
between router 2 and 3 was set to 4Mbps in both directions. There
were three terminals attached to the asymmetric network at router 1
and simultaneously downloaded files from the server. The results
show that ACE (with a goodput of 320Kbps) outperforms TCP Reno
(with a goodput of 110Kbps) by about 200%. These results indicate
that when multiple users share an upstream channel (like cable net-
work), ACE performs much better than TCP Reno.

We also did some testing where a terminal makes both upstream
and downstream transfers, we found that the downstream throughput
using the ACE TCP stack is slightly lower than Reno. To explain
this observation, consider the scenario in ACE where an ACK that
acknowledges four downstream data packets queues up behind 3
large data packets. In Reno this could have been an ACK of 2 pack-
ets queuing up behind one data packet, and another ACK of 2 pack-
ets queuing up behind another two data packets that follow the first
ACK. In Reno’s case, a sender would have received some packet
acknowledgment significantly earlier than in ACE’s case. One must
carefully distinguish this scenario from the one on a cable network
where upstream bandwidth is allocated to terminals in a round robin
fashion. In that case, each ACK in front implies one more round of
waiting. Hence it pays to reduce the number of ACKs.

For ACE to work well in scenarios where upstream data transmis-
sion is often, we might need separate buffering of data packets and
ACKs [11], and give ACKs a higher priority. The upcoming DOC-
SIS standard supports service classes of different QOS, thus
acknowledgments can be put on a more stringent service class.
Given that most of the asymmetric network subscribers are usually
downloading from the Internet rather than uploading, we feel that
ACE is a good solution to improve downstream throughput.

All of our simulation and implementation experiments focused on
the ftp application. Because of the bulk transfer nature of ftp, a TCP
session is likely to achieve a largercwnd, thereby making it impor-
tant and worthwhile to reduce the number of ACKs percwnd. For
short TCP connections, the transfer will slow down significantly if
we reduce the number of ACKs per cwnd. In fact, both ACE and
ECWA do not reduce the number of ACKs when cwnd is small. The
effectiveness of ACE and ECWA in web browsing applications
would be very dependent on how a web browser uses TCP connec-
tions. In some of the older browser implementations, a browser
opens one TCP connection per object. Such connections tend to be
short, and hence the effectiveness of ACE and ECWA in reducing
upstream ACKs is very limited. In HTTP 1.1, browsers can reuse a
TCP connection, i.e., a browser maintains persistent TCP connec-
tions. Furthermore, it is possible for a browser to have multiple out-
standing object GET requests sharing one TCP connection. Thus a
persistent TCP connection resembles a bulk transfer ftp connection a
little more.

6. SUMMARY

In this paper, we proposed ACE (Acknowledgment Based on
Cwnd Estimation), which is an approach to speed up the TCP trans-
fer over an asymmetric network. The idea is based on previous
observations on varying the number of packets acknowledged by an
ACK according to a sender'scwnd. Whencwnd is small, the number
of packets per acknowledgment is small and this aids in speeding up
initial transfer and building up thecwnd. Whencwnd is larger, the
number of packets per acknowledgment is larger, this reduces the

number of ACKs sent on the narrow bandwidth link without much
impact to the sender. Our proposal is different from previous works
in that we estimate thecwnd based on measurement, i.e., by measur-
ing the number of packets arriving within a receiver measured round
trip time. In addition, an ACE TCP receiver detects the possibilities
of retransmission timeout, fast retransmission, sender's temporary
lack of data, and adjusts the value ofppa. ACE has an outstanding
deployment advantage over some of the previous works in that ACE
does not require special network support, nor does it require changes
in sender's TCP stack, nor introducing a new TCP option. Being able
to improve performance by changing only one side of the TCP stack
has an enormous advantage as it means that only those terminals that
are attached to an asymmetric network need to have an ACE patch,
the rest of the servers or terminals out there do not need to be modi-
fied. Both our simulation and implementation show that ACE
improves the TCP throughput over asymmetric networks very sig-
nificantly.

7. REFERENCES

[1] Mark Allman, et,al.”Ongong TCP Research related to Satel-
lites”, Internet draft under tcpsat working group of IETF.

[2] Mark Allman, Aaron Falk “ On the Effective evaluation of
TCP”, SIGCOMM Computer Communication Review, Vol-
ume 29, Number 5 (October 99).

[3] Hari Balakrishnan, Venkata N. Padmanabhan, and Randy H.
Katz, "The Effects of Asymmetry on TCP Performance",
ACM MOBICOM, September 1997.

[4] A. Calveras, J. Linare, J. Paradells, "Window Prediction
Mechanism For Improving TCP in Wireless Asymmetric
Links", Globcom 98.

[5] Reuven Cohen, Srinvas Ramanathan “TCP for High Perfor-
mance in Hybrid Fiber Coaxial Broad-Band Access Net-
works”, IEEE Transaction on Networking, Vol., 6 No. 1,
February 1998

[6] http://lrcwww.epfl.ch/linux-diffserv/
[7] V. Jacobson, "Compressing TCP/IP Headers for Low-Speed

Serial Links", RFC 1144, February 1990.
[8] V. Jacobson, "Congestion Avoidance and Control", ACM

SIGCOMM 88, August 1988.
[9] T.V. Lakshman, U. Madhow and Bernhard Suteret, "Window-

based error recovery and flow control with a slow acknowl-
edgment channel: a study of TCP/IP performance", INFO-
COM'97, April 1997.

[10] Vern Paxson and Sally Floyd, "Wide-Area Traffic: The Fail-
ure of Poisson Modeling", IEEE/ACM Transactions on Net-
working, June 1995.

[11] V. Paxon et, al. "Known TCP Implementation Problems", Net-
work Working Group, Internet Draft.

[12] RFC 1323 TCP Extensions for High Performance
[13] RFC 2581 TCP Congestion Control.
[14] Keshav Srinivan, "Method and Apparatus for collapsing TCP

ACKs on asymmetric connections",U.S Patent 5,793,768 .

5. IMPLEMENTATION

We have implemented the ACE algorithm on a testbed consisting
of Pentium based PCs running Linux V2.2.6. The testbed shown in
Figure 8 consists of three routers between a FTP server and a termi-
nal. By using the Diffserv patch [6], we can set a packet flow as the
first class traffic at a router, and assign a certain bandwidth for the
flow. In this way, we can create network asymmetry by assigning
different values of bandwidth to each direction. We tested our Linux
modification using FTP by having the terminal download files over
the asymmetric network.

