
ABSTRACT
In this paper we investigate which characteristics
reliable multicast services should have in order to
be appropriate for use by distributed interactive
media applications such as shared whiteboards,
networked computer games, or distributed virtual
environments. We take a close look at the commu-
nication requirements of these applications and at
existing approaches to realize reliable multicast.
Based on this information we deduce which reli-
able multicast transport protocols are appropriate
for the different aspects of distributed interactive
media. Furthermore we discuss how the applica-
tion programming interface of a reliable multicast
service should be designed in order to support the
development of applications for distributed inter-
active media.

Keywords. Reliable Multicast, Distributed Inter-
active Media.

1. INTRODUCTION
Applications for distributed interactive media such
as shared whiteboards, networked computer
games, and distributed virtual environments have
gained importance rapidly over the recent years.
The main characteristic of a distributed interactive
medium is that it involves user interactions with
the medium itself. Applications for distributed
interactive media frequently rely on multicast
communication since a session involving such a
medium is typically attended by a group of more
than two users. These applications often need to
exchange information in a reliable way. This is

necessary to make sure that the shared state of the
medium remains consistent for all participants of
a session. Reliable multicast is therefore one key
issue for the realization of many distributed inter-
active media.

In this paper we examine the specific needs that
applications for distributed interactive media
place on reliable multicast services. It is not the
aim of this work to define a specific reliable mul-
ticast algorithm. Instead we focus on the issue of
which existing approaches are appropriate for
distributed interactive media. Moreover, we dis-
cuss how the application programming interface
for a reliable multicast service should be
designed in order to support the development of
applications for this media class. The findings
presented in this paper are based on our experi-
ences with developing applications for diverse
distributed interactive media. These include a
shared whiteboard [6], a 3D telecollaboration
application [12], and distributed Java simulations
for teleteaching purposes [9].

The remainder of this paper is structured as fol-
lows: In Section Two we present our model of the
distributed interactive media class. This model
makes it possible to understand and discuss the
communication needs of media belonging to this
class independent of any specific medium. In
Section Three we give a brief summary of exist-
ing approaches that can be employed to achieve
reliable multicast. Based on this information and
on the media model the fourth section contains a
discussion of which reliable multicast approaches
are appropriate to be used for the different
aspects of distributed interactive media. In Sec-
tion Five we take a brief look at congestion con-
trol for distributed interactive media. In Section
Six we investigate the design of application pro-
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gramming interfaces (APIs) for reliable multicast
services that wish to support distributed interactive
media applications. The paper concludes with a
summary and an outlook for future work.

2. MEDIA MODEL
In this section we give a definition of the termdis-
tributed interactive mediain the form of a media
model. A media model is an important tool to
understand the commonalities of a media class. It
allows the discussion of a whole media class
instead of a single medium or application. In par-
ticular it is a good starting point to investigate the
common requirements in regard to reliable multi-
cast services.

2.1. States and Events
A distributed interactive medium has astate [13].
For example, the state of a shared whiteboard is
defined by the content of all pages present in the
shared whiteboard. In order to perceive the state of
a distributed interactive medium a user needs an
application, e.g., a shared whiteboard application
is required to see the pages of a shared whiteboard
presentation. This application maintains a local
copy of (parts of) the medium’s state. Applications
for distributed interactive media are therefore said
to have areplicated architecture.

For all applications participating in a session the
local state of the medium should be at least reason-
ably similar. It is therefore necessary to synchro-
nize the local copies of the distributed interactive
medium’s state among all participants, so that the
overall state of the medium isconsistentup to the
desired degree. A distributed interactive medium
may tolerate brief periods of inconsistency, e.g., in
order to increase responsiveness.

The state of a distributed interactive medium can
change for two reasons, either bypassage of time
or byevents. The state of the medium between two
successive events is fully deterministic and
depends only on the passage of time. Generally, a
state change caused by the passage of time does
not require the exchange of information between
applications since each user’s application can cal-
culate the required state changes independently.
An example of a state change caused by the pas-
sage of time is the animation of an object moving
across the screen.

Any state change that is not a fully deterministic
function of time is caused by anevent. Events can
be separated intoexternal events and internal
events. External events are (user) interactions with
the medium, e.g., the user makes an annotation on

a shared whiteboard page. Internal events are non-
deterministic internal changes in the state of the
medium, such as the generation of a random num-
ber which determines the new heading and direc-
tion of a computer-controlled entity. Whenever
events occur, the state of the medium is in danger
of becoming inconsistent. Therefore, an event usu-
ally requires that the applications exchange infor-
mation - either about the event itself or about the
updated state once the event has taken place.

