between router 2 and 3 was set to 4Mbps in both directions. Theuenber of ACKs sent on the narrow bandwidth link without much
were three terminals attached to the asymmetric network at routémfpact to the sender. Our proposal is different from previous works
and simultaneously downloaded files from the server. The resiftgshat we estimate thmvndbased on measurement, i.e., by measur-
show that ACE (with a goodput of 320Kbps) outperforms TCP Reimy the number of packets arriving within a receiver measured round
(with a goodput of 110Kbps) by about 200%. These results indic&ip time. In addition, an ACE TCP receiver detects the possibilities
that when multiple users share an upstream channel (like cable aktretransmission timeout, fast retransmission, sender's temporary
work), ACE performs much better than TCP Reno. lack of data, and adjusts the valuepp. ACE has an outstanding

We also did some testing where a terminal makes both upstredeployment advantage over some of the previous works in that ACE
and downstream transfers, we found that the downstream throughgmgs not require special network support, nor does it require changes
using the ACE TCP stack is slightly lower than Reno. To explaimsender's TCP stack, nor introducing a new TCP option. Being able
this observation, consider the scenario in ACE where an ACK thatmprove performance by changing only one side of the TCP stack
acknowledges four downstream data packets queues up behifth8an enormous advantage as it means that only those terminals that
large data packets. In Reno this could have been an ACK of 2 paale attached to an asymmetric network need to have an ACE patch,
ets queuing up behind one data packet, and another ACK of 2 pabk-rest of the servers or terminals out there do not need to be modi-
ets queuing up behind another two data packets that follow the fiistl. Both our simulation and implementation show that ACE
ACK. In Reno’s case, a sender would have received some padkgiroves the TCP throughput over asymmetric networks very sig-

acknowledgment significantly earlier than in ACE’s case. One mumsficantly.

carefully distinguish this scenario from the one on a cable network
where upstream bandwidth is allocated to terminals in a round robin
fashion. In that case, each ACK in front implies one more round of
waiting. Hence it pays to reduce the number of ACKs.

For ACE to work well in scenarios where upstream data transmis-
sion is often, we might need separate buffering of data packets and
ACKs [11], and give ACKs a higher priority. The upcoming DOC-

SIS standard supports service classes of different QOS, thus REFERENCES

acknowledgments can be put on a more stringent service class.
Given that most of the asymmetric network subscribers are usuélly
downloading from the Internet rather than uploading, we feel that
ACE is a good solution to improve downstream throughput. (2]
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6. SUMMARY

. [11]

In this paper, we proposed ACE (Acknowledgment Based on

CwndEstimation), which is an approach to speed up the TCP tra|
fer over an asymmetric network. The idea is based on previcrﬁ]
observations on varying the number of packets acknowledged by[ﬁ{]
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5. IMPLEMENTATION 1) Performance under different extent of upstream congestion
) ) __In this scenario, 1 user downloaded files using FTP. The band-
We have implemented the ACE algorithm on a testbed consistijgth for router 2 to router 1 was set to 4Mbps, and the bandwidth
of Pentium based PCs running Linux V2.2.6. The testbed showr i\ router 1 to router 2 was varied from 100Kbps to 10Kbps. The
Figure 8 consists of three routers between a FTP server and a tef@liqwidth between router 2 and 3 was set to 4Mbps in both direc-
nal. By using the Diffserv patch [6], we can set a packet flow as thshs. With 1523-byte data packets and 73-byte ACKs (10 bytes for
first class traffic at a router, and assign a certain bandwidth for {Rg timestamps), the normalized bandwidth ratio k ranged from less
flow. In this way, we can create network asymmetry by assignifighn 2 to 15. Based on our observations in section 1.3, we expected
different values of bandwidth to each direction. We tested our Lingigt 3 TCP downstream transmission to range from fully utilizing
modification using FTP by having the terminal download files ov@{e downstream bandwidth to only using a fraction of it. Notekthat
the asymmetric network. is similar to the ‘system capacity’, it is the capacity of the upstream
channel to transmit ACKs, i.e., the channel can transmit one ACK

upstream perk data packets coming down. On the other hppdjs similar to
— dOWNStream the offered load, andhax_packets_per_adk like the maximum
= outek offered load which happens whewndis large. Because the arrival
2 process of ACKs is not constant, queueing at a terminal’s transmis-
sion buffer occurs. Thus downstream throughput tends to be affected
even wherk s still a little larger thappa
Routey Routey
1 3 Throughput
L]
Terminal(s) FTP /
Serve /
1 .--__.-"
FIGURE 8. Topology of our testbed ;
5 Fd
y
. ) . _I -..-..-._-"
5.1 Modifying TCP on Linux P
In Linux V2.2.x, the timestamp option is enabled by default. Wi o ,a“"f
explored this feature and used method (4) described in section 3.: F
measure thecv_RTTandest_cwnd In this version of Linux, the = # ”
value of ATO is equal to 1.5 times of the average measured int f.a“'

packet gap. The inter-packet gap is the time interval between arriv .z e
'3
of data packets.
A receiver repeats thest_cwndmeasurement process one after

another. If a sender does not have more data to send, the rece ¥ n h X K » B ¥ Ie
will set theest_cwndandppato 1 after 1.2 times of the current _ bandwidth (Kbps)
rcv_RTT and the currentcv_RTT measurement process will be FIGURE 9: Average FTP goodput (Mbps) vs. upstream

aborted. Theest_cwndmneasurement process is restarted only whe bandwidth (Kbps)

a new data packet is received. In addition, we set the ATO ppde

times the average measured inter-packet gap, thus delaying thEigure 9 shows when upstream bandwidth is about 100Kbps, the

acknowledgment according to the number of packets that we neegdfformance of TCP Reno and ACE are about the same. When the

wait for. All through our implementation, we only changed thgpstream bandwidth is 100 kbps, k is 1.9. The throughput of TCP

receiver part of the TCP stack at the terminal. Reno starts to decrease when the upstream bandwidth is less than
100kbps, and the advantage of ACE becomes more and more signif-
icant. In fact, ACE maintains a performance of nearly 4Mbps until
the upstream bandwidth falls below 50Kbps, corresponding to

5.2 Implementation Performance k=3.9. After that, the downstream throughput of ACE starts to

) . decrease gradually. However, it still outperforms Reno consistently.
We performed several experiments with the ACE and TCP Reflis is in line with amax packets_per_ackf 5. When upstream

to compare the performance. The FIFO buffer size in all tests Waso%@ldwidth is 10Kbps, ACE has about 200% improvement over TCP
packets for each direction of the traffic. Reno.