5.1 Modifying TCP on Linux

In Linux V2.2.x, the timestamp option is enabled by default. We
explored this feature and used method (4) described in section 3.2 to
measure thercv_RTT and est_cwnd. In this version of Linux, the
value of ATO is equal to 1.5 times of the average measured inter-
packet gap. The inter-packet gap is the time interval between arrival
of data packets.

A receiver repeats theest_cwnd measurement process one after
another. If a sender does not have more data to send, the receiver
will set theest_cwnd and ppa to 1 after 1.2 times of the current
rcv_RTT, and the currentrcv_RTT measurement process will be
aborted1. Theest_cwnd measurement process is restarted only when
a new data packet is received. In addition, we set the ATO to beppa
times the average measured inter-packet gap, thus delaying the
acknowledgment according to the number of packets that we need to
wait for. All through our implementation, we only changed the
receiver part of the TCP stack at the terminal.

5.2 Implementation Performance

We performed several experiments with the ACE and TCP Reno
to compare the performance. The FIFO buffer size in all tests was 20
packets for each direction of the traffic.

1. Note that this does not preclude a receiver to adjust its
RTT measurement to true increase inRTT, so long as there
are packets coming in within each 1.2RTT interval.

1) Performance under different extent of upstream congestion

In this scenario, 1 user downloaded files using FTP. The band-
width for router 2 to router 1 was set to 4Mbps, and the bandwidth
from router 1 to router 2 was varied from 100Kbps to 10Kbps. The
bandwidth between router 2 and 3 was set to 4Mbps in both direc-
tions. With 1523-byte data packets and 73-byte ACKs (10 bytes for
the timestamps), the normalized bandwidth ratio k ranged from less
than 2 to 15. Based on our observations in section 1.3, we expected
that a TCP downstream transmission to range from fully utilizing
the downstream bandwidth to only using a fraction of it. Note thatk
is similar to the ‘system capacity’, it is the capacity of the upstream
channel to transmit ACKs, i.e., the channel can transmit one ACK
perk data packets coming down. On the other hand,ppa is similar to
the offered load, andmax_packets_per_ack is like the maximum
offered load which happens whencwnd is large. Because the arrival
process of ACKs is not constant, queueing at a terminal’s transmis-
sion buffer occurs. Thus downstream throughput tends to be affected
even when k is still a little larger thanppa.

Figure 9 shows when upstream bandwidth is about 100Kbps, the
performance of TCP Reno and ACE are about the same. When the
upstream bandwidth is 100 kbps, k is 1.9. The throughput of TCP
Reno starts to decrease when the upstream bandwidth is less than
100kbps, and the advantage of ACE becomes more and more signif-
icant. In fact, ACE maintains a performance of nearly 4Mbps until
the upstream bandwidth falls below 50Kbps, corresponding to
k=3.9. After that, the downstream throughput of ACE starts to
decrease gradually. However, it still outperforms Reno consistently.
This is in line with amax_packets_per_ack of 5. When upstream
bandwidth is 10Kbps, ACE has about 200% improvement over TCP
Reno.

2) Performance when different users/applications share the
upstream link

The bandwidth for router 2 to router 1 was set to 4Mbps, and the
bandwidth from router 1 to router 2 was 80Kbps. The bandwidth

Terminal(s)

Router
1

Router
 2

Router
 3

upstream
downstream

 FTP

FIGURE 8. Topology of our testbed

Server

FIGURE 9: Average FTP goodput (Mbps) vs. upstream
bandwidth (Kbps)

bandwidth (Kbps)

Throughput

mation, we have also simulated estimation ofRTT using the initial
SYN/SYNACK pair. This method is simple, it does not require extra
packets nor support of the TCP timestamp option.

We simulated the SYN approach a number of times, and find that
in our simulation, thercv_RTT tended to be about 30% smaller than
the actualRTT. It led to an ‘underestimate’ ofcwnd, i.e.,est_cwnd
tended to be smaller. As a result, the receiver sent acknowledgment a
bit more often than necessary. This in turn renders the ACE
approach less effective. The average throughput in scenario 1 using
the SYN approach was about 248 kbps vs. 294 kbps when the ICMP
approach was used.

In general, RTT fluctuates according to network conditions,
hence, the SYN measuredRTT will sometimes be smaller and some-
times be larger than the current RTT in a TCP session. If the SYN
measuredRTT is significantly larger than the currentRTT, a receiver
may over estimate cwnd and over reduce the number of ACKs. This
can in turn slow down the sending process.

4.4 Burstiness Due to ACE

A potential problem with ECWA or ACE is that when the value of
ppa is high, the sender may send out bursts of packets. This effect is
known as the "stretched ack violation" [10]. We propose a solution
wheremax_packets_per_ack (c.f. section 3.2) is varied according to
the number of congestion incidences that a receiver has observed. In
general, a receiver reduces themax_packets_per_ack when it sees
congestions occurring frequently, and increases it if it has not seen
congestion for a while. As a result, a sender receives ACKs on a
smaller number of packets when there is congestion in the forward
path, and this will help to reduce the burstiness of the traffic. A
receiver can judge whether a congestion has occurred by using the
approach described in section 3.2.(4). In essence, ACE can reduce
the number of ACKs when there is no congestion andcwnd is big.
When there is congestion ACE can reduceppa to perform like Reno.

Figure 6 shows the performance of ACE when the

max_packets_per_ack is varied from 2 to 5 in scenario 1. Not sur-

prisingly, ACE with amax_packets_per_ack of 2 performs similarly

to TCP Reno.

4.5 Performance under TCP Cross Traffic

 In the previous section, we have been using UDP as background
traffic, as such the background traffic does not scale back even when
there is a congestion. It is interesting to see what will happen if TCP
is the major type of traffic. We did some experiments where all 19
users in the cable network used the same version of TCP. We
repeated the experiments with Reno, ECWA, and ACE. We feel that
this is important as the behavior of a protocol under mass adoption
must be studied.

From Figure 7, we can see that the advantage of ECWA and ACE
is well maintained. The throughput is in general higher since the
same number of users sending UDP upstream create more overload
on the upstream channel than the same number of users making TCP
transfers downstream.