Distributed interactive media can be sub-divided
into discrete andcontinuous distributed interactive
media. While discrete distributed interactive media
(e.g., shared whiteboards) change their state only
in response to events, continuous distributed inter-
active media (e.g., networked computer games)
may also change their state because of the passage
of time. In order to ensure consistency discrete
media need to make sure that events are applied to
the shared state in the correct order. Continuous
media must execute events in the proper order and
at the correct point in time. If these conditions are
not met the state of the distributed interactive
medium may become inconsistent and a repair of
the shared state may be required.

2.2. Partitioning the Medium -
Sub-Components

In order to provide for a flexible and scalable han-
dling of state information, it is often desirable to
partition an interactive medium into severalsub-
components. In addition to breaking down the
complete state of an interactive medium into more
manageable parts, such partitioning allows the par-
ticipants of a session to track only the states of
those sub-components in which they are actually
interested. Examples of sub-components are 3D
objects (an avatar, a house, a car) in a distributed
virtual environment, or the pages of a shared
whiteboard. Events, external as well as internal,
affect a target sub-component. Sub-components
other than the target are not affected by an event.
This guarantees the independence of sub-compo-
nents and it thereby allows applications to track
the state of one sub-component independent of the
state of other sub-components.

2.3. Environment
While it would be conceivable to declare all the
information that is required by the application to
display the distributed interactive medium to be
part of the medium’s state, this is generally not
desirable. Usually a substantial part of this infor-
mation remains constant over the course of a ses-
sion. We call this constant information the



environment of a distributed interactive medium.
Examples of environments are the base world
descriptions of distributed virtual environments, or
the postscript slides of shared whiteboard presen-
tations. Since the environment stays constant,
there are no mechanisms required to synchronize it
among the participants of a session - the environ-
ment information just needs to be received once by
each participant.

It is therefore a good idea to make the environment
part of the medium data as large as possible and to
minimize the amount of state information. The dis-
tinction between state and environment informa-
tion is situation dependent. A participant might
choose to introduce a new postscript slide on-the-
fly into an ongoing shared whiteboard presenta-
tion, thereby making this slide part of the
medium’s state. It is the task of the application
designer to distinguish between state and environ-
ment information.

3. RELIABLE MULTICAST APPROACHES
Current state-of-the-art reliable multicast
approaches can be divided into three main groups:
structured receiver group, unstructured receiver
group, and forward error correction (FEC) based
approaches [7]. The latter group is special in that it
can be used either stand-alone or in combination
with any one of the other two ways to achieve reli-
able multicast.

3.1. Structured Receiver Group
The approaches based on a structured receiver
group require that the receivers of a reliable multi-
cast transmission are arranged in groups. In each
group there exists one dedicated participant which
is responsible to provide the other group members
with local repair information about lost packets.
The dedicated participants of all groups usually
form a tree structure with the sender as the root of
the tree. Acknowledgments (ACKs) about received
packets and negative acknowledgments (NACKs)
about missing packets are aggregated by the dedi-
cated participants as they travel from the receiver
groups towards the sender. Furthermore the dedi-
cated participants may locally repair packet loss
experienced by participants that belong to their
group. Therefore the original sender of a packet is
only burdened with retransmissions in a small
number of cases. Examples for reliable multicast
protocols that use a structured receiver group are
RMTP-II [18] and TRAM [8]. An overview of
these approaches is presented in [5].

The main advantage of these approaches is that,
once the grouping is established, the repair of lost
packets is very efficient, fast, and highly scalable.
The drawback of approaches with a specific
arrangement of receivers is that the receiver struc-
ture (partly) replicates the multicast-routing infra-
structure at the application level. This raises the
problem of accessing network-topology informa-
tion from the application level and it implies a sig-
nificant overhead in establishing and maintaining
the structure formed by the receivers. These prob-
lems become even more significant when the
group membership is dynamic, i.e., when partici-
pants join and leave the session frequently. Fur-
thermore this approach does not cope well with
large numbers of senders since the arrangement of
receivers is usually sender-specific. Each sender
therefore requires the management of one receiver
group structure.

3.2. Unstructured Receiver Group
Approaches with an unstructured receiver group
rely on the receivers to establish reliability by
sending NACKs for the data that they did not
receive to the whole group of participants. Since
the same data may get lost for multiple receivers
simultaneously aNACK implosion would occur if
all receivers that missed the data replied with a
NACK. In order to prevent NACK implosions
diverse NACK suppression techniques are used.