2) Performance when different users/applications share the

1 Note that this does not preclude a receiver to adjust its upstream link
RTTmeasurement to true increas&ifT, so long as there The bandwidth for router 2 to router 1 was set to 4Mbps, and the
are packets coming in within each RZTinterval. bandwidth from router 1 to router 2 was 80Kbps. The bandwidth



mation, we have also simulated estimatiorRaiT using the initial
SYN/SYNACK pair. This method is simple, it does not require extra Goodput (Kbps)
packets nor support of the TCP timestamp option.

We simulated the SYN approach a number of times, and find the 94
in our simulation, thecv_RTTtended to be about 30% smaller than 300 74
the actuaRTT It led to an ‘underestimate’ afvnd i.e.,est_cwnd
tended to be smaller. As a result, the receiver sent acknowledgment 200 _|
bit more often than necessary. This in turn renders the ACE 1
approach less effective. The average throughput in scenario 1 usir
the SYN approach was about 248 kbps vs. 294 kbps when the ICM
approach was used.

In general, RTT fluctuates according to network conditions, 2 3 4 5
hence, the SYN measurBd Twill sometimes be smaller and some-
times be larger than the current RTT in a TCP session. If the SYI
measuredRTTis significantly larger than the currdRTT, a receiver
may over estimate cwnd and over reduce the number of ACKs. Thi FIGURE 6: Performance of our algorithm as
can in turn slow down the sending process. max_packets_per_ackries from 2 to 5

100 |

|

max_packets_per_ack

4.5 Performance under TCP Cross Traffic

s sender’s actual cwnd
« receiver’s estimation of cwnd

In the previous section, we have been using UDP as background

225 traffic, as such the background traffic does not scale back even when
20 S there is a congestion. It is interesting to see what will happen if TCP
s f f“"*“ is the major type of traffic. We did some experiments where all 19
users in the cable network used the same version of TCP. We
15 7/ repeated the experiments with Reno, ECWA, and ACE. We feel that
125 this is important as the behavior of a protocol under mass adoption

must be studied.
From Figure 7, we can see that the advantage of ECWA and ACE

10

75 r"/ is well maintained. The throughput is in general higher since the

5 same number of users sending UDP upstream create more overload

)5 on the upstream channel than the same number of users making TCP
¢ transfers downstream.

40 41 4 43 44 45 46 47 48 49 50 51 R o
The key observation in this section is that both ECWA and ACE

FIGURE 5: Estimatedwndand the actuaiwnd improve the performance of TCP over asymmetric network by more
than 100%. Even in the case when both sides of an intermediate link
between an asymmetric network and the TCP sender is congested,
the two schemes still perform better. The ACE scheme lags the

4.4 Burstiness Due to ACE ECWA scheme by about 10%. This is because ACE relies on count-

ing incoming data packets to estimatend whereas in ECWA a
A potential problem with ECWA or ACE is that when the value ofender passesvndexplicitly.

ppais high, the sender may send out bursts of packets. This effect is
known as the "stretched ack violatipn" [10].. We propose a §o|utior Goodput (Kbps) 630
wheremax_packets_per_adk.f. section 3.2) is varied according to 570
the number of congestion incidences that a receiver has observed. 600 __|
general, a receiver reduces tmex_packets_per_acdkhen it sees
congestions occurring frequently, and increases it if it has not ses
congestion for a while. As a result, a sender receives ACKs on 400 _|
smaller number of packets when there is congestion in the forwai 250
path, and this will help to reduce the burstiness of the traffic. /
receiver can judge whether a congestion has occurred by using t
approach described in section 3.2.(4). In essence, ACE can redL
the number of ACKs when there is no congestion @mad is big.
When there is congestion ACE can redppato perform like Reno.
Figure 6 shows the performance of ACE when the
max_packets_per_adg varied from 2 to 5 in scenario 1. Not sur-

prisingly, ACE with anax_packets_per_adf 2 performs similarly FIGURE 7: Performance of various TCP versions
to TCP Reno. when all users used the same version

200 |

Reno ECWA ACE



we simulated TCP Reno, and a variation where an ACK was delayed

for 4 packets, or until ATO (Acknowledgment Timeout) occurred. Goodput (Kbps)

We call this version FDA(4), i.e., fixed delay acknowledgment for 4 A 119

packets. The simulated ACE TCP on the cable user's computer us 110
method (3) described in section 3.2 to measure round trip time ar 100
est_cwndi.e., by sending an ICMP echo-request packet every othe ] 76.5
rcv_RTT The results for scenario 1 are shown on the following ba
chart.