The key observation in this section is that both ECWA and ACE
improve the performance of TCP over asymmetric network by more
than 100%. Even in the case when both sides of an intermediate link
between an asymmetric network and the TCP sender is congested,
the two schemes still perform better. The ACE scheme lags the
ECWA scheme by about 10%. This is because ACE relies on count-
ing incoming data packets to estimatecwnd, whereas in ECWA a
sender passescwnd explicitly.

FIGURE 5: Estimatedcwnd and the actualcwnd.

300

200

100

2 3 4 5

155

201

274
294

max_packets_per_ack

FIGURE 6: Performance of our algorithm as
max_packets_per_ack varies from 2 to 5

Goodput (Kbps)

600

400

200

Reno

FIGURE 7: Performance of various TCP versions

Goodput (Kbps)

ECWA ACE

when all users used the same version

250

630
570

we simulated TCP Reno, and a variation where an ACK was delayed
for 4 packets, or until ATO (Acknowledgment Timeout) occurred.
We call this version FDA(4), i.e., fixed delay acknowledgment for 4
packets. The simulated ACE TCP on the cable user's computer used
method (3) described in section 3.2 to measure round trip time and
est_cwnd, i.e., by sending an ICMP echo-request packet every other
rcv_RTT. The results for scenario 1 are shown on the following bar
chart.

ECWA, FDA(4) and ACE all perform better than Reno in scenario
1. When a congestion occurs at an upstream cable channel, a queue
of ACKs builds up in the cable modem. Those ACKs in the back
have to wait for the ACKs in the front to be transmitted. Further-
more, after an ACK is transmitted, the upstream bandwidth alloca-
tion algorithm in the cable router will grant transmission
opportunities to other modems, and will not come back until one
‘round’ later. Thus, by the time when an ACK at the end of the
queue gets to be transmitted, significant delay would have occurred.
By sending less ACKs the transmission queue will be shorter, and
the number of ‘rounds’ that an ACK needs to wait will be less. As
one would expect, ECWA has the best performance, however, the
ACE comes very close in both scenarios 1 and 2. FDA(4) performs
better than TCP Reno during upstream congestion, i.e., scenario 1.
The problem comes when there is a downstream congestion. The
reason is that a FDA(4) receiver waited for four packets or until ATO
occurred before it sent an ACK. When the sender'scwnd was small,
a receiver delayed an ACK until ATO occurred. This slowed down
the transmission initially, and slowed down any subsequent recovery
if retransmission timeout occurred. In scenario 1, the initial slow
down causes FDA(4)'s performance to lag behind ECWA and ACE.
In scenario 2, congestion occurred often and hence FDA(4)'s perfor-
mance suffered more.

Because both ECWA and ACE algorithms vary theppa value
according tocwnd, when there was downstream congestion as in
scenario 2 andcwnd was small, both algorithms acknowledged
every packet, helping the window size to be built up again. Further-
more, both algorithms avoided having a receiver delaying an ACK
until ATO when cwnd was 1, e.g., right after recovery from a time-
out. In scenario 1 where there was adequate downstream bandwidth
andcwnd was large, both algorithms acknowledged less frequently.

Figure 5 comparesest_cwnd with the actualcwnd. There are a
few reasons for the fluctuation of measurements:

(1) the measurement ofest_cwnd is dependent onrcv_RTT mea-
sured by ICMP packets, which may fluctuate.

(2) because of various random elements in the system, such as
transmission queuing delay, and sender's load etc., there is a certain
randomness in the arrival process of data packet at the cable modem
user. Hence, the number of packet arrivals during a fixed time inter-
nal can vary even ifcwnd at the sender is constant. Overall, our dis-
cussion in section 3.1 holds, i.e., the value ofest_cwnd lags behind
the actualcwnd, and catches up when the sender enters congestion
avoidance phase.

4.2 Acknowledgment filtering (AF)

Acknowledgment filtering (AF) mentioned in section 3.2 belongs
to a different class of solutions, it is implemented at a transmission
device directly connected to an asymmetric network, e.g., a cable
modem. It is independent of thecwnd size at senders. It is efficient
in the sense that no ACK is transmitted ‘unnecessarily’. A new ACK
always takes the place of an older ACK in the transmission queue.
We find that AF is a very effective approach. In scenario 1, AF
yields a throughput of 550 kbps, significantly faster than the class of
cwnd estimation algorithms. The aggressive ACK replacement
scheme in AF means that at most only one ACK is waiting for trans-
mission in a cable modem. Thus an ACK will never have to wait for
an older ACK to be transmitted first. In a sense, AF delivers the new-
est ACKs as fast as possible. However, AF must be implemented in
cable or ADSL modems, making it less readily deployable.

4.3 RTT Estimation

In section 3.2 we described four ways for a receiver to estimate
RTT so that it can in turn count the number of packets arrived and
computeest_cwnd. In addition to simulating ICMP basedRTT esti-

300

200

100

155

257.8

294
310

Reno FDA(4) ECWA ACE

FIGURE 3: Performance in scenario 1 (upstream congestions)

Goodput (Kbps)

Reno FDA(4) ECWA ACE

FIGURE 4: Performance in scenario 2 (two way congestions)

50

100

33

76.5

119
110

Goodput (Kbps)

when the sender does not have data to send for more than oneRTT.
By setting theest_cwnd to 1, ppa will also be set to 1. When the
retransmitted packet arrives, a receiver will acknowledge it immedi-
ately. The case for fast retransmission is a bit more complicated. A
receiver is able to detect fast retransmission because it must have
sent out at least three duplicated ACKs to the sender in the first
place. However, having sent out three duplicated ACKs does not
necessarily guarantee that the sender will fast retransmit rather than
timeout. This is because the sender may have timed out before it
receives all three duplicated acks. In addition, some of the dupli-
cated acks may get lost on their way, and hence the sender will not
be able to receive enough duplicated acks. Because of these uncer-
tainties, we propose that a receiver changes theest_cwnd to 1 after
sending out three duplicated ACKs.

It should be noted that a sender'sRTT can be different from a
receiver'srcv_RTT. Hence a receiver can guess wrong. For example,
it is possible that the sender'scwnd has not been set to 1, when a
receiver has waited for 1.2rcv_RTTand setest_cwnd and ppa to 1.
When data packets arrive, a receiver may end up acknowledging
more frequently than necessary. However, the receiver will recover
its value ofest_cwnd one round trip later. On the other hand, if a
receiver missed the timeout at the sender, it will acknowledge based
on a potentially larger ppa and may delay the ACKs. Hence the
sender will take longer to build upcwnd, and throughput will be
reduced. Nevertheless the sender will eventually build upcwnd to
the size ofest_cwnd again. Based on this analysis, we favor a more
conservative approach at the receiver, whereest_cwnd should be set
to 1 before the sender does so withcwnd.

