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ABSTRACT
We propose a zero-knowledge interactive proof based identifica-
tion and signature scheme. The protocol is based on Euler’s totient
function and discrete logarithms over the ringZ=nZ, and can be
applied to smart cards. A prover keeps a signed subgroup gen-
erator provided by a trusted center as its secret information. Our
scheme has symmetricity in the sense that the same computational
complexity and the same hardware both for Prover and for Verifier
are required. Also, it requires minimal amount of computation and
communications for secret information. The protocol is versatile
enough to be applicable to digital signature scheme, multiple digi-
tal signature scheme and key exchange protocol. We outline those
protocols to show the versatility of our protocol.

Categories and Subject Descriptors
F.2.m [Theory of Computation]: Miscellaneous; G.2.3 [Mathematics
of Computing]: Applications

General Terms
Security

Keywords
Cryptography, Smart card, Identification, Zero-Knowledge Interac-
tive Proof, Digital Signature, Multiple Signature, Key Exchange

1. INTRODUCTION
In a computerized communication society, it is necessary to pro-
vide an adequate method by which communicators can identify
themselves to each other in an unforgeable manner. Since 1984,
considerable attention has been paid to ZKIP[1, 6, 13], which is
useful in identification and digital signature.

Identification schemes using ZKIP are generally based on the dif-
ficulty of computing the discrete logarithm modulo a large prime
number, quadratic residuosity of numbers, modular square roots,
and the factorization of a composite number. Many identification
schemes have been proposed based on zero-knowledge proof[2, 5,
10, 12].

In this paper, we propose the concept of a “signed subgroup genera-
tor” and design a new interactive proof based identification scheme
and digital signature. The scheme uses discrete logarithm over the
ring Z=nZ and Euler’s totient function to get its security, and is
suitable for smart cards because it requires only one secret number
and one accreditation to complete the interactive proof. Our iden-
tification scheme is superior to Guillous and Quisquater’s scheme
in that a verifier’s computational burden is reduced to about half
and it simplifies the hardware implementation. Besides those, our
protocol can be easily modified to serve as a key exchange protocol
and as a multiple signature scheme.

2. IDENTIFICATION SCHEME
2.1 Background
Before proceeding, we briefly explain zero-knowledge interactive
proof. Interactive proof is defined by two interactive Turing ma-
chines (P; V ). They have a few tapes to do their operation and
communicate with each other. Prover(P ) proves a certain knowl-
edge to verifier(V ), and the proof is called a witness. ZKIP induces
a formal languageL, and for an inputx a prover provesx 2 L. If
x 2 L, then, with very high probability, the verifier is convinced of
this fact, after interacting with the prover. Ifx 62 L, then no matter
what the prover does, with very high probability, he fails to fool the
verifier(into believing thatx is inL). The first condition is referred
to as thecompleteness, while the second condition is referred to as
soundness.

Informally, a proof system is calledzero-knowledgewhen the prover
tells the verifier nothing but thatx 2 L, even though the verifier
tries to trick the prover into revealing something.

Our interactive protocol is a proof of knowledge of a predicate

P (s; x) = [sx � g mod pq]

wheregcd(x; �(pq)) = 1, andg is a generator of a sufficiently
large subgroup ofZ=nZ(� is the Carmichael function[8]).

We propose a new protocol where a trusted center signs “g” with
a private-key corresponding to the public-key which is certified by
a trusted center. Thus, each user keeps “the signedg” as its secret
information, but does not know the private-key with whichg is
signed. “g” is a generator of a sufficiently large subgroup ofZ=nZ.

2.2 The Identification Scheme for Smart Cards



Like other identification schemes, our protocol is composed of two
phases. The first phase is the smart card issuing step, and the second
is interactive proof.

A trusted center randomly chooses two large primes,p andq. The
two primes are kept securely by the trusted center. We assume that
n = pq is a 768-bit or 1024-bit public number, and the factorization
of n is still infeasible. Another public valueg is also chosen by the
trusted center.g is a generator of a sufficiently large subgroup of
Z=nZ. It should be selected by the trusted center to satisfy

gk � 1 mod n

wherek is the order ofg mod n. k must not be smooth and must
be large enough(say 160-bits) to be strong against attacks such as
baby-step giant-step and index calculus. Girault devised a smart
way to selectg in [7], but we do not need to revealk, which is a
factor of�(n)(�(n) is Euler’s totient function).

