpatch=

(9)

where non-RM epoch number 1 is the first epoch following an
RM epoch. From equation (9) it can be seen that providedi≤W/b
then equation (8) will not be violated. Hence the first W/b epochs
following an RM epoch will definitely be non-RM epochs.
Following the firstW/bnon-RM epochs the next non-empty batch
to occur will definitely violate equation (8) and hence cause the
next epoch thereafter to be a RM epoch.

These observations yield the following equation for the
mean number, n of epochs between two adjacent RM epochs

()ÿ
ÿ

�

�

�
�

�

�
−+ÿ

�

�
�
�

�= �
∞

=

)0(1)0(int
1

PPi
b

W
n i

i

(10)

where P(i) is the probability of the number of requests in a batch
being equal to i. Assuming a Poisson arrival process, P(0), which
we denote simply as P for ease of representation is given by

ePP λ−==)0(

(11)

whereλ is the mean number of requests per epoch. Returning now
to (10) let us examine the special case where W is an integer
multiple of b. Equation (10) then becomes

()PPi
b

W
n i

i

−+= �
∞

=

1
1

(12)

Expanding the second term on the right hand side of equation (12)
we have

...)1(5432

1

+++++=−�
∞

=
PPPPPPPi

i

i

(13)

Substituting for the geometric series on the right hand side of
equation (13) we have

)1(
)1(

1
P

P
PPi

i

i

−
=−�

∞

=

(14)

Substituting equation (14) into (12) we have

)1(

)1(

)1(Pb

bPPW

P

P

b

W
n

−
+−=

−
+=

(15)

Now only the first W/b epochs following an RM epoch are
capable of generating a patch. For each of these epochs the
probability of generation of a patch will be given by 1-P. Hence
the mean,µ of the aggregate duration of all patches commencing
between two adjacent RM epochs chosen at random is given by

�
=

−=
b

W

i

Pib
1

)1(µ

(16)

Solving the summation in equation (16) gives the following

2

)1(

2

)1(

2
1)1(

2 WP

b
WP

b

W

b

W
Pb

−+−=ÿ
�
�

�
�
� +−=µ

(17)

The number of bytes,α corresponding toµ is given by the
following

2

)1(

2

)1(2 rWP

b
WrP −+−=α

(18)

where r is the average rate in bytes/s of a single transmission of
the video. To obtain an estimate of the mean transmission rate on
the server output link we need to consider an RM epoch and the
subsequent run of non-RM epochs before the next RM epoch. The
mean time period, t of such a sequence is given by

)1(nbbnbt +=+=

(19)

And the number of bytes,β in all transmissions commencing in
this period is given by

Tr+= αβ

(20)

where T is the total run time of the video. The average
transmission rate, R on the server output link can now be written
as follows

T)W(b
nb

Tr
R <<

+
+=

)1(

α

(21)

Substituting equations (15) and (18) into equation (21) and
simplifying gives

() ()

)1(

2
2

211
2

2

P
bbW

rbTbrWPrWP
R

−
+

+−+−=

(22)

For W>0, equation (22) has a single minimum which can be
found by differentiating R and setting the result equal to 0. This
yields the following equation

)1(

)1(22

Pb

bTPPbb
W

−
−++−

=

(23)

The result in equation (23) gives the positive value of W that
yields the minimum of equation (22) which is continuous in time.
In deriving (22) we assumed that W was an integer multiple of b.
Hence for consistency the true solution, that is the value of W that
is an integer multiple of b and which gives the minimum in R is
given by equation (24)

ÿÿ
ÿ

�

�

��
�

�

�
+

−
−++−

=
2

1

)1(

)1(2
int

2

Pb

bTPPbb
bW

(24)

Equation (24) is an important result that can be exploited by the
server to optimise bandwidth usage of classless patching. In
addition it can be used to test buffering capabilities of clients and
price them accordingly if limitations in their buffering capabilities
prevent achievement of optimal bandwidth usage.

Figure 3-1 plots equation (22) for a video of duration 90
minutes with b set to 1 minute at different values ofλ, the mean
number of requests per batching interval.

Figure 3-2 plots curves for the Optimised Patching
scheme of [2] which produces true VOD. The curves in Figure
3-2 were obtained from the following equation2 which was
derived in [2] and gives the normalised transmission rate for

2 In equation (25) the units of W and T are seconds while those of
λ are requests/second. These parameters were scaled to minutes
and requests/min respectively in order to produce the plots in
Figure 3-2.