4. SIMULATION

[2] gave many suggestions on how to effectively evaluate TCP.
We evaluated our proposal using both simulation, and a modified
TCP stack over the Linux platform on an emulated asymmetric net-
work.

We used the network simulator OpNet Modeler to test the perfor-
mance of our algorithm and some of the others in the literature. We
built our simulation based on a cable TV network used to carry data.
Over a cable network, upstream refers to the direction from a cable
modem to a cable router, and downstream refers to the direction
from a cable router to a cable modem. Cable networks are almost
always asymmetric. In our simulations, the bandwidth of a down-
stream channel is 27Mbps, while that of an upstream channel is
768kbps. Figure 2 shows a typical cable network. Both upstream and
downstream channels are shared by home users. Data for home users
is relayed from the Internet via the cable router and broadcast to the
cable modems. A cable modem acts as a bridge and passes on only
those data packets destined for its home user. Upstream transmission
is a bit more complicated because multiple cable modems may
transmit at the same time. Hence, a multi-access scheme is needed.
Current cable standard DOCSIS provides a number of mechanisms
to control upstream access. For the purpose of evaluating ACE and
other TCP algorithms, we use a mechanism described below. In our
model, a cable router polls each of the cable modems that has
recently transmitted up stream to give them opportunities for up
stream transmission. A cable modem is allowed to transmit one
frame each time it is polled. For those cable modems that have not
been transmitting in the last 5secs, if they want to transmit up
stream, they will have to wait for a `contention slot'. The cable router
grants a contention slot periodically. After transmitting using a con-
tention slot, a modem must wait for a confirmation from the router.
If there is a collision it will have to go through another round of con-

tention. If a cable modem cannot successfully send out a frame in 10
rounds, the modem will discard the frame.

4.1 Upstream and Downstream Congestion

We first experiment with two scenarios, namely, upstream conges-
tion and downstream congestion.

Scenario 1 - Upstream congestion: Upstream congestion is quite
common during the busy hours in cable networks. To simulate
upstream congestion, we simulated 19 users generating upstream
cross traffic from cable modems, each user generated 1460 bytes
UDP packets at a mean rate of 180kbps. Upstream UDP traffic from
each user followed a self-similar pattern [10]. Because there is no
congestion control mechanism in UDP, the cross traffic did not back
off even when severe congestion occurs. We then simulated a cable
modem user who made ftp download from the Internet. The size of
the file downloaded by the simulated user was 300Kbytes. The TCP
segment size was 1460 bytes corresponding to the maximum seg-
ment size over the cable network. The receiver buffer is capable of
holding 20 TCP packets with maximum segment size.

Scenario 2 - Internet congestion: Although down stream conges-
tion may not occur at a cable network’s downstream channel, it may
occur in other parts of the Internet. It is important to test any TCP
modification in this environment as well. We restricted the packet
processing capability of the router in between the ftp server and the
cable router to 100 packets per second, creating both upstream and
downstream congestions simultaneously. We simulated self-similar
traffic on this link so that on average the router is half loaded with
cross traffic. A cable modem user downloaded a file with an average
size of 100k bytes from the remote FTP server. In this case, there
was no other cross traffic on the cable network itself.

We would like to compare ACE with others that belong to the
class of algorithms based on cwnd estimation. Algorithms belonging
to this class do not require lower level network support. In particular
we chose ECWA. In ECWA,cwnd is explicitly announced. In our
algorithm cwnd is estimated based on measurement. Thus ECWA
should represent a performance upper bound to the class of algo-
rithms that varies acknowledgment according tocwnd. In addition,

FIGURE 2: Simulated cable environments.

time only at the beginning. Since round trip time fluctuates over the
life time of a connection, using one or two measurements obtained at
the beginning of the connection is probably not adequate. Method
(3) requires sending out ICMP packets but the overhead is justifi-
able. Almost all of the hosts response to echo-requests, hence
method (3) can be quite readily used. Method (4) requires both sides
to support the TCP timestamp option, while there are older imple-
mentations that may not support this feature, the timestamp option
will probably be a norm in the near future. There can be times when
a sender does not have data to send and hence a receiver will not be
able get its timestamp acknowledged. We address this problem in (4)
below. Another possibility is to use method (1) but back up with
method (3) when the terminal has not been sending data for a while.

To count the number of data packets arriving within a round trip
time, we can estimate the round trip time using the methods above,
and then count the number of data packet arrivals within the period.
Alternatively, we can count the packets while we are measuring
rcv_RTT. Both method (3), and (4) support this approach. We start
counting right after we send out an ICMP packet, or after we put a
certain timestamp value into the receiver timestamp as part of an
acknowledgment. We stop counting right after we receive the ICMP
echo-reply packet or when we receive a data packet carrying the
same receiver timestamp. We use the count asest_cwnd. The fre-
quency of round trip time measurement is an implementation choice,
but is a trade-off between accuracy and overhead. For example, the
frequency can be per two to three round trip times. Using the current
value of rcv_RTT, the measurement ofest_cwnd can be done one
round trip time after another.

2) Adjustment of est_cwnd

Using one of the above methods, a receiver obtains a value of
est_cwnd. However, due to fluctuations of round trip time and some
degree of randomness in the packet arrival process, it is possible that

a receiver may find that the new value ofest_cwnd is smaller than
the old value. In this case, we use the old value ofest_cwnd instead.
The rationale behind using the old value is that 1) unless retransmis-
sion timeout or fast recovery occurs at the sender, acwnd is never
decreased; 2) our analysis in figure 1 shows thatest_cwnd tends to
lag behind the actualcwnd, therefore if the newest_cwnd is smaller,
it is probably safe to use the old value.

3) Calculating the value of ppa

Based on the adjustedest_cwnd, the value ofppa is calculated as
follows:

if (est_cwnd <= min_ack_per_win)
then ppa = 1
Otherwise
ppa=MIN(FLOOR(est_cwnd/min_ack_per_win),

max_packets_per_ack)
The quantitymin_ack_per_win refers to the minimum number of

ACKs that must be sent out per window full of packets. This value
cannot be too small as losing all the ACKs implies a retransmission
timeout at the sender end. We pick the value ofmin_ack_per_win to
be 3. Based on the calculation above, delayed acknowledgment will
not occur untilest_cwnd is at least 6. This should encourage fast
growth ofcwnd at the beginning [1]. Notice that if we were to use a
ROUND function rather than a FLOOR function, delayed acknowl-
edgment will happen whenest_cwnd is 5. We consider this an
implementation issue. Regardless of the value ofppa, a receiver
always acknowledges out-of-sequence packets immediately.