The trusted center publishes(n = pq; g) in the public directory.
The modulusn and the subgroup generatorg will be shared among
a group of users.

When an eligible user applies for a smart card, the trusted center
issues a stringI which contains information about the user and the
card. And now the trusted center performs the following steps to
compute the secret informationsi and a public-keyvi for useri.

� Preparatory steps for the center :

1. For a useri who requests a trusted center of its secret
value, the trusted center choosesvi, wherevi is a prime
andgcd(vi; �(n)) = 1.

2. The center computes

si � g1=vi mod n:

si can be easily obtained by computing

gdi mod n wherevidi � 1 mod �(n):

3. The center generates a signature

S = signature(I; vi);

and the certificate

C(Useri) = (I; vi; S):

4. A smart card containing the user’s certificate is issued.

Here, the certificate can be generated by a trusted center using any
well-known signature schemes or the signature scheme proposed in
this paper. Rabin-like digital signature scheme or a low encryption
exponent RSA can be used for a faster certificate verification[9].
They require only a few multiplications in the verification step.

After the preparatory steps, a prover has a secret numbersi and can
prove its identity to a verifier by the following interactive proof.

� Interactive proof between a prover and a verifier :

1. Prover sends its certificateC(Prover) to Verifier.

2. Verifier checks Prover’s certificateC(Prover) = (I; vi; S).

3. Prover picks a random numberr 2 f2; : : : ; n�1g and
sendsx � rvi mod n as a test to Verifier.

4. Verifier sends a random numbere 2 f1; : : : ; 2tg as
a question to Prover, where2t < vi. The size of2t

represents a compromise between speed and security.

5. Prover sends to Verifier as a witness:

y � rsei mod n

6. Verifier checks that

x � yvig�e mod n

and accepts the proof as valid only when the above re-
sult is correct.

The above interactive proof requires only one security number and
one accreditation for the proof of identity, but still provides the se-
curity level of2�t. To reduce the number of bits communicated, a
prover sends only the firstt bits of a hash functionh(x) to a verifier
in step 3, and comparesh(x) with the firstt bits ofyvig�e mod n.
Thus, the total number of communication bits is2t + log n. The
protocol requires an inverse operation to computeg�e mod n, but
the computation is already in the preprocessing stage.

2.3 Soundness and Completeness Proofs
For the validity and security of the proposed interactive proof, com-
pleteness and soundness of the protocol should be considered. In
this section, we give formal proofs of the protocol.

It is trivial that the identification procedure succeeds if both a prover
and a verifier follow the protocol as shown in theorem 1.

THEOREM 1 (COMPLETENESS). If a prover and a verifier fol-
low the protocol, the verifier always accepts prover’s proof of iden-
tity.

PROOF. By definition

yvig�e � (rsei )
vig�e � rvigeg�e � rvi � x mod n

The proof that the cheating probability of a dishonest prover cannot
be increased to higher than2�t is similar to Guillous and Quisquater’s.

THEOREM 2 (SOUNDNESS). Assume that a prover does not
know thesi and cannot compute in polynomial time thevi-th root.
If a verifier follows the protocol, he will accept the proof as valid
with probability bounded by2�t.

PROOF. To increase the probability of cheating, a prover must
choosex in such a way that he can computevi-th rootsy0 andy00

of

xge mod n

for two questionse0 ande00. However, the following procedure re-
vealssi, and it contradicts the assumption that thevi-th root cannot
be computed in polynomial time without knowingsi.



1. For two questionse0 ande00, choose Bezout coefficientsm
andk such that

vim+ (e0 � e00)k = �1

There always exist Bezout coefficientsm andk, because of
gcd(vi; e

0 � e00) = 1.