Most NACK suppression is based on the use of
random timers. All participants that want to trans-
mit a NACK set a random timer. If the timer
expires, a NACK is transmitted. If a NACK from
another participant is received while the random
timer is running the timer is reset. In this way
duplicate NACKs are suppressed. The timeout
value of the random timer may be equally distrib-
uted in an interval that depends on the round-trip-
time between the sender of the data and the recipi-
ent that wants to send a NACK. This approach is
used by the well-known scalable reliable multicast
protocol SRM [3]. Other authors suggest distribut-
ing the timer exponentially over a fixed interval
[15]. The latter is currently considered to be the
more general, more efficient, and the more stable
approach [7,4].

Typically all participants that have successfully
received the requested packet are able to help with
the repair of the packet. In order to prevent a repair
implosion, the repair information is transmitted
similar to NACKs by using a random-timer-based
implosion avoidance mechanism.



When used for a static group of receivers with a
single sender, approaches based on unstructured
receiver groups are somewhat less scalable and
efficient than those based on structured receiver
groups. The reason for this is that there is no con-
cept of local repair in approaches that use an
unstructured receiver group. Repair packets are
always transmitted to the whole group of recipi-
ents. Furthermore these mechanisms are slower in
the repair of lost packets since they typically
involve a random timer for NACK and repair
implosion avoidance. On the other hand they are
significantly less complex and do not incur the
overhead of managing the structure formed by the
recipients. They therefore support dynamic
receiver groups as well as groups with many send-
ers.

3.3. Forward Error Correction
The forward error correction (FEC) mechanism
adds redundancy to the transmitted data in order to
protect it from packet loss. It can be used for reli-
able multicast in two major ways. It either
improves one of the two approaches described
above or it can be a stand-alone approach to realize
reliability for the transfer of bulk-data.

As a complementary mechanism forward error
correction can be either proactive or reactive.Pro-
active FEC is used to protect the original data as it
is being transmitted [17]. It does not rely on
receiver feedback. Using proactive FEC can be
very beneficial since in a multicast group it is very
likely that at least one recipient will not receive a
transmitted packet. If the packets are encoded with
redundancy in an appropriate way, it is possible for
receivers to miss distinct packets while still being
able to completely recover the original data with-
out requesting a retransmission. Furthermore pro-
active FEC supports the dissemination of time
critical data, since request/reply round trips (and
the delay introduced by random timers in
approaches with an unstructured receiver group)
for lost packets are reduced.

Reactive forward error correction is used to repair
packet loss on demand. In reactive forward error
correction the data is transmitted in rounds. After
each round the receivers supply information about
how many additional redundancy packets are
required to repair packet loss. This can dramati-
cally reduce the number of total repair packets that
are required since a single redundancy packet can
repair distinct packets that have not arrived at vari-
ous receivers [14].

When FEC is used as a stand-alone mechanism to
achieve reliability, the sender encodes the original
data and redundancy information in a way that
allows receivers to decode the original data once
they have received a fixed number of arbitrary but
distinct packets. Typically the number of distinct
packets required to decode the data is equal to or
slightly higher than the number of packets in the
original data. The encoded packets are always sent
repeatedly to a multicast group. A receiver joins
the session at any time, receives the encoded pack-
ets, and may leave the session once it has received
enough packets to decode the original data. The
sender continues to send as long as at least one
recipient is present in the session. Examples for
multicast protocols that use this mechanism are the
Digital Fountain approach [1], and the Asynchro-
nous Layered Coding (ALC) reliable multicast
protocol [11].

The usage of FEC as a stand-alone mechanism has
the advantage that recipients may join the trans-
mission at arbitrary times. Furthermore only rarely
packets will be received that contain no useful
data. This is not true for the other mechanisms
where applications will frequently be burdened
with repair packets that they do not need. Finally
stand-alone FEC is highly scalable since it does
not require any feedback from the receivers
(besides the knowledge that at least one receiver is
present). A drawback is that the data must consist
of a single large chunk that is known in advance.
Because of these characteristics the stand-alone
FEC approach is typically used for bulk data trans-
fer and not for real-time data.

4. RELIABLE MULTICAST FOR
DISTRIBUTED INTERACTIVE MEDIA

From the media model it can be derived that there
exist two distinct classes of information that need
to be transmitted for a distributed interactive
medium. On the one hand there is the data that is
transmitted in real-time during the live session.
This data comprises event and state information.
On the other hand there is the environment infor-
mation which is required by a participant before
being able to participate in a session. In the follow-
ing we examine which reliable multicast mecha-
nisms are appropriate for these two classes of
information.