ECWA, FDA(4) and ACE all perform better than Reno in scenaric
1. When a congestion occurs at an upstream cable channel, a qu
of ACKs builds up in the cable modem. Those ACKs in the bac}
have to wait for the ACKs in the front to be transmitted. Further-
more, after an ACK is transmitted, the upstream bandwidth alloce
tion algorithm in the cable router will grant transmission
opportunities to other modems, and will not come back until one
‘round’ later. Thus, by the time when an ACK at the end of the FIGURE 4: Performance in scenario 2 (two way congestions)
queue gets to be transmitted, significant delay would have occurre
By sending less ACKs the transmission queue will be shorter, aru
the number of ‘rounds’ that an ACK needs to wait will be less. As .
one would expect, ECWA has the best performance, however, g‘Because both ECWA and ACE algorithms vary i value

. ) &ording tocwnd when there was downstream congestion as in
ACE comes very close in both scenarios 1 and 2. FDA(4) performs g d 9

better than TCP R duri i tion. i .scinario 2 ancwnd was small, both algorithms acknowledged
etier fhan €no during upstream congestion, 1.€., scenarl Ty packet, helping the window size to be built up again. Further-

The problem comes when there is a downstream congestion. The ; . . . .
. . . - fe, both algorithms avoided having a receiver delaying an ACK
reason is that a FDA(4) receiver waited for four packets or until A 9 g ying

. til ATO when cwnd was 1, e.g., right after recovery from a time-
ocrcurri/d rbifc?re i dserr:t:&? C:t-ilvxrllgn the srfnﬁﬁwis;m;“g V\%Jt. In scenario 1 where there was adequate downstream bandwidth
a recever delayed a u occurred. 1his slowed oWy, .y ngwas large, both algorithms acknowledged less frequently.

et Figute 5 comparees. cndwih (e acuabnd Thre re
) ’ EW reasons for the fluctuation of measurements:

down causes FDA(4)'s performance to lag behind ECWA and A {1) the measurement eft_cwnds dependent orcy. RTTmea-

In scenario 2, congestion occurred often and hence FDA(4)'s perchr-ed by ICMP packets, which may fluctuate
mance suffered more. ' )

(2) because of various random elements in the system, such as
transmission queuing delay, and sender's load etc., there is a certain

50 _|
33

Reno  FDA(4) ECWA ACE

Goodput (Kbps) 310 randomness in the arrival process of data packet at the cable modem
300 294 user. Hence, the number of packet arrivals during a fixed time inter-
] 257.8 nal can vary even ifwndat the sender is constant. Overall, our dis-

cussion in section 3.1 holds, i.e., the valuesf cwndags behind
the actuakwnd and catches up when the sender enters congestion

200 | .
155 avoidance phase.

4.2 Acknowledgment filtering (AF)

100 _|
Acknowledgment filtering (AF) mentioned in section 3.2 belongs

to a different class of solutions, it is implemented at a transmission
device directly connected to an asymmetric network, e.g., a cable
Reno FDA(4) ECWA ACE modem. It is independent of tioeynd size at senders. It is efficient

in the sense that no ACK is transmitted ‘unnecessarily’. A new ACK

always takes the place of an older ACK in the transmission queue.
We find that AF is a very effective approach. In scenario 1, AF

yields a throughput of 550 kbps, significantly faster than the class of
cwnd estimation algorithms. The aggressive ACK replacement

scheme in AF means that at most only one ACK is waiting for trans-
mission in a cable modem. Thus an ACK will never have to wait for

an older ACK to be transmitted first. In a sense, AF delivers the new-
est ACKs as fast as possible. However, AF must be implemented in
cable or ADSL modems, making it less readily deployable.

FIGURE 3: Performance in scenario 1 (upstream congestions)

4.3 RTT Estimation

In section 3.2 we described four ways for a receiver to estimate
RTTso that it can in turn count the number of packets arrived and
computeest_cwndIn addition to simulating ICMP bas&IT T esti-



when the sender does not have data to send for more th&iTdne tention. If a cable modem cannot successfully send out a frame in 10
By setting theest_cwndto 1, ppa will also be set to 1. When therounds, the modem will discard the frame.
retransmitted packet arrives, a receiver will acknowledge it immedi-
ately. The case for fast retransmission is a bit more complicated. A
receiver is able to detect fa;t retransmission because it. must hg\@ Upstream and Downstream Congestion
sent out at least three duplicated ACKs to the sender in the first
place. However, having sent out three duplicated ACKs does noWVe first experiment with two scenarios, namely, upstream conges-
necessarily guarantee that the sender will fast retransmit rather theim and downstream congestion.
timeout. This is because the sender may have timed out before fcenario 1 - Upstream congestion: Upstream congestion is quite
receives all three duplicated acks. In addition, some of the dugipmmon during the busy hours in cable networks. To simulate
cated acks may get lost on their way, and hence the sender willustream congestion, we simulated 19 users generating upstream
be able to receive enough duplicated acks. Because of these ur¢ess traffic from cable modems, each user generated 1460 bytes
tainties, we propose that a receiver changegshecwndo 1 after UDP packets at a mean rate of 180kbps. Upstream UDP traffic from
sending out three duplicated ACKs. each user followed a self-similar pattern [10]. Because there is no
It should be noted that a senddRET can be different from a congestion control mechanism in UDP, the cross traffic did not back
receiver'scv_RTT Hence a receiver can guess wrong. For exampff even when severe congestion occurs. We then simulated a cable
it is possible that the sendecwnd has not been set to 1, when anodem user who made ftp download from the Internet. The size of
receiver has waited for 1r2v_RTTand seest_cwndandppato 1. the file downloaded by the simulated user was 300Kbytes. The TCP
When data packets arrive, a receiver may end up acknowledgiegment size was 1460 bytes corresponding to the maximum seg-
more frequently than necessary. However, the receiver will recoveent size over the cable network. The receiver buffer is capable of
its value ofest_cwndone round trip later. On the other hand, if &olding 20 TCP packets with maximum segment size.
receiver missed the timeout at the sender, it will acknowledge base8cenario 2 - Internet congestion: Although down stream conges-
on a potentially largeppa and may delay the ACKs. Hence thdion may not occur at a cable network’s downstream channel, it may
sender will take longer to build upynd and throughput will be occur in other parts of the Internet. It is important to test any TCP
reduced. Nevertheless the sender will eventually buildwipdto  modification in this environment as well. We restricted the packet
the size ofest_cwndagain. Based on this analysis, we favor a moggocessing capability of the router in between the ftp server and the
conservative approach at the receiver, wiestecwndshould be set cable router to 100 packets per second, creating both upstream and

to 1 before the sender does so veitind downstream congestions simultaneously. We simulated self-similar
traffic on this link so that on average the router is half loaded with
4. SMULATION cross traffic. A cable modem user downloaded a file with an average