The value ofmax_packets_per_ack is to control the number of
packets that a receiver can wait at most before sending out an
acknowledgment. It is applicable in those cases when both sender
and receiver have larger buffer size, giving the possibility of a large
cwnd. It is important to limit maximumppa for two reasons. Firstly,
a largeppa would mean that a receiver is holding up a number of
transmission opportunities, this in turn can reduce the throughput.
Secondly, ifppa is large, each ACK will acknowledge a large num-
ber of packets. This may cause the sender to send out bursts of pack-
ets and cause packet drops in the network. We chose 5 as the value
of max_packets_per_ack in our experimentation.

4) Anticipating Scaling Back of cwnd

Congestion on the forward path may lead to packet drop. In gen-
eral, if cwnd is at least 4 and a packet is dropped, the 3 duplicated
ACKs sent by a receiver would trigger a fast retransmit. On the
other hand, ifcwnd is small or if there is further packet loss, then a
sender’s retransmission timeout will occur. In the first casecwnd is
reduced to a half of its current value, and enters the congestion
avoidance phase after fast recovery. In the second case,cwnd is
reduced to 1, and slow start begins after the lost packet is acknowl-
edged. In addition, when a TCP sender does not have data to send
for more than one round trip time, the recommended procedure is for
the sender to reducecwnd to 1 so as to avoid flooding the network
with a sudden burst of packets when there is data to send. Because
of the adjustment described in (3) where oldest_cwnd is taken if
newest_cwnd value is smaller, it is necessary to detect the three sce-
narios and make conscious corrections, otherwise theest_cwnd will
not be decreased. This can in turn lead to unwanted delay of ACKs.

To address the scenarios above, a receiver reduces theest_cwnd
to 1 whenever it fails to receive any new packets afterrcv_RTO,
which is an approximation of the sender’s retransmission timeout.
For simplicity, the value ofrcv_RTO in our simulations is set to
1.2*rcv_RTT. This will address the scenarios whencwnd is small
and the sender is forced into slow start when timeout occurs, and

FIGURE 1: cwnd estimation process at a TCPreceiving end

downloading a file onto his PC, or browsing the web. For those
applications that have traffic on both directions, e.g., telnet, response
time rather than throughput is often more important.

In this section, we looked at various approaches to improve TCP
performance over asymmetric networks. For those that are based on
cwnd estimation, they either require a sender to explicitly send out
cwnd as a TCP option, or attempt to estimatecwnd by running con-
gestion control algorithm at the receiver. The first method requires
modifications to TCP at terminals and on every computer that may
make TCP transfer to these terminals. While it is possible for a user
to download a TCP patch for his terminal, it is hard to require other
computers out there to make the modifications. The second method
suffers from recurring errors in estimation ofcwnd. In the AF
scheme older ACKs in a transmission queue are replaced with an
incoming ACK at the point of transmission to an asymmetric link.
However, this requires modifications of transmission devices such as
cable or ADSL modems. Thus vendor support is necessary and
upgrading existing deployment may be difficult. Finally, header
compression does not reduce the number of ACKs. For some access
networks like cable networks or wireless networks, it is important to
reduce the amount of upstream contention regardless of the packet
size. In the next section we will describe ACE (Acknowledgment
based on Cwnd Estimation), where only the TCP receiving algo-
rithm needs to be changed. This implies that only terminals attached
to an asymmetric network need to have their TCP stacks modified,
making the solution very readily deployable.

3. OUR PROPOSAL

3.1 The Basic Idea

We approach the performance problem of TCP over asymmetric
networks by asking ourselves whether it is possible to measure a
sender’scwnd from a receiver. Our hypothesis is that as long asRTT
is significantly larger than the amount of time needed to send out a
window of packets, a TCP sender with data to send is likely to send
close to a window worth of packets in a round trip duration. This in
turn implies that a receiver can estimatecwnd by counting the num-
ber of packets received during a round trip time. We call this value
est_cwnd. Based onest_cwnd, the receiver can now determineppa
(the number of packets per acknowledgment). Because our algo-
rithm is based oncwnd estimation, we call it ACE (Acknowledg-
ment based onCwnd Estimation). Figure 1 shows the process of
cwnd measurement at the receiver. In this example, a receiver
acknowledges every other packet, and a sender increments itscwnd
by 1 for every acknowledgment received. For the sake of illustration,
we assume that the round trip time is constant and the receiver
knows the round trip time. We will address round trip time estima-
tion and fluctuation in later sections. From the diagram, it can be
seen that because a TCP receiver can only make an estimate after it
has counted incoming packets for one round trip, its estimation of
cwnd size lags behind the actualcwnd size during the slow start
phase. However, once the sendercwnd reaches the congestion avoid-
ance phase, the receiver'scwnd measurement catches up with the
actualcwnd. Our simulation results shown in figure 5 confirms the
above. There is in fact a certain unexpected advantage in underesti-
mating thecwnd during the slow start phase, as it will drive the
receiver to acknowledge more often and thereby helping the sender
to buildcwnd faster. This example illustrates that counting the num-
ber of packets received per round trip time at the receiver gives a
reasonable estimate ofcwnd. For the case where the round trip time

is less than the total transmission time of a fullcwnd of packet,
bandwidth limitation on the return path has less effect, since the
sender can probably keep the transmission pipe full most of the time.
Being able to estimate a sender’scwnd from a receiver without the
sender’s collaboration gives our proposal a deployment advantage,
i.e., only TCP software at terminals needs to be patched.

In the next section, we describe our algorithm in more detail. We
will discuss the various options to measure round trip time and to
estimate sender'scwnd from a receiver. Then we will discuss the
computation ofppa from est_cwnd. In [3], cwnd is announced
explicitly by a sender, a receiver will be informed ofcwnd change
due to retransmission timeout or fast retransmission. In our case, our
receiver `anticipates' such changes. We discuss this issue in the next
section as well.