2. Compute the following and output:

(gm
�
y0

y00

�k

)�1 � (svimi

�
y0

y00

�k

)�1 � (svimi s
(e0�e00)k
i )�1

� si mod n

If the questione is predicted by a prover, she can deceive the ver-
ifier by guessinge such thatvi divides r + e and sendingx �
gr mod n andy � g(r+e)=vi mod n. A verifier will accept the
proof of knowledge, because

yvig�e � (g(r+e)=vi)vi � gr+eg�e � x mod n:

However, the probability of this event is2�t, and for a sufficiently
large t, it is almost impossible to guess a questione. There is a
tradeoff between speed and security. If a security parametert has a
large value, the speed becomes slow. For the identification scheme,
t = 20 is enough for the most applications,t = 45 for national
security applications. For the digital signature,t = 72 is enough.

In the protocol, (x � rvi mod n) is a random number, andy is
masked by a random numberr which cannot be computed by a
verifier who does not know the factorization. Thus, all the mes-
sages from a prover to a verifier do not reveal any information
about the prover’s secret,si. The protocol “with one round”, how-
ever, is not a zero-knowledge proof, because the running time of
the simulator which produces transcripts with an identical probabil-
ity distribution to those produced when Prover actually takes part
in the protocol isO(2t). Technically for soundness,t must grow
asymptotically faster thanlog n, but the condition makes the run-
ning time of the simulator grow asymptotically faster than(log n)c,
for a constantc. Thus, our protocol with one round is not a zero-
knowledge proof. However, the protocol ”withk-rounds (k > 1)”
has surely the zero-knowledgeness. If we perform the protocol with
k-rounds, the simulator runs inO(2t) and for the soundness,kt
(not t) must grow asymptotically faster thanlog n. If we chooses
k large enough forkt to grow faster thanlog n for a t that grows
slower thanlog n, both the soundness and the zero-knowledgeness
are obtained.

The protocol withk-rounds, however, is not efficient to lose the
practical meaning. If we restrictk = 1, the protocol loses the
zero-knowledgeness in theoretical sense but it gets efficiency in-
stead. Perfect zero-knoledge in practice is hard to get, and only
Fiat-Shamir’s scheme among the referred ones in the paper obtains
it. Practically, we don’t need to insist the zero-knowledgeness in
the asymptotic sense, sacrificing the efficiency. Proper selection of
parameters such ask andt is enough to protect the secret informa-
tion.

2.4 Why isvi a Prime Number?
We show that the probability of cheating may be higher than2�t,
unlessvi is a prime. For this, we assume thatvi is not a prime.

Suppose a dishonest proveri who has (si; vi) such thatsvii �
g mod n and pretends to be a proverj. If gcd(vi; vj) 6= 1 such as
vi = la, vj = lb andb < 2t, then he/she can pretend to be proverj
with probabilityb�1 > 2�t by guessinge such thatb dividese+r,
and sendingx � gr mod n andy � s

(e+r)a=b
i mod n. Indeed,

yvjg�e � s
(e+r)vja=b

i g�e � s
(e+r)lba=b
i g�e � s

vi(e+r)
i g�e

� gr � x mod n:

Thus, a dishonest proveri can cheat a verifier with probability
higher than2�t. However, ifvi is a prime, this cannot happen.

2.5 Consideration on Common Modulus
The protocol in this paper uses the same security assumption as
that of RSA. That is, thev-th root finding inZ=nZ is as difficult
as the factorization. Simmons has shown that the protocol using
common modulus in RSA fails as a privacy channel if a message
was encrypted and sent to two or more receivers[14]. In that case,
an outsider (not a subscriber/user) using only the public-key could
decrypt the ciphertext with unacceptably high probability. Also,
DeLaurentis has shown that the common modulus protocol is even
more vulnerable to attack by insiders (subscriber/user) who can
break the cryptosystem by using either a probabilistic or a deter-
ministic method[3]. Knowledge of a single encryption/decryption
pair is equivalent to factoring the modulusn probabilistically, and
enables a subscriber to find other users’ secret key deterministi-
cally. Thus, a protocol using RSA should not use common modu-
lus.