Optimised Batching as a function of video run time, T, patching
window size, W and arrival rate,λ.

22

)1(2

+
++=

λ
λ

W

WWT

r

R

(25)

For the λ=1 case the corresponding simulation results are also
shown. The close match between simulation and analysis for the
classless OBP case provides a strong degree of confidence in both
our analysis and simulation model for the classless OBP case. The
same simulation model will later be used to analyse OBP with
CoS.

In Figure 3-1 the minima of the curves forλ equal to∞,
2, 1, 0.5 and 0.25 are located at W equal to 12, 13, 15, 19 and 24
minutes respectively. Using this information the server could
continuously optimise its value of W to reflect the current arrival
rate,λ. Alternatively, in order to simplify implementation of the
server the value of W could be set to a fixed value that was close
to optimal across a wide range of arrival rates. For example in
Figure 3-1 with W equal to 17 minutes the value of R/r on each
curve is no more than 5% greater than its minimum value for that
curve.

0

5

10

15

20

25

30

35

40

45

50

0 10 20 30 40 50 60 70 80 90

R
/r

W (mins)

analysis: lambda = infinity

2

1

0.5

0.25

simulation: lambda = 1

Figure 3-1: Normalised Transmission Rate vs W at Different
Values ofλλλλ(requests/min) for Optimised Batch Patching of a

90 Minute Video with b = 1 minute

0

5

10

15

20

25

30

35

40

45

50

0 10 20 30 40 50 60 70 80 90

R
/r

W (mins)

8
4

2

1

0.5

0.25

Figure 3-2: Normalised Transmission rate vs W(mins) at
Different Values of λλλλ(requests/min) for Optimised Patching of

a 90 Minute Video with b = 1 minute

Comparision of Figure 3-1 and Figure 3-2 clearly illustrates the
bandwidth savings of Optimised Batch Patching compared to
Optimised Patching, particularly for larger values ofλ. In the
Batch Patching plots of Figure 3-1, with optimal setting of W the
value of R/r can be kept below 13 no matter how high the arrival
rate. By contrast in the Patching plots of Figure 3-2, the value of
R/r rises rapidly withλ and at a value ofλ=8 requests/epoch
optimal setting of W gives a high value of R/r of 37.

4. OPTIMISED BATCH PATCHING WITH
CLASSES OF SERVICE(OBP WITH COS)
In the previous section we showed that for a given arrival rate,
video run time, and epoch period b, a specific value of W exists
that yields a minimum in the bandwidth consumption on the
server output link in the case of classless OBP. We now extend
the basic principles of OBP to allow a latency class to be
associated with each request. We call this extended scheme OBP
with CoS(Classes of Service). Here the latency class indicates the
maximum number of epochs that the server is allowed to hold the
request for before making a final service decision.

Table 4-1: Request Parameters for OBP with CoS

Request Parameters

VideoFileName

B (buffer size)

Class

MaxPrice

Type

Table 4-1 shows that each client request for a specific video file
also indicates the client’s current receiver buffer setting together
with desired latency class. The class determines the cost of
receiving a specific video. In addition if the value of B is
insufficient to permit optimised batch patching then a cost penalty
may be incurred as discussed in more detail in section 4.1.4. The
MaxPrice parameter indicates the maximum price the user is
willing to pay for fulfillment of the request.

4.1.1 OBP with CoS Request Type
Each OBP with CoS request includes a type parameter which
indicates whether the request is tentative or final. Only final
requests with a MaxPrice value less than or equal to the actual
cost are submitted to the service scheduler at the server. Any final
request where this is not the case and any tentative request will
trigger a response containing a buffer/class price matrix such as
that shown in Table 4-2.

Buffer SpaceClass

100M 400M 700M 1G

1 £4.00 £3.40 £2.70 £2.00

2 £3.20 £2.70 £2.10 £1.60

3 £2.60 £2.10 £1.70 £1.30

4 £2.00 £1.70 £1.35 £1.00

Table 4-2: Example buffer/class matrix returned in response
to a tentative request.

If returned in response to a tentative request the buffer/class
matrix indicates what the cost of fulfilling the tentative request
would be should it be resent with type set to final. The
buffer/class matrix may also contain additional pricing
information indicating how the price would change if the request
was resent with class and/or buffer size set to different values. The
buffer/class matrix could be embedded inside a response
containing client-side interactive functionality, e.g. a java applet
or a page of javascript code. The initial settings contained in the
tentative request could be default values that were configured at
the client. Upon receiving the response the user would have the
option of altering the request settings at the client side and
viewing the corresponding cost before dispatching the
request astype ‘final’ for processing by the server scheduling
algorithm. The MaxPrice parameter in the final request would
reflect the cost indicated to the user for the final settings.