3.2 A Step by Step Description

1) Estimating Cwnd

To estimatecwnd, a receiver needs to count the number of packets
received within aRTT. We call the receiver’s estimation ofRTT
rcv_RTT. There are four ways in whichrcv_RTT can be estimated:

(1) If a receiver is also sending data packets, then a round trip
time estimation will be available from the sending part of TCP.

(2) It is possible to gaugercv_RTT at the beginning of a TCP con-
nection by timing SYN, and SYNACK packets. This will give a
crude estimate of the round trip time.

(3) A receiver can send an ICMP echo-request with a timestamp
to solicit an echo-reply from the sender. The value ofrcv_RTT is
measured as the time interval between sending of a request and
receiving of a reply.

(4) By using the TCP timestamp option that was originally used
by a TCP sender to estimate round trip time. A sender places a
timestamp in each data segment, and the receiver copies the times-
tamp back in an ACK. Then a single subtract gives the sender an
accurateRTT measurement (more details in [12]). In fact, times-
tamps are always sent and echoed in both directions. Even during a
one-way transfer, a receiving side who has no data to send inserts its
current timestamp in each ACK, and the sender echoes back in each
data packet. It is quite straight forward to modify the receiving part
of TCP stack to computercv_RTT based on the timestamps

.
Method (3) implies additional packets, i.e., ICMP echo-request,

have to be sent on the return path. However, it can be shown that the
savings justify the additional ICMP packets. For a maximumcwnd
of 12, by running ACE, assuming that min_ack_per_win (minimum
number of ACKs that must be sent out per window of packets, c.f.
section 2.1) is 3, the computedppa would be 4. Three ACKs will be
generated for eachcwnd of packets. If we send an ICMP echo-
request packet every otherrcv_RTT, then we will be sending a total
of 7 packets on the return path in a period of tworcv_RTTs. On the
other hand, a current implementation of TCP with delayed acknowl-
edgment would have sent 6 ACKs for the first round trip, and
another 6 for the second one, generating a total of 12 packets on the
return path over a period of twoRTTs. Using the ICMP approach
there is still a saving of 5 upstream packets, i.e., a 42% saving.

Method (1) depends on application behavior, if an application
does not always have data to send, method (1) may not be applica-
ble. Furthermore, because of bandwidth asymmetry,RTT observed
by a sender sending upstream may be larger thanRTT observed by a
sender sending downstream. We are interested in theRTT of a
sender sending downstream. Method (2) measures the round trip

[5] examined how TCP parameters and features can have impact on
throughput over cable networks. These include delayed acknowl-
edgment, and socket buffer size. In particular, it was pointed out that
due to the limited amount of buffer in a cable modem, increasing the
socket buffer size continuously may cause a TCP sender at the inter-
net side to overrun the cable modem, resulting in packet loss. In the
rest of this section, we will discuss the major approaches.

2.1 Congestion Window Dependent
Acknowledgment

An approach to address upstream bandwidth limitation would be
to reduce the number of acknowledgments. This can be done by
sending an ACK for every few packets received. However, because a
sender relies on receiving ACKs to send out more packets and to
increasecwnd, delaying an ACK to wait for a few packets may
reduce performance, especially whencwnd is small. [5] gave a good
detailed account on how delayed acknowledgment could slow down
web page transfer. A general strategy is to acknowledge more fre-
quently whencwnd is small, and acknowledge less frequently when
cwnd is larger. [1] examined a few scenarios where a receiver
acknowledges every packet during a sender’s slow start phase, and
adapts delayed acknowledgment when the sender goes into conges-
tion avoidance phase. This will help the sender to keep sending and
increasing itscwnd when cwnd is small, and reduce the use of
upstream bandwidth whencwnd is larger. The mechanism for a
receiver to find out a sender’s congestion control phase was an open
issue.

[3] proposed a scheme where a sender sends back the value of
cwnd to a receiver as a new TCP option. A receiver computes the
number of packets per acknowledgment, which we will callppa, by
dividing cwnd with min_acks_per_win (the minimum number of
ACKs to be sent per window of packet received). This approach
requires modifications of TCP software on both sender and receiver.
In real life it implies that terminals and any computer that transfer
data to those terminals must have their TCP stacks modified. For the
ease of reference, we will call this scheme the ECWA (Explicit Con-
gestion Window Acknowledgment).

[4] proposed a window prediction mechanism for improving TCP
over wireless asymmetric links. The approach taken there is for a
receiver to emulate a sender'scwnd growth algorithm in order to pre-
dict the currentcwnd at the sender. Based on the congestion window
size, the value ofppa is determined in a similar fashion to [3]. How-
ever, it can be shown that under a number of circumstances, a
receiver may loose track ofcwnd. For example, a receiver would
increment itscwnd value by one for every ACK sent during the slow
start phase. If the ACK is dropped, the sender will miss the incre-
ment. The event can go unnoticeable at the sender if subsequent
ACKs are received. Moreover, new TCP implementations are sup-
posed to setcwnd to half of the number of outstanding packets when
restarting from slow start. It is hard for the receiver to guess what is
the number of outstanding packets. Once a receiver'scwnd goes out
of sync with the sender'scwnd, the error will be carried forward in
subsequent calculations and could have an accumulative effect.

2.2 ACC (Acknowledgment Congestion Control)

[3] also proposed a scheme (ACC) in which a receiver reduces the
frequency of acknowledgment when some congestion signal is
received from the sender. The ACC scheme makes use of the ECN
bit setting capability of a router. In particular, if a router handling the
upstream traffic notices a congestion, it will set the ECN bit of the

ACKs going upstream. When a sender receives an ACK with the
ECN bit set, it will set the bit on a data packet going out. A receiver
seeing the ECN bit set in the data packet will infer that there is an
upstream congestion and hence acknowledge more sparingly. This
approach requires changes in network elements as well as the TCP
software at both ends.

2.3 AF (Acknowledgment Filtering)

[14] proposed a method that collapses the ACKs at the transmis-
sion queue by allowing late coming ACKs to replace earlier ones of
the same TCP flow. This technique is known as "Ack Filtering" in
some literature. The idea makes use of the fact that TCP ACK with a
sequence number N implicitly acknowledges those packets with
sequence number smaller than N. When applied at cable modems or
ADSL modems, this approach can reduce the number of ACKs
transmitted by picking only what is valuable. While this approach
can be very effective, it requires modifications of low level software
of transmission devices such as cable modems or ADSL modems.
Such modifications cannot be easily done by a user and require sup-
port from vendors of these devices. In addition, special attention
needs to be made so that under severe upstream congestion, the
scheme will not end up sending only one or two ACKs per window.
If these ACKs are lost, a sender will have no choice but to time out.
Furthermore, the algorithm must be careful of replacing duplicated
ACKs in front of the queue, otherwise, the fast recovery mechanism
at the sender will not work properly. It is possible to ‘expand’
incoming ACKs and resolve the above issues at the access router or
at the sender at the price of added complexity.