4.1. Environment Information
The distribution of environment information has a
number of important characteristics:



• Environment information is static and may be
very large. For example, the postscript slides of
a whiteboard presentation may have a size of
several megabytes.

• Typically there will be a single sender for the
environment information.

• The number of receivers may vary greatly,
ranging from a few (less than 10) to thousands,
depending on the medium.

• A receiving application will join the transmis-
sion and leave after it has received all relevant
environment information.

• It is unlikely that the recipients of environment
information will join the session simulta-
neously. The information should therefore be
transmitted so that it is possible to use the data
of an ongoing transmission even when applica-
tions missed the beginning of the transmission.

• There are no real-time constraints in the dis-
semination of environment information.

• The sender of the environment information
does not need any knowledge about the recipi-
ents.

These characteristics show that the distribution of
environment information is easy to handle. In par-
ticular it does not require real-time delivery and
there exists only a single sender. Therefore all reli-
able multicast mechanisms described above could
be used. However, since recipients will join the
transmission of information at different times,
stand-alone FEC-based mechanisms have an
advantage when compared to the other methods:
They efficiently support recipients that join during
an ongoing environment transmission. We there-
fore view these mechanisms as an optimal fit for
the distribution of environment information in dis-
tributed interactive media applications.

4.2. State and Event Information
State and event information is exchanged between
the participants of a live session. They share sev-
eral common traits:

• They require many-to-many communication.
Usually all participants are able to send and
receive this kind of information.

• The communication group is dynamic since
participants may join and leave the session at
arbitrary times.

• The number of participants can be moderate to
high. For example, in a shared whiteboard ses-
sion up to a few hundred users may participate

while in networked computer games a thousand
or more players may attend. However, it is quite
unlikely that a single session will comprise
more than a few thousand users. In the event
that more participants are present it is likely
that the communication will be split into multi-
ple sessions [10].

• The size of the transmitted information is much
smaller than the environment information.
While events typically fit into a single network
layer packet, states may occupy several net-
work layer packets. However, the size of both
events and states is one or more orders of mag-
nitude smaller than the environment informa-
tion.

• The data must be delivered under real-time con-
straints. These constraints may be rather loose
or very strict, depending on the medium and
whether event or state information is transmit-
ted.

• Guaranteed reliability is not required. When an
event or state transmission cannot be recovered
the application is able to repair the problem at
the application layer, e.g., by getting the correct
shared state from a peer application. Such a
functionality is part of any distributed interac-
tive media application since it is required to
realize important functionality such as consis-
tency and support of latecomers.

• Packet loss for one sub-component and the
repair thereof should not impair the data deliv-
ery for other sub-components. For example,
when an event for a shared whiteboard page got
lost, events for other shared whiteboard pages
should not be buffered by the recipient until the
packet loss has been repaired.

From these characteristics it can be derived that
the dissemination of state and event information
during a live session is quite demanding. Reliable
multicast approaches that are based on a structured
receiver group are not appropriate since a large
number of senders exists and since the group
membership is dynamic. The overhead for manag-
ing the receiver structure is not acceptable under
these conditions. Reliable multicast solutions that
rely exclusively on FEC are not appropriate since
the data is fairly small, is not known in advance,
and needs to obey real-time constraints.

This leaves us with approaches that use an unstruc-
tured group of receivers. These approaches seem
quite adequate, since they can deal with many
senders, dynamic groups, and small amounts of



data. In addition it has been shown that these
approaches do scale up to the required number of a
few thousand participants [3]. The main critical
issue is that these approaches might not be able to
fulfill the real-time requirement. However, this
problem can be solved by using proactive FEC
[17].

In order to be able to see how proactive FEC
should be used, it is important to have a closer
look at the differences between the transmission of
event and state information. Typically the proper-
ties of an event transmission are as follows:

• An event can be encoded using only a small
number of bytes, generally less than 30-50
bytes. It therefore fits into a single network-
layer packet.

• An event needs to be delivered in time. An
event delivered after it should have taken effect
is a potential source of inconsistency and there-
fore usually triggers some sort of state resyn-
chronization. Discrete media often are more
tolerant of delayed events than continuous
media. However, even discrete media suffer
from delayed events when the ordering of
events is destroyed by the (unexpected) delay.