size of 100k bytes from the remote FTP server. In this case, there
[2] gave many suggestions on how to effectively evaluate TGFas no other cross traffic on the cable network itself.
We evaluated our proposal using both simulation, and a modified
TCP stack over the Linux platform on an emulated asymmetric ne

work. — &

We used the network simulator OpNet Modeler to test the perfc -t et
mance of our algorithm and some of the others in the literature. \ Dawmstrean 37 by
built our simulation based on a cable TV network used to carry da .
Over a cable network, upstream refers to the direction from a cal L b g caden
modem to a cable router, and downstream refers to the directi I kb

from a cable router to a cable modem. Cable networks are alm: beaier
always asymmetric. In our simulations, the bandwidth of a dowr —
stream channel is 27Mbps, while that of an upstream channel
768kbps. Figure 2 shows a typical cable network. Both upstream &
downstream channels are shared by home users. Data for home u

is relayed from the Internet via the cable router and broadcast to

cable modems. A cable modem acts as a bridge and passes on Immmedime  Cable Cablemadem
those data packets destined for its home user. Upstream transmis: S Raler M

is a bit more complicated because multiple cable modems m
transmit at the same time. Hence, a multi-access scheme is nee:
Current cable standard DOCSIS provides a humber of mechanis
to control upstream access. For the purpose of evaluating ACE ¢
other TCP algorithms, we use a mechanism described below. In ¢
model, a cable router polls each of the cable modems that t
recently transmitted up stream to give them opportunities for up

stream transmission. A cable modem is allowed to transmit onéVe would like to compare ACE with others that belong to the
frame each time it is polled. For those cable modems that have ¢lass of algorithms based on cwnd estimation. Algorithms belonging
been transmitting in the last 5secs, if they want to transmit t@pthis class do not require lower level network support. In particular
stream, they will have to wait for a “contention slot'. The cable rouwe chose ECWA. In ECWAgwnd is explicitly announced. In our
grants a contention slot periodically. After transmitting using a coalgorithm cwnd is estimated based on measurement. Thus ECWA
tention slot, a modem must wait for a confirmation from the routéhould represent a performance upper bound to the class of algo-
If there is a collision it will have to go through another round of cofithms that varies acknowledgment accordinguad In addition,

155 Mbgs Lpstnian

FIGURE 2: Simulated cable environments.



time only at the beginning. Since round trip time fluctuates over tageceiver may find that the new valueest_cwnds smaller than
life time of a connection, using one or two measurements obtainethatold value. In this case, we use the old valuesbfcwndnstead.
the beginning of the connection is probably not adequate. MethHk rationale behind using the old value is that 1) unless retransmis-
(3) requires sending out ICMP packets but the overhead is jussien timeout or fast recovery occurs at the sendewral is never
able. Almost all of the hosts response to echo-requests, hetleereased; 2) our analysis in figure 1 showsekatcwndends to
method (3) can be quite readily used. Method (4) requires both sildgsbehind the actualvnd therefore if the newest_cwnds smaller,
to support the TCP timestamp option, while there are older impieis probably safe to use the old value.

mentations that may not support this feature, the timestamp option )

will probably be a norm in the near future. There can be times W@nCalculatlng the value of ppa

a sender does not have data to send and hence a receiver will not Based on the adjustedt_cwndthe value oppais calculated as
able get its timestamp acknowledged. We address this problem inf@4pws:

below. Another possibility is to use method (1) but back up with if (est_cwnd <= min_ack_per_win)

method (3) when the terminal has not been sending data for a whildhen ppa =1
Otherwise

ppa=MIN(FLOOR(est_cwnd/min_ack_per_win),
max_packets_per_ack)

The quantitymin_ack_per_winefers to the minimum number of
— ACKs that must be sent out per window full of packets. This value
cannot be too small as losing all the ACKs implies a retransmission
timeout at the sender end. We pick the valumiof_ack_per_wiro
1 be 3. Based on the calculation above, delayed acknowledgment will
not occur untilest_cwndis at least 6. This should encourage fast
growth ofcwndat the beginning [1]. Notice that if we were to use a
— ROUND function rather than a FLOOR function, delayed acknowl-
edgment will happen wheast_cwndis 5. We consider this an
implementation issue. Regardless of the valugppd a receiver
always acknowledges out-of-sequence packets immediately.

The value ofmax_packets_per_adk to control the number of
packets that a receiver can wait at most before sending out an
acknowledgment. It is applicable in those cases when both sender
and receiver have larger buffer size, giving the possibility of a large
cwnd It is important to limit maximunppafor two reasons. Firstly,

a largeppa would mean that a receiver is holding up a number of
— ¢ transmission opportunities, this in turn can reduce the throughput.
Secondly, ifppais large, each ACK will acknowledge a large num-
ber of packets. This may cause the sender to send out bursts of pack-
ets and cause packet drops in the network. We chose 5 as the value
of max_packets_per_adk our experimentation.

Sender Receiver
CWHD EST CWHND

A

FIGURE 1: cwnd estimation process at a TGReiving end 4) Anticipating Scaling Back of cwnd
Congestion on the forward path may lead to packet drop. In gen-
eral, if cwndis at least 4 and a packet is dropped, the 3 duplicated
To count the number of data packets arriving within a round tf°Ks sent by a receiver would trigger a fast retransmit. On the
time, we can estimate the round trip time using the methods abd¥8€r hand, itwndis small or if there is further packet loss, then a
and then count the number of data packet arrivals within the perig@nder’s retransmission timeout will occur. In the first cagedis
Alternatively, we can count the packets while we are measurifgfluced to a half of its current value, and enters the congestion
rcv_RTT Both method (3), and (4) support this approach. We stamoidance phase after fast recovery. In the second caselis
counting right after we send out an ICMP packet, or after we putéguced to 1, and slow start begins after the lost packet is acknowl-
certain timestamp value into the receiver timestamp as part ofégged. In addition, when a TCP sender does not have data to send
acknowledgment. We stop counting right after we receive the ICNfi¥ more than one round trip time, the recommended procedure is for
echo_rep|y packet or when we receive a data packet Carrying tﬂp@sender to reduaavndto 1 so as to avoid flooding the network
same receiver timestamp. We use the courgsascwnd The fre- With a sudden burst of packets when there is data to send. Because
quency of round trip time measurement is an implementation choigéthe adjustment described in (3) where efd_cwndis taken if
but is a trade-off between accuracy and overhead. For examp|e,rm\@est_cwnd/a|ue is smaller, it is necessary to detect the three sce-

frequency can be per two to three round trip times. Using the curr@atios and make conscious corrections, otherwiseshewndill
value ofrcv_RTT the measurement @&st_cwndcan be done one not be decreased. This can in turn lead to unwanted delay of ACKs.