2.4 Header Compression

[7] proposed a way to compress packet headers. The observation
is that packets within the same flow often have some header fields
having identical values, or values that change slowly. By replacing
these fields with a connection identifier that is agreed upon between
a compressor and a decompressor, a TCP/IP packet header can be
compressed from 40 bytes to 5 bytes. In an asymmetric environment
a terminal will be the compressor device and the router at the other
end of the asymmetric link will be the decompressor device. How-
ever, there are some limitations in using header compression. There
is no reduction in number of acknowledgment packets, in some
asymmetric networks, e.g., cable networks, it means that a modem
will still have to contend for a transmission slot, such overhead can
be quite significant. Furthermore, the scheme requires co-operation
of equipment at the network side.

2.5 Other Considerations

A consequence of acknowledging less often is that an ACK may
cover a number of packets, this is also known as the `stretched ack'
problem. The drawback is that a sender may send a burst of packets
when it receives an ACK. This could create congestion and lead to
packet loss. Acknowledgment regeneration has been proposed
where multiple ACKs are regenerated when an ACK that acknowl-
edges a number of packets is received. The regeneration process can
either take place at the sender side just below the TCP module as in
[3] or at the router on the upstream side of the asymmetric link as in
[14].

In our discussion so far, we have concentrated on one-way traffic,
i.e., TCP transfer in the broadband direction with a narrowband
return path. A number of major applications over Internet have their
traffic direction heavily downstream oriented, e.g., a home user

where the change ofcwnd goes through the slow start phase fol-
lowed by the congestion avoidance phase. At the beginning of a
slow start, a TCP sender sets the value ofcwnd to 1. It increases
cwnd by 1 every time it receives a new ACK. Receiving an ACK is a
good indication that the forward path (from a sender to a receiver) is
not congested. Thus when a sender receives an ACK of one packet,
it will be able to send out two more packets. However, this exponen-
tial growth does not carry on forever. Firstly, it is limited by the min-
imum of the sender’s own buffer size and the receiver's buffer size
dedicated to the connection. Secondly it is limited by a value called
ssthresh. One can look at ssthresh as a safeguard parameter to mod-
eratecwnd’s growth. The value ofssthresh is based on the recent
congestion experience in the connection. Whencwnd is equal to
ssthresh, cwnd growth enters the congestion avoidance phase, a
sender will only increment thecwnd by 1/cwnd per ACK received.
This effectively incrementscwnd by 1 at the end of each round trip
until the upper bound oncwnd is reached. The idea is to slow down
the growth ofcwnd to a linear scale. In general, the more packet
drops a connection encounters recently, the smaller is the value of
ssthresh, and the earlier thecwnd growth will stop being exponential
and become linear.

When there is a sender’s timeout on waiting for an ACK, the con-
gestion control algorithm regards it as a loss of the data packet in the
forward path. This is an indication that the forward path may be con-
gested. The sender sets the value of ssthresh to half of the number of
outstanding unacknowledged packets and the value ofcwnd to 1.
The sender enters the slow start phase and growscwnd again when it
receives an ACK to its retransmission. To reduce the performance
impact of occasional packet loss, a technique called fast retransmis-
sion was proposed. In TCP, a receiver receiving an out of order
packet returns an ACK carrying the sequence number of next
expected packet, which is the missed packet, and thereby generating
a duplicated ACK. The idea of fast retransmission is that when a
sender receives three of such duplicated ACKs, it will conclude that
the packet is lost. Thus without waiting for a timeout, a sender will
retransmit the missed packet, and reducescwnd to a half. Thereafter,
the window grows linearly via congestion avoidance. Notice that
fast retransmission cannot take place unless the overall congestion
window size is at least 4.

There are many different implementations of TCP. In our simula-
tions and implementation discussed later, we compare our algorithm
with TCP Reno, the most popular TCP implementation nowadays
(more detailed description is in [12] and [2]). In the current TCP
standard, a technique called delayed acknowledgment is imple-
mented whereby when a receiver receives a data packet, it waits for
the next one before sending out an ACK for both. The motivation
was not really to reduce the number of ACK but rather to give the
receiver some time to consume the packet, to update the receiver
buffer size, and in the case of telnet, to piggy-back the ACK with the
echoed characters. To avoid hold up, a receiver waits for the second
packet for a maximum time of ATO (Acknowledgment Timeout)
before sending out an ACK; the value of ATO is implementation
dependent.

1.3 The Normalized Bandwidth Ratio

For one-way transfers, a simple ratio of the forward and backward
bandwidth cannot reflect the effect of network asymmetry on TCP
effectively. This is because the size of data packets is normally much
larger than that of ACKs. Instead, we use the normalized bandwidth
ratio k, (as defined in [3]), which is the ratio of the raw bandwidths
divided by the ratio of the packet sizes used in the two directions.

For example, if a network has 10Mbps of available bandwidth on
forward channel and a 100Kbps of available bandwidth on backward
channel, the raw bandwidth ratio would be 100. For a one-way trans-
fer in the direction of higher bandwidth, assuming a data packet size
of 1523 bytes (including framing) and an ACK packet size of 63
bytes, this gives a packet size ratio of 24.2. Therefore k is 100/25 =
4.13.

1.4 Performance of TCP over Asymmetric Networks

A TCP sender expects ACKs from the receiving side to advance
the sliding congestion window, and to increasecwnd. If the band-
width from the receiving side to the sender is very limited, an ACK
may experience significant queuing delay at a transmission point
from the receiver side. This will in turn slow the down the sending
process of the TCP sender and reduce the throughput. Putting the
above observation into the context of asymmetric networks, TCP
transmission towards a terminal may not be able to capitalize on the
large downstream bandwidth due to limited upstream bandwidth
from the terminal. In addition, upstream data transfer can take up a
lot of the upstream bandwidth, leaving little for upstream ACKs, and
further worsening the performance of downstream transfer. In cable
networks, because of the shared nature of upstream channel, a cable
modem user may have very little control on the usage of upstream
bandwidth. In ADSL networks, because a copper wire is dedicated
to a user, there is a bit more control on the usage of upstream band-
width. Using the example mentioned in section 1.3, wherek is 4.13,
if we acknowledge more often than one ACK for every 4.13 data
packets, the return link will get saturated before the forward link
does, possibly reducing the throughput that can be achieved in the
forward direction. Because most platforms implement delayed
acknowledgment, downstream TCP transfer will be affected whenk
is bigger than 2.