There are two security aspects to be considered in the proposed
scheme. One is whether a subscriber(a legal prover) can finddi
from g1=vi � gdi mod n and vi. If he findsdi, he can easily
factor n by [3]. To find outdi only from gdi mod n, he should
solve a discrete logarithm problem. In fact, most sub-exponential
algorithms to solve the discrete logarithm problem assume a fi-
nite fieldFp or a Galois fieldGF (pm). The order ofg mod p
or g mod pm is known a priori in these fields, whereas the or-
der of g mod n is not known. Thus, those algorithms are not ap-
plicable to find outdi only from gdi in Z=nZ. Moreover, it is
equivalent to breaking the RSA digital signature scheme to finddi
from gdi mod n and vi. The other to be considered is whether
a subscriber can compute another subscriber’s secret information
g1=vj mod n from its secretg1=vi mod n, wherevi; vj are primes.
Unlessvi = avj(a = 1; 2; : : : ), one cannot computeg1=vj mod n

with g1=vi without the knowledge of the factorization[4].

3. DIGITAL SIGNATURES
This section treats digital signatures that are constructed from our
identification scheme. Also, we show that the digital signature
scheme is extendible to multiple digital signature scheme.

3.1 Digital Signature
Using a zero-knowledge based identification scheme and a hash
function, one can construct a secure digital signature scheme[5].
The role of the trusted center in this case is the same as that in
the identification scheme. In our identification scheme, random



numbere contains no information, but its unpredictability prevents
a prover from cheating. Switching the identification scheme to a
signature scheme, we replace the verifier’s role by the hash function
h and obtain the following signature protocol.

� To sign a messageM , Signer :

1. Picks a random number,r, and computes

x � rvi mod n

This computation is the preprocessing stage.

2. ConcatenatesM andx, and hashes the result:

e = h(M;x) 2 f0; : : : ; 2t � 1g

3. Computes

y � rsei mod n

The signature ise andy; he/she sends these to Verifier
with M , C(Useri).

� To verify Signer’s signature onM , Verifier :

1. Computes

z � yvig�e mod n

2. Verifies whetherh(M; z) is e or not. Verifier accepts
the messageM as genuine if and only ife equals to
h(M; z).

THEOREM 3 (COMPLETENESS). If Signer and Verifier follow
their protocols, Verifier always accepts the signature as valid.

PROOF. By definition,

z � yvig�e � (rsei )
vig�e � rvi(svii )eg�e � rvigeg�e � rvi

� x mod n

and thush(M; z) = h(M;x).

The probability distribution of the hash functionh(M;x) must be
uniform with respect to randomx. Also, h(M; x) should be one-
way with respect toM . The hash function which satisfies both cri-
teria is highly resistant against known plaintext attacks and chosen
plaintext attacks.

3.2 Multiple Signature
An extension of the signature scheme into the multiple signature
scheme is presented. Multiple signatures are needed if many people
want to sign the same document. An easy way to do this is to let
each of them sign the same document separately, and concatenate
the result to the signed document. With the scheme, the length and
the time to sign a document is proportional to the number of people
involved. Using the signature scheme designed in section 3.1, we
can sign a document with more efficiency.

To sign a message, signers generate their own random numbers
and use the product of those numbers as a commitment number.
The random question is generated from the committed number, the

message to be signed, and a hash function, so it is identical among
signers. Verification process is similar to that of single signature
scheme except that the public-key used in the verification is the
product ofvi s.

To write a multiple signature and verify a document, each partici-
pant does the following procedure.

� To sign a messageM , Signer i:

1. Picks a random number,ri, and computes

xi � r
Qn
j=1 vj

i mod n

2. Sendsxi to every other signers.

3. Receivesx1; x2; : : : ; xi�1; xi+1; xi+2; : : : ; xn and com-
putes

x �

nY
j=1

xj mod n

4. ConcatenatesM andx, and hashes the result:

e = h(M;x) 2 f0; : : : ; 2t � 1g

5. Computes

yi � ris
e
i mod n

and sendsyi to every other signers.

6. Receivesy1; y2; : : : ; yi�1; yi+1; yi+2; : : : ; yn and com-
putes

y �
nY

j=1

yj mod n

The signature ise andy; he/she sends these to Veri-
fier with M andI1; I2; : : : ; In which are correspond
to each signer’s public-key.