4.1.2 OBP with CoS Service Scheduling Algorithm
Table 4-3 shows the instance variables of the batch object which
stores information about a batch of requests for the same file. B is
the minimum buffer size of all requests in the batch and class is
the minimum class of all requests in the batch.

Table 4-3: Instance variables of the batch object

Batch Object Variables

VideoFileName

B (buffer size)

Count

Class

Figure 4-1 shows the service scheduling algorithm that is applied
at each epoch boundary. First each new request that arrived in the
previous epoch is added to the corresponding batch and the batch
parameters updated. Then all mature batches, that is those of
class=1, are scheduled for service. For all remaining batches the
class of each request is decremented and the class of the batch
object decremented to reflect this.. Figure 4-1 assumes that the
server is dimensioned in terms of link bandwidth and multicast
addresses such that sufficient resources exist to commence each
multicast transmission dictated by the server scheduling
mechanism and patching technique.

For each new request, r {
batch = getBatch(r.videoFileName);
If (r.B < batch.B) {

batch.B=r.B;
batch.count++;

}
if (r.class<batch.class) {

batch.class=r.class;
}

}

For each batch {
if (batch.class>1)

batch.class --;
else {

calculate dpatch;
calculate D;
Breq←BufferReq(batch)
if (dpatch>D) | (Breq>batch.B)

start new MRRC in kb seconds
else

patch(batch);
}

}

function Patch(batch) {
if (batch.count>1)

Start Multicast of patch in kb seconds
else

Start unicast patch immediately
}

function BufferReq(batch) {
if (batch.count==1)

Breq=BM

else
Breq=BU

return Breq
}

Figure 4-1: Service Scheduling Algorithm for OBP with CoS

4.1.3 Simulation of OBP with CoS
We use the notation(share1:share2:share3:share4)to denote the
expected proportion of requests taken up by each request class
according to their probabilities. For example (1:1:1:1) indicates
that a given request could be any class between 1 and 4 inclusive
with an equal probability. (1:0:0:0) indicates that all requests are
of class 1.

In Figure 4-2 we plot our simulation results for a 90
minute video using OBP with CoS and different CoS ratios(λ=1).
As can be seen Figure 4-2 the higher the proportion of lower
latency class requests the higher the bandwidth consumption.
Comparing (1:1:1:1) to (1:0:0:0) is equivalent to comparing OBP
with CoS to classless OBP in an environment where each class of
request is equiprobable. The curve of Optimised Batching is
equivalent to all requests being of latency class 0 (no artificially
imposed server-side latency) and consequently has the highest
bandwidth consumption of all the curves. Hence the plots clearly
demonstrate the bandwidth savings attainable using OBP with
CoS compared to Optimised Patching. The bandwidth savings of
OBP with CoS compared to Batch Patching will become even
higher asλ increases.

For OBP with CoS the server could set the value of W
for a video to the optimal value for classless OBP as given by
equation (24). In the case of Figure 3-1 this setting of W is 15 and
results in a value of R/r on each curve within 6% of the minimum
value for that curve.

0

5

10

15

20

25

30

35

40

45

50

0 10 20 30 40 50 60 70 80 90

R
/r

W (mins)

Optimised Batching
ODP with CoS (1:0:0:0)
ODP with CoS (1:1:1:1)
ODP with CoS (0:0:0:1)

Figure 4-2: Simulation Results of Normalised Transmission
Rate vs W for a 90 Minute Vdeo using OBP with CoS and
different CoS ratios(λλλλ=1, b=1 minute)

4.1.4 Handling and Costing of Requests
Specification of a lower latency class increases both the QoS
experienced by the user and the network bandwidth consumed.
Consequently it is reasonable to expect the end-user to be charged
more for a lower latency class than a higher latency one in order
to compensate the network provider for the associated increase in
bandwidth consumption. In addition if the value of B in a client’s
request is insufficient to permit optimised batch patching then a
cost penalty may be added by the server. For this purpose the
server would check for fulfillment of equation (6) with dpatchM
set to the projected value of dpatch for a final service decision
made at the latest3 possible epoch boundary for the class of the
request.