round trip time after another. To address the scenarios above, a receiver reducestthievnd
) to 1 whenever it fails to receive any new packets afterRTQ
2) Adjustment of est_cwnd which is an approximation of the sender’s retransmission timeout.

Using one of the above methods, a receiver obtains a valug~of simplicity, the value ofcv_RTOin our simulations is set to
est_cwndHowever, due to fluctuations of round trip time and sonfe2*rcv_RTT This will address the scenarios whamnd is small
degree of randomness in the packet arrival process, it is possible dhnalt the sender is forced into slow start when timeout occurs, and



downloading a file onto his PC, or browsing the web. For thoieless than the total transmission time of a &wind of packet,

applications that have traffic on both directions, e.g., telnet, respobhaadwidth limitation on the return path has less effect, since the

time rather than throughput is often more important. sender can probably keep the transmission pipe full most of the time.
In this section, we looked at various approaches to improve TBPBing able to estimate a sendemgndfrom a receiver without the

performance over asymmetric networks. For those that are basedender’s collaboration gives our proposal a deployment advantage,

cwnd estimation, they either require a sender to explicitly send dwg., only TCP software at terminals needs to be patched.

cwndas a TCP option, or attempt to estimatendby running con-

gestion control algorithm at the receiver. The first method requiregn the next section, we describe our algorithm in more detail. We

modifications to TCP at terminals and on every computer that Mgyl discuss the various options to measure round trip time and to

make TCP transfer to these terminals. While it is possible for a ugefimate senderswnd from a receiver. Then we will discuss the

to download a TCP patCh for his terminal, it is hard to require Othﬁj‘mputation ofppa from est_cwnd In [3], cwnd is announced

computers out there to make the modifications. The second metbgglicitly by a sender, a receiver will be informedcwfnd change

suffers from recurring errors in estimation ofind In the AF  due to retransmission timeout or fast retransmission. In our case, our

scheme older ACKs in a transmission queue are replaced withr@ejver “anticipates' such changes. We discuss this issue in the next
incoming ACK at the point of transmission to an asymmetric linkection as well.

However, this requires modifications of transmission devices such as
cable or ADSL modems. Thus vendor support is necessary ang A Step by Step Description
upgrading existing deployment may be difficult. Finally, header
compression does not reduce the number of ACKs. For some ac@g$sstimating Cwnd
networks like cable networks or wireless networks, it is important tOTO estimatewnd a receiver needs to count the number of packets
reduce the amount of upstream contention regardless of the pagkedived within aRTT We call the receiver’s estimation &TT
size. In the next section we will describe ACE (Acknowledgmepty RTT There are four ways in whichv_RTTcan be estimated:
based on Cwnd Estimation), where only the TCP receiving algo(1) If a receiver is also sending data packets, then a round trip
rithm needs to be changed. This implies that only terminals attacljg¢k estimation will be available from the sending part of TCP.
to an asymmetric network need to have their TCP stacks modified;2) It is possible to gaugev_RTTat the beginning of a TCP con-
making the solution very readily deployable. nection by timing SYN, and SYNACK packets. This will give a
crude estimate of the round trip time.
(3) A receiver can send an ICMP echo-request with a timestamp

3. OUR PROPOSAL to solicit an echo-reply from the sender. The valuecef RTTis
measured as the time interval between sending of a request and
3.1 The Basic Idea receiving of a reply.

(4) By using the TCP timestamp option that was originally used

We approach the performance problem of TCP over asymmetiic @ TCP sender to estimate round trip time. A sender places a
networks by asking ourselves whether it is possible to measurtinsestamp in each data segment, and the receiver copies the times-
sender'sswndfrom a receiver. Our hypothesis is that as lonBEE tamp back in an ACK. Then a single subtract gives the sender an
is significantly larger than the amount of time needed to send owtcgurateRTT measurement (more details in [12]). In fact, times-
window of packets, a TCP sender with data to send is likely to séatps are always sent and echoed in both directions. Even during a
close to a window worth of packets in a round trip duration. This @me-way transfer, a receiving side who has no data to send inserts its
turn implies that a receiver can estimetendby counting the num- current timestamp in each ACK, and the sender echoes back in each
ber of packets received during a round trip time. We call this valdata packet. It is quite straight forward to modify the receiving part
est_cwndBased orest_cwndthe receiver can now determippa of TCP stack to computev_RTTbased on the timestamps
(the number of packets per acknowledgment). Because our algo-
rithm is based omwnd estimation, we call it ACE (Acknowledg- Method (3) implies additional packets, i.e., ICMP echo-request,
ment based oi©wnd Estimation). Figure 1 shows the process diave to be sent on the return path. However, it can be shown that the
cwnd measurement at the receiver. In this example, a receigavings justify the additional ICMP packets. For a maxinownd
acknowledges every other packet, and a sender incremeoisits of 12, by running ACE, assuming that min_ack_per_win (minimum
by 1 for every acknowledgment received. For the sake of illustratisttymber of ACKs that must be sent out per window of packets, c.f.
we assume that the round trip time is constant and the receRegtion 2.1) is 3, the computpgawould be 4. Three ACKs will be
knows the round trip time. We will address round trip time estimgenerated for eachwnd of packets. If we send an ICMP echo-
tion and fluctuation in later sections. From the diagram, it can tssjuest packet every othev_RTT then we will be sending a total
seen that because a TCP receiver can only make an estimate afeér7itpackets on the return path in a period of texo RTTs On the
has counted incoming packets for one round trip, its estimationasfier hand, a current implementation of TCP with delayed acknowl-
cwnd size lags behind the actualvnd size during the slow start edgment would have sent 6 ACKs for the first round trip, and
phase. However, once the send@ndreaches the congestion avoid-another 6 for the second one, generating a total of 12 packets on the
ance phase, the receivec\wnd measurement catches up with théeturn path over a period of t\RTTs Using the ICMP approach
actualewnd Our simulation results shown in figure 5 confirms théere is still a saving of 5 upstream packets, i.e., a 42% saving.
above. There is in fact a certain unexpected advantage in underestidethod (1) depends on application behavior, if an application
mating thecwnd during the slow start phase, as it will drive theloes not always have data to send, method (1) may not be applica-
receiver to acknowledge more often and thereby helping the serldler Furthermore, because of bandwidth asymmBTy observed
to build cwndfaster. This example illustrates that counting the nury a sender sending upstream may be largerRiarobserved by a
ber of packets received per round trip time at the receiver giveseader sending downstream. We are interested irRTiEof a
reasonable estimate ofvnd For the case where the round trip timéender sending downstream. Method (2) measures the round trip