� To verify Signers’ multiple signature onM , Verifier:

1. Computes the following fromv1 = f(I1); v2 = f(I2); : : : ; vn =
f(In), whereIi is an identification word for Signeri:

v =
nY

i=1

vi

2. Computes

z � yvg�e
Pn

j=1 v=vj mod n

3. Verifies whetherh(M; z) is e or not. Verifier accepts
the messageM as genuine if and only ife equals to
h(M; z). If e 6= h(M; z), there is at least one invalid
signature.

Using our multiple signature scheme, the length of a signature is
greatly reduced. Regardless of the number of people involved in
signing procedure, the length of a signature is constantlyt+ log n.
For example, whenn is a 512-bit number and the security parame-
ter t = 272, total signature length of the scheme is72 + 512 bits,
which is the same as that of the single signature. Even better, the
number of signers does not increase the signature length.

As before, the completeness proof is followed by definition.



THEOREM 4 (COMPLETENESS). If Signers and Verifier fol-
low their protocols, Verifier always accepts the signature as valid.

PROOF. Let v be
Qn

i=1 vi. By definition,

y
Qn
i=1 vig�e

Pn
j=1 v=vj

� (y1y2 � � � yn)
Qn
i=1 vig�e

Pn
j=1 v=vj

� (r1r2 � � � rns
e
1s

e
2 � � � s

e
n)
Qn
i=1 vig�e

Pn
j=1 v=vj

� (r1r2 � � � rn)
Qn
i=1 vi(s

Qn
i=1 vi

1 s
Qn
i=1 vi

2 � � � s
Qn
i=1 vi

n )e

� g�e
Pn

j=1 v=vj

� (r1r2 � � � rn)
Qn
i=1 vi(g

Qn
i=1 vi=v1g

Qn
i=1 vi=v2 � � � g

Qn
i=1 vi=vn)e

� g�e
Pn

j=1 v=vj

� r
Qn
i=1 vi

1 r
Qn
i=1 vi

2 � � � r
Qn
i=1 vi

n

� x mod n

THEOREM 5 (SOUNDNESS). Assume that a prover does not
know the

Qn
i=1 si and cannot compute in polynomial time the

Qn
i=1 vi-

th root. If a verifier follows the protocol, he/she will accept the
proof as valid with probability bounded by2�t.

PROOF. To increase the probability of cheating, a prover must
choosex in such a way that he/she can compute

Qn
i=1 vi-th roots

y0 andy00 of

xge
Pn

j=1 v=vj mod n

for two questionse0 ande00. However, the following procedure re-
veals

Qn
i=1 si, and it contradicts the assumption that the

Qn
i=1 vi-

th root cannot be computed in polynomial time without knowingQn
i=1 si.

1. Choose Bezout coefficients m, k such that

m

nY
i=1

vi + (e0 � e00)k = �1;wherevi > (e0 � e00)

for i = 1; 2; : : : ; n:

Sincegcd(
Qn

i=1 vi; e
0�e00) = 1, there existk andm which

satisfy the above condition.

2. Compute
Qn

i=1 si as following :

(g(
Qn
i=1 vi=v1)mg(

Qn
i=1 vi=v2)m � � � g(

Qn
i=1 vi=vn)m

�
y0

y00

�k
)�1

� ((sv11 )(
Qn
i=1 vi=v1)m(sv22 )(

Qn
i=1 vi=v2)m

� � � (svnn )(
Qn
i=1 vi=vn)ms

(e0�e00)k
1 s

(e0�e00)k
2 � � � s

(e0�e00)k
n )�1

� ((s1s2 � � � sn)
(
Qn
i=1 vi)m+(e0�e00)k)�1

� s1s2 � � � sn mod n

4. PERFORMANCE EVALUATION
In the identification protocol and the signature scheme, pre-computations
can reduce the verifier’s burden as well as the prover’s. A prover
can pre-compute the valuex � rvi mod n in its idle time, and

# of mults Prover Verifier Bytes(x; e; y)
FS 18 18 12 + 3 + 256

(t(k+2)/2) (t(k+2)/2)
Schnorr* 1 216 3 + 3 + 17.5

(1.5l + 0.25t)
GQ 36 72 3 + 3 + 64

(1.5t) (3t)
OngSchnorr* 35 37 3 + 3 + 64

(t(k+2)/2 - 1) (t(k+2)/2 + 1)
Ours* 36 36 3 + 3 + 64

(1.5t) (1.5t)

Table 1: Comparison with the other identification schemes : *
requires a certificate verification phase.