Our focus in this paper is on downstream transfer, i.e., in the high
bandwidth direction. From now on, we will use the term ‘sender’ to
refer to the TCP instance on a computer that is sending data down-
stream. We use the term ‘receiver’ to refer to the TCP instance on a
terminal attached to an asymmetric network.

In this paper, we propose a modification to the TCP acknowledg-
ment process that involves only changes in the TCP implementation
at a terminal. This approach has an enormous advantage in that the
any terminal can enjoy increased TCP performance in the down-
stream direction once its stack is patched, without requiring any
change on the other end.

2. RELATED WORKS

There have been quite a number of efforts looking into the perfor-
mance issue of TCP over asymmetric networks. One of the early
research in TCP performance over asymmetric networks was pre-
sented in [9], which examined the network conditions affected by
different asymmetry factors and suggested some methods to allevi-
ate the congestion at the upstream transmission point, e.g., manag-
ing the packet queue via per connection upstream queues in the case
of multiple connections. The idea is to give the ACKs a fair chance
to be transmitted without being delayed by multiple large data pack-
ets. The Internet draft of the Tcpsat (TCP over Satellite) [1] gave a
very good overview on a number of techniques that addressed band-
width asymmetry in the context of satellite communications. These
techniques are largely applicable to our problem. They include 1)
delayed acknowledgment after slow start, 2) ACC (Acknowledg-
ment congestion control), and 3) AF (Acknowledgment Filtering).

Bandwidth asymmetry is quite common among modern net-
works; e.g., ADSL, cable TV, wireless, and satellite link with a
terrestrial return path. In these networks, the bandwidth over
one direction can be orders of magnitude smaller than that over
the other. The performance of TCP transfer in the high band-
width direction can be severely reduced by the delay of acknowl-
edgment packets experienced in the reverse direction. In this
paper, we describe our proposed solution ACE (Acknowledg-
ment Based onCwnd Estimation). In comparison to other solu-
tions, ACE requires only modification of the TCP stack at
terminals attached to an asymmetric network. We evaluated the
performance of ACE over a cable modem network by simula-
tion. We have also implemented ACE on the Linux platform and
tested it on a small testbed network with an emulated asymmet-
ric link. The performance improvement was significant espe-
cially when there is a high degree of asymmetry.

Keywords
TCP, asymmetric networking, cable modem, ADSL, Ack filtering,

congestion window estimation.

1. BACKGROUND

1.1 Asymmetric Networks

Emerging access network technologies such as cable modems
over cable TV networks, ADSL over telephone lines, and wireless
networks are asymmetric in nature. Usually, the bandwidth from a
user terminal at home to a network operator is much smaller than the
bandwidth from the network operator to the user. The first direction
is often referred to asupstream, and the second direction is always
referred to asdownstream. For example in cable network, the down-
stream bandwidth per channel may be up to 27Mbps, but the
upstream bandwidth per channel is only 600Kbps to 1.5Mbps. Each
channel is shared by a number of users on the same cable plant.
However, there can be multiple channels on each plant. In ADSL,
the downstream bandwidth can be up to 8Mbps but the upstream
bandwidth may only be up to 640Kbps depending on the distance
from a home to a central office.

Unlike cable modem networks, an ADSL user has the sole use of
the bandwidth over a twisted copper pair. In both types of networks,
upstream transmission is very susceptible to noise; this further
reduces the effective upstream bandwidth. Satellite transmission in
one direction and terrestrial link in the other is yet another example.
Because bandwidth on cross-ocean links is expensive, satellite trans-
mission is usually used in the direction where high bandwidth is
required. Cross-ocean link transmission is used in the direction
where only low bandwidth is needed. For the rest of the paper, when
we mention `terminal' we refer to a home or office terminal attached
to an asymmetric network, where the transmission bandwidth from
the terminal (upstream) is significantly smaller than the delivery
bandwidth to the terminal (downstream).

In the rest of section 1, we will give a quick review on TCP,
describe a more formal way to quantize network asymmetry and
state the problem in more detail. In section 2, we discuss the works
that have been done in this area. Section 3 describes our approach in
detail. In section 4, we compare the performance of our solution
with some of the others based on simulations of a cable network. We
describe a preliminary implementation of our algorithm on the
LINUX platform and report some performance results in section 5.
Finally, in section 6, we summarize the paper.

1.2 A Quick Review of TCP

TCP provides reliable data transfer between two end points. It
relies on a receiver sending back ACKs (acknowledgment packets)
to inform a sender that data has been received. In order to avoid
sending too many packets into the network at one time, TCP prac-
tices window based congestion control at the sender by controlling
the congestion window.Cwnd (the size of congestion window) is in
units of bytes, however, for the sake of simplicity, in the rest of the
paper we will expresscwnd in units of MSS (Maximum Segment
Size). For applications such as ftp and http, a sender tends to send
packets up to size of MSS, our implicit packet size in this paper will
be that of a MSS. In the Internet environment this can be 1460 bytes.
In essence,cwnd corresponds to the maximum number of packets
outstanding in a network. When the number of packets sent out is
equal tocwnd, a sender cannot send more until it receives an undu-
plicated ACK from the receiver. At this point, a sender can be sure
that some of the earlier packets have been received, and are no
longer inside the network. The sender reclaims the buffers of these
packets, and advances a pointer on the sequence number of the most
recently acknowledged packet. The number of packets that the
sender can send out is always equal tocwnd minus the number of
packets unacknowledged.

TCP implements the congestion control scheme suggested in [8],

Improving TCP Performance Over Asymmetric Networks
Ivan Tam Ming-Chit* Du Jinsong Weiguo Wang**

Kent Ridge Digital Labs National University of Singapore Kent Ridge Digital Labs
21 Heng Mui Keng Terrace 21 Heng Mui Keng Terrace

Singapore 119613 Singapore Singapore 119613

ABSTRACT

* The first author can be contacted at email address: mtam@codex.cis.upenn.edu
** The third author can be contacted at email address: weiguo.wang@alcatel.com.sg