[5] examined how TCP parameters and features can have impacfGIKs going upstream. When a sender receives an ACK with the
throughput over cable networks. These include delayed acknoBA=N bit set, it will set the bit on a data packet going out. A receiver
edgment, and socket buffer size. In particular, it was pointed out teaeing the ECN bit set in the data packet will infer that there is an
due to the limited amount of buffer in a cable modem, increasing tiygstream congestion and hence acknowledge more sparingly. This
socket buffer size continuously may cause a TCP sender at the irgpproach requires changes in network elements as well as the TCP
net side to overrun the cable modem, resulting in packet loss. Insbé&ware at both ends.

rest of this section, we will discuss the major approaches.

2.3 AF (Acknowledgment Filtering)

2.1 Congestion Window Dependent .
Acknowledament [14] proposed a method that collapses the ACKs at the transmis-
g sion queue by allowing late coming ACKs to replace earlier ones of

An approach to address upstream bandwidth limitation would #¢ same TCP flow. This technique is known as "Ack Filtering” in
to reduce the number of acknow|edgmentsl This can be donesgwe literature. The idea makes use of the fact that TCP ACK with a
sending an ACK for every few packets received. However, becausgguence number N implicitly acknowledges those packets with
sender relies on receiving ACKs to send out more packets ang@guence number smaller than N. When applied at cable modems or
increasecwnd delaying an ACK to wait for a few packets mayADSL modems, this approach can reduce the number of ACKs
reduce performance, especially wimyndis small. [5] gave a good transmitted by picking only what is valuable. While this approach
detailed account on how delayed acknowledgment could slow do%@ be very effective, it requires modifications of low level software
web page transfer. A general strategy is to acknowledge more fetransmission devices such as cable modems or ADSL modems.
quently whercwndis small, and acknowledge less frequently wheRuch modifications cannot be easily done by a user and require sup-
cwnd is |arger. [1] examined a few scenarios where a recei\mrt from vendors of these devices. In addition, Special attention
acknowledges every packet during a sender’s slow start phase, @ffls to be made so that under severe upstream congestion, the
adapts delayed acknowledgment when the sender goes into cong@¥me will not end up sending only one or two ACKs per window.
tion avoidance phase. This will help the sender to keep sending Hrifese ACKs are lost, a sender will have no choice but to time out.
increasing itscwnd when cwnd is small, and reduce the use offurthermore, the algorithm must be careful of replacing duplicated
upstream bandwidth wheownd is |arger_ The mechanism for aACKS in front of the queue, OtherWise, the fast recovery mechanism
receiver to find out a sender’s congestion control phase was an difefie sender will not work properly. It is possible to ‘expand’
issue. incoming ACKs and resolve the above issues at the access router or

[3] proposed a scheme where a sender sends back the valu@t 8fe sender at the price of added complexity.
cwndto a receiver as a new TCP option. A receiver computes the
number of packets per acknowledgment, which we willmadi by 2.4 Header Compression

dividing cwnd with min_acks_per_wirn(the minimum number of

ACKs to be sent per window of packet received). This approactp] proposed a way to compress packet headers. The observation

requires modifications of TCP software on both sender and recei')%s-e'.‘}.hat packets within the same flow often have some header fields
f

In real life it implies that terminals and any computer that trans guing identical values, or values that change slowly. By replacing

data to those terminals must have their TCP stacks modified. Fort ese fields with a connection identifier that is agreed upon between

ease of reference, we will call this scheme the ECWA (Explicit Coﬁ_?r?n:presséofrr ar:d4g g etcont1pr5ezs§>r, alnTCnP/ P r?]arﬁkﬁg he:\?i:arnﬁnn?e
gestion Window Acknowledgment). compressed fro ytes 10 5 bytes. In an asymmetric environme

[4] proposed a window prediction mechanism for improving Tch terminal will be the compressor device and the router at the other

over wireless asymmetric links. The approach taken there is fo?na{j of the asymmeiric link will be the decompressor device. How-

receiver to emulate a send dgrowth algorithm in order to pre- ever, there are some limitations in using header compression. There

dict the currentwndat the sender. Based on the congestion Windoi nrzrrzi(tjrlijc(::tr:%rt]\/vlgrknsun;ber g;b?:ﬁgxgﬁgn:temeﬁgkﬁ; ;nr:c?g;?n
size, the value gpais determined in a similar fashion to [3]. How- Y ' €9, !

ever, it can be shown that under a number of circumstances‘g”elisnu have to contend for a transmission slot, such overhead can

' . e quite significant. Furthermore, the scheme requires co-operation
receiver may loose track a@fvnd For example, a receiver would d 9 q P

increment itcwndvalue by one for every ACK sent during the S|0V\(I)f equipment at the network side.