# of mults Sig gen Sig verify Length(y; e)
RSA 750 � 2 64

Fiat-Shamir 45 45 576 + 9
Schnorr 1 228 17.5 + 9

GQ 108 216 64 + 9
Ong-Schnorr 107 109 64 + 9
Our Scheme 108 108 64 + 9

Table 2: Comparison with the other signature schemes

a verifier can prepareg�e mod n in advance. When the protocol
starts, the only multiplications a prover should do aresei mod n.
Similarly, it is enough for a verifier to computeyvi mod n and
check the validity of the proof. This pre-computation does half the
verifier’s computation.

Comparisons with other schemes in terms of the number of mul-
tiplications and the required storage amount are shown in Table 1
and Table 2. Pre-computations are considered. We assume that
identification schemes provide a security level of2�24 and signa-
ture schemes2�72. Table 1 and Table 2 show the computational
load of identification schemes and signature schemes, respectively.
In the case of Schnorr’s, Ong-Shnorr’s and our scheme, the number
of multiplications to verify the certificate is not counted. As stated
in Section 2.2, either Rabin-like digital signature scheme or a low
encryption exponent RSA adds only a couple of multiplications in
the verification step[11, 9]. We assume the square and multiply
algorithm is used to exponentiate a number. In Table 1,t means
the security level andl means the number of bits ofq in Schnorr’s
scheme.k is the number of Prover’s secrets which is proportional
to the amount of communication.

Our scheme requires the same computational complexity and al-
most the same hardware both for Prover and for Verifier. This sym-
metricity is useful in the environment where mutual identifications
are required. In the signature generation process, our scheme re-
quires only 14% of the number of multiplications required by RSA.
In the verification phase, 50% of that of Schnorr’s and Guillous and
Quisquater’s are enough. The amount of computation of Guillous
and Quisquater’s during the verification can be reduced by simulta-
neous multiple exponentiation, but it requires more complex hard-
ware than ours.

5. CONCLUSION
In this paper, we propose a new interactive proof based identifi-
cation scheme and a digital signature. The proposed scheme is
very efficient both in verification and in proving steps owing to
the pre-computable protocol structure. This property makes our



scheme much more appropriate for smart cards, and provides the
computational symmetricity. In addition, our identification proto-
col requires minimal amount of storage for secret information and
minimal amount of communications.

Our protocol can be modified such that a prover usesx � gr mod
n andy � se+r

i mod n. In that case, a random numberr should
be chosen in the range[1; : : : ; k], wherek is the order ofg mod n.
With this modified version, a verifier can check the validity of the
proof as in the same way as before.

yvig�e � s
(e+r)vi
i g�e � (svii )e+rg�e � ge+rg�e � x mod n

Soundness proof of the modified version is the same as the origi-
nal one. However, this modification requires a prover to do much
more multiplications, even though those are in the pre-computation
phase.

Besides the digital signature, the protocol can be extended for the
key-exchange when it is used for mutual identification. Instead of
prover’s sending “x = rvi mod n”, the alternate version of the
protocol is used.

1. Useri commitsxi � gri mod n, whereri is a random num-
ber.

2. Userj sends a question and her commitment:ej andxj �
grj mod n.

3. Useri sends her answer and question:

yi � sej+ri mod n andei

4. Userj checksxi � g�ejyvi mod n. and sends her answer:

yj � sei+rj mod n

5. Useri checksxj � g�eiyvj mod n.

After doing the mutual identification protocol, Useri and j can
obtain a common key,Kij = Kji.

Kij � xrij � grj ri � grirj � x
rj
i � Kji mod n
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