In the case of VOD one could imagine at least two
likely pricing structures. Firstly pricing could be done in
accordance with the 4-tuple (popularity, running time, latency
class, buffer cost penalty). Less popular videos would incur a
higher cost since the incremental bandwidth consumption per
request is higher for a multicast tree with fewer receivers. A
second pricing structure one could imagine would simply be
according to the 2-tuple (latency class, buffer cost penalty). This
is workable in the case of a video server delivering feature films
which are likely to be of similar length. The server could monitor
the popularity of each video and remove from its archive those
videos that were not sufficiently popular and consequently had
poor earnings/overhead ratios. The overhead of a video comprises
storage overhead at the server as well as bandwidth consumption
in the network.

3 A final service decision on a request of class n must be made by
the nth subsequent epoch boundary at the latest.

5. SUMMARY
In this paper we have presented our scheme called Optimised
batch Patching with Classes of Service(OBP with CoS) which
provides a very efficient delivery mechanism for ‘near’ VOD.
OBP with CoS extends the Optimised Patching scheme presented
in [2] in two ways. Firstly, in OBP with CoS, the server
artificially delays requests in order to increase the probability of
accumulating duplicates, thereby allowing greater exploitation of
multicast compared to Optimised Patching albeit at the expense of
higher latency until commencement of service. Secondly, the
client is able to request a latency class of service in accordance
with their desired latency/cost tradeoff.

In the case of classless OBP we derived equations that
can be used by the server to calculate optimal maximum patch
duration for a given request arrival rate, video run time and epoch
period. Moreover we validated this analysis using simulation. In
addition we discussed how the analysis results could be used to
estimate the optimal patching window size for the more general
case of OBP with CoS. Following this we simulated OBP with
CoS in order to illustrate the attainable bandwidth savings.

We expect the demand for QoS-enabled on-demand
multicast services in the Internet to increase in the future for the
following reasons

1) Collaboration between content and network providers

There is a trend within the communications industry towards
increased collaboration between content and network providers as
exemplified by the recent Time Warner/AOL merger. For content
providers, networks provide a means to increase availability of
their content while for network providers, content represents
added value to their network. In order to satisfy a high customer
demand for content within the constraints of available network
bandwidth, on-demand multicast techniques will be needed
together with a suitable QoS framework to ensure that end-users
QoS expectations are met.

2) Increased bandwidth to the end-user

Many services suitable for on-demand multicast services such as
VOD require a bandwidth in excess of that currently available to
the typical home user in most countries, including the UK.
However this will almost certainly change over the next decade as
adoption of new technologies such as ADSL will make high
bandwidth domestic access to IP networks commonplace.

3) Popularisation of the Set-top box

Digital TV transmission and acceptance of the set-top box in
homes will remove the distinction between TV and data
distribution and create a domestic environment that caters for the
interactive needs of end-users.

6. ACKNOWLEDGEMENTS
The authors would like to thank British Telecom Labs, Ipswich,
England for supporting this work, especially Alan O’Neill.

7. REFERENCES
[1] C.C. Aggarwal, J.L. Wolf and P.S. Yu. “A Permutation-

Based Pyramid Broadcasting Scheme for Metropolitan VOD
Systems”.Proc. of the IEEE International Conference on
Multimedia Systems ’96, Hiroshima, Japan, June 1996.).

[2] Y. Cai, K. Hua and K. Vu. Optimizing Patching
Performance,Proc. ACM/SPIE Multimedia Computing
and Networking, January 1999, pp. 204-215

[3] A. Dan, D. Sitaram, and P. Shahabuddin. Scheduling
Policies for an On-Demand Video Server with Batching.
Proc. of ACM Multimedia, pages 15-23, San Francsisco,
California, October 1994

[4] Estrin et al. Protocol Independent Multicast(PIM-SM),
RFC2362, June 1998

[5] K.A. Hua and S.Sheu. Skyscraper Broadcasting: A new
Broadcasting Scheme for Metropolitan VOD Systems.Proc.
of the ACM SIGCOMM’97, Cannes, France, September
1997.

[6] Kien A. Hua, Y. Cai and S. Sheu, Patching: A
Multicast Technique for True On-Demand Services,
ACM Multimedia'98 Proc., September 1998, pp. 191-
200

[7] S. Viswanathan and T. Imielinski. Metropolitan Area Video-
On-Demand Service using Pyramid Broadcasting.
Multimedia Systems, 4(4):179-208, August 1996.