start phase. If the ACK is dropped, the sender will miss the incre- . .
ment. The event can go unnoticeable at the sender if subseqiﬁt Other Considerations

ACKs are received. Moreover, new TCP implem_entations are supa consequence of acknowledging less often is that an ACK may
posed to setwndto half of the number of outstanding packets wheghyer a number of packets, this is also known as the “stretched ack’
restarting from slow start. Itis hard for the receiver to guess whahigplem. The drawback is that a sender may send a burst of packets
the number of outstanding packets. Once a recemerilgoes out hen it receives an ACK. This could create congestion and lead to
of sync with the sendertavnd the error will be carried forward in packet loss. Acknowledgment regeneration has been proposed
subsequent calculations and could have an accumulative effect. \yhere multiple ACKs are regenerated when an ACK that acknowl-

) edges a number of packets is received. The regeneration process can
2.2 ACC (Acknowledgment Congestion Control) either take place at the sender side just below the TCP module as in

[3] also proposed a scheme (ACC) in which a receiver reduces ﬁ%or at the router on the upstream side of the asymmetric link as in

frequency of acknowledgment when some congestion signal*l

received from the sender. The ACC scheme makes use of the EC _T_lérpdlfcusilon.sot;ar, t\)N € f:ja;)ve ((:jor(;peni_rated 22 one-way ttr)affl((j:,
bit setting capability of a router. In particular, if a router handling tHe ranster in the broadband direction with a narrowban

upstream traffic notices a congestion, it will set the ECN bit of tﬁ%tu.m pgth. A number of major apphcatpns over Internet have their
traffic direction heavily downstream oriented, e.g., a home user



where the change afwnd goes through the slow start phase folFor example, if a network has 10Mbps of available bandwidth on
lowed by the congestion avoidance phase. At the beginning ofoaward channel and a 100Kbps of available bandwidth on backward
slow start, a TCP sender sets the valuewafidto 1. It increases channel, the raw bandwidth ratio would be 100. For a one-way trans-
cwndby 1 every time it receives a new ACK. Receiving an ACK isfar in the direction of higher bandwidth, assuming a data packet size
good indication that the forward path (from a sender to a receiverpis1523 bytes (including framing) and an ACK packet size of 63
not congested. Thus when a sender receives an ACK of one padkggs, this gives a packet size ratio of 24.2. Therefore k is 100/25 =
it will be able to send out two more packets. However, this expondnt3.
tial growth does not carry on forever. Firstly, it is limited by the min-
imum of the sender’s own buffer size and the receiver's buffer siked Performance of TCP over Asymmetric Networks
dedicated to the connection. Secondly it is limited by a value called o ]
ssthreshOne can look at ssthresh as a safeguard parameter to mo@- TCP sender expects ACKs from the receiving side to advance
eratecwnds growth. The value osthreshis based on the recentthe sliding congestion window, and to increasend If the band-
congestion experience in the connection. Whemd is equal to width from ‘the receiving side to the sender is very I|m|tgd, an ACK
ssthresh cwnd growth enters the congestion avoidance phase,T&Y experience significant queuing delay at a transmission point
sender will only increment thewnd by Ltwnd per ACK received. from the receiver side. This will in turn slow the down the sendlng
This effectively incrementswndby 1 at the end of each round tripProcess of the TCP sender and reduce the throughput. Putting the
until the upper bound otwndis reached. The idea is to slow dowrfbove observation into the context of asymmetric networks, TCP
the growth ofcwndto a linear scale. In general, the more packglansmission towards a terminal may not be able to capitalize on the
drops a connection encounters recently, the smaller is the valué?gje downstream bandwidth due to limited upstream bandwidth
ssthresh, and the earlier thendgrowth will stop being exponential from the terminal. In addition, upstream data transfer can take up a
and become linear. lot of the upstream bandwidth, leaving little for upstream ACKs, and
When there is a sender’s timeout on waiting for an ACK, the cdirther worsening the performance of downstream transfer. In cable
gestion control algorithm regards it as a loss of the data packet intRBVOrks, because of the shared nature of upstream channel, a cable
forward path. This is an indication that the forward path may be céhodem user may have very little control on the usage of upstream
gested. The sender sets the value of ssthresh to half of the numbBRB#Width. In ADSL networks, because a copper wire is dedicated
outstanding unacknowledged packets and the valuavofito 1. to. a user,'there is a bit more cqntrol on the usage of upstream band-
The sender enters the slow start phase and grewsagain when it Wldth. Using the example mentioned in section 1.3, wkéset.13,
receives an ACK to its retransmission. To reduce the performafic@€ acknowledge more often than one ACK for every 4.13 data
impact of occasional packet loss, a technigue called fast retransigkets, the return link will get saturated before the forward link
sion was proposed. In TCP, a receiver receiving an out of or@8es, possibly reducing the throughput that can be achieved in the
packet returns an ACK carrying the sequence number of nggward direction. Because most platforms . implement delayed
expected packet, which is the missed packet, and thereby generﬁg{@owledgment, downstream TCP transfer will be affected when
a duplicated ACK. The idea of fast retransmission is that wheriSgger than 2. _ o )
sender receives three of such duplicated ACKs, it will conclude thafour focus in this paper is on downstream transfer, i.e., in the high
the packet is lost. Thus without waiting for a timeout, a sender witndwidth direction. From now on, we will use the term ‘sender’ to
retransmit the missed packet, and redweesdto a half. Thereafter, refer to the TCP instance on a computer that is sending data down-
the window grows linearly via congestion avoidance. Notice thgiféam. We use the term ‘receiver’ to refer to the TCP instance on a
fast retransmission cannot take place unless the overall conged§minal attached to an asymmetric network.
window size is at least 4. In this paper, we propose a modification to the TCP acknowledg-
There are many different implementations of TCP. In our simul@€nt process that involves only changes in the TCP implementation
tions and implementation discussed later, we compare our algoritiih® terminal. This approach has an enormous advantage in that the
with TCP Reno, the most popular TCP implementation nowada§Y terminal can enjoy increased TCP performance in the down-
(more detailed description is in [12] and [2]). In the current TCgiream direction once its stack is patched, without requiring any
standard, a technique called delayed acknowledgment is imglBange on the other end.
mented whereby when a receiver receives a data packet, it waits for
the next one before sending out an ACK for both. The motivatich RELATED WORKS
was not really to reduce the number of ACK but rather to give the ] o
receiver some time to consume the packet, to update the receivdere have been quite a number of efforts looking into the perfor-
buffer size, and in the case of telnet, to piggy-back the ACK with tH@nce issue of TCP over asymmetric networks. One of the early
echoed characters. To avoid hold up, a receiver waits for the secigarch in TCP performance over asymmetric networks was pre-
packet for a maximum time of ATO (Acknowledgment Timeouﬁ?nted in [9], which examined the network conditions affected by_
before sending out an ACK; the value of ATO is implementatid?ifferem asymmetry factors and suggested some methods to allevi-

dependent. ate the congestion at the upstream transmission point, e.g., manag-
ing the packet queue via per connection upstream queues in the case
1.3 The Normalized Bandwidth Ratio of multiple connections. The idea is to give the ACKs a fair chance

to be transmitted without being delayed by multiple large data pack-
For one-way transfers, a simple ratio of the forward and backwats. The Internet draft of the Tcpsat (TCP over Satellite) [1] gave a
bandwidth cannot reflect the effect of network asymmetry on T@Bry good overview on a number of techniques that addressed band-
effectively. This is because the size of data packets is normally mwitith asymmetry in the context of satellite communications. These
larger than that of ACKSs. Instead, we use the normalized bandwitkbhniques are largely applicable to our problem. They include 1)
ratio k, (as defined in [3]), which is the ratio of the raw bandwidtidelayed acknowledgment after slow start, 2) ACC (Acknowledg-
divided by the ratio of the packet sizes used in the two directiongent congestion control), and 3) AF (Acknowledgment Filtering).
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ABSTRACT Unlike cable modem networks, an ADSL user has the sole use of

the bandwidth over a twisted copper pair. In both types of networks,

Bandwidth asymmetry is quite common among modern net- upstream transmission is very susceptible to noise; this further
works; e.g., ADSL, cable TV, wireless, and satellite link with a reduces the effective upstream bandwidth. Satellite transmission in
terrestrial return path. In these networks, the bandwidth over one direction and terrestrial link in the other is yet another example.
one direction can be orders of magnitude smaller than that over Because bandwidth on cross-ocean links is expensive, satellite trans-
the other. The performance of TCP transfer in the high band- mission is usually used in the direction where high bandwidth is
width direction can be severely reduced by the delay of acknowl- required. Cross-ocean link transmission is used in the direction
edgment packets experienced in the reverse direction. In this where only low bandwidth is needed. For the rest of the paper, when
paper, we describe our proposed solution ACE (Acknowledg- we mention “terminal' we refer to a home or office terminal attached
ment Based onCwnd Estimation). In comparison to other solu- to an asymmetric network, where the transmission bandwidth from
tions, ACE requires only modification of the TCP stack at the terminal (upstream) is significantly smaller than the delivery
terminals attached to an asymmetric network. We evaluated the bandwidth to the terminal (downstream).
performance of ACE over a cable modem network by simula- In the rest of section 1, we will give a quick review on TCP,
tion. We have also implemented ACE on the Linux platform and describe a more formal way to quantize network asymmetry and
tested it on a small testbed network with an emulated asymmet- state the problem in more detail. In section 2, we discuss the works
ric link. The performance improvement was significant espe- that have been done in this area. Section 3 describes our approach in

cially when there is a high degree of asymmetry. detail. In section 4, we compare the performance of our solution
with some of the others based on simulations of a cable network. We
Keywords describe a preliminary implementation of our algorithm on the

LINUX platform and report some performance results in section 5.

TCP, asymmetric networking, cable modem, ADSL, Ack ﬁlteringl':inally in section 6, we summarize the paper

congestion window estimation
1.2 A Quick Review of TCP

TCP provides reliable data transfer between two end points. It
1.1 Asymmetric Networks relies on a receiver sending back ACKs (acknowledgment packets)
to inform a sender that data has been received. In order to avoid
Emerging access network technologies such as cable modemmsding too many packets into the network at one time, TCP prac-
over cable TV networks, ADSL over telephone lines, and wirelesses window based congestion control at the sender by controlling
networks are asymmetric in nature. Usually, the bandwidth fronthee congestion windovCwnd (the size of congestion window) is in
user terminal at home to a network operator is much smaller thanuhés of bytes, however, for the sake of simplicity, in the rest of the
bandwidth from the network operator to the user. The first directipaper we will expresswnd in units of MSS (Maximum Segment
is often referred to aspstream and the second direction is alwaysSize). For applications such as ftp and http, a sender tends to send
referred to aslownstreamFor example in cable network, the downpackets up to size of MSS, our implicit packet size in this paper will
stream bandwidth per channel may be up to 27Mbps, but theethat of a MSS. In the Internet environment this can be 1460 bytes.
upstream bandwidth per channel is only 600Kbps to 1.5Mbps. Edclessencecwnd corresponds to the maximum number of packets
channel is shared by a number of users on the same cable ptarttanding in a network. When the number of packets sent out is
However, there can be multiple channels on each plant. In AD®lqual tocwnd a sender cannot send more until it receives an undu-
the downstream bandwidth can be up to 8Mbps but the upstrealimated ACK from the receiver. At this point, a sender can be sure
bandwidth may only be up to 640Kbps depending on the distartbat some of the earlier packets have been received, and are no
from a home to a central office. longer inside the network. The sender reclaims the buffers of these
packets, and advances a pointer on the sequence number of the most
recently acknowledged packet. The number of packets that the
sender can send out is always equatvimd minus the number of
packets unacknowledged.
TCP implements the congestion control scheme suggested in [8],

1. BACKGROUND
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