State transmissions have somewhat different prop-
erties:

• The encoding of a state typically requires more
bytes. The size of an encoded state can range
from around 100 bytes for players in battlefield
simulations to a few thousands of bytes for
complex objects in a shared workspace.

• A state is extracted from the model at a certain
point in time. The recipient of a state can
decode a received state and extrapolate it to
accommodate for transmission delay. Usually
the maximum time during which the state of a
sub-component can be extrapolated is the time
between the extraction of the state information
and the next event for that sub-component. For
example, the state of a shared whiteboard page
will remain valid until any one of the users
interacts with the page. The recipient of state
information will be able to extrapolate the state
of the sub-component as long as no event has
taken effect between the extraction and the
extrapolation of the state. Some applications
might even be able to automatically incorporate
events when the state of a sub-component is
extrapolated, thereby extending the time inter-
val during which a transmitted state remains
useful.

From the different characteristics of state and
event transmission it can be derived that an appli-
cation will likely profit from differentiated usage
of proactive FEC. For events it might be a smart
thing to use a high amount of proactive redun-
dancy, since they are small and need to be received
in real-time. State transmissions, on the other
hand, should employ a much lower amount of
redundancy since states can be large and do have a
deadline which is not as strict as that of events.

Moreover, an application may want to react differ-
ently to the loss of event information than it does
when state information is lost. For example, if an
event gets lost it may make sense not to request a
retransmission since the event would not be
retransmitted in time to meet its deadline. The
application may therefore wish to be informed
about a lost event rather than require the reliable
multicast service to repair the loss. On the other
hand, for state transmission it is likely that the
application would desire the repair of lost packets
since it may be useful for a much longer time than
an event.

In concluding it can be said that the transmission
of state and event information is likely to be best
served with a reliable multicast service that uses
an unstructured receiver group in combination
with proactive FEC. In addition the reliable multi-
cast service may employ reactive FEC to repair
lost packets efficiently. The interface of the reli-
able multicast service should allow the application
to specify differentiated settings for the proactive
FEC, and it should allow the application to specify
what to do in the case that information for a spe-
cific message type gets lost.

5. CONGESTION CONTROL FOR
DISTRIBUTED INTERACTIVE MEDIA

One important topic of current research in the area
of reliable multicast transport protocols is conges-
tion control [18,8]. Congestion control is required
in order to adapt the data-rate of the transmitted
information to the current status of the network. If
congestion is ignored the network could become
saturated, resulting in very high packet loss rates.
In addition a reliable transport protocol without
congestion control would treat transport protocols
that do use congestion control in an unfair manner.
In a congestion situation it would maintain a con-
stant data rate while the transport protocols with
congestion control mechanisms would lower their
rate. It can therefore be expected that future reli-
able multicast transport protocols will offer some



sort of congestion control [7]. In the context of dis-
tributed interactive media it is of particular interest
to understand when and how these congestion con-
trol mechanisms should be employed.

5.1. Environment Information
Since the transmission of environment information
does not have to obey real-time constraints, the use
of congestion control mechanisms is appropriate at
any time. There are no negative side effects
besides an increase in the transmission time
(which is fair, considered that the network is con-
gested).

5.2. Event and State Information
Events and states are transmitted in real-time dur-
ing a live session. It is therefore not always appro-
priate to let a congestion control mechanism delay
the transmission of this information. A delayed
event may cause an inconsistent overall state of the
medium which in turn might trigger a state repair
process that burdens the (already) congested net-
work with additional data. Similarly, a state which
was buffered too long by a congestion control
mechanism might become invalid.

It is therefore important that the application is able
to signal how long an event or state may be
delayed by a congestion control mechanism. If a
congestion control mechanism identifies a situa-
tion where it is no longer possible to meet these
deadlines, it should signal this to the application.
The application in turn must then refrain from
transmitting events and states. In particular the
application should not try to repair inconsistencies
during a congestion period, since this would
increase the network load. Instead the application
should wait until the network is no longer con-
gested and then initiate a state repair to account for
the event and state data that was not transmitted
during the congestion period.

6. API DESIGN CONSIDERATIONS
Derived from the different characteristics of the
dissemination of environment information on the
one hand, and the live transmission of states and
events on the other hand, we expect that two dis-
tinct reliable multicast services will be used for a
distributed interactive medium. In the following
we take a closer look on how appropriate applica-
tion programming interfaces should look like in
both cases.

6.1. API for Environment Transmission
As indicated in the discussion above we assume
that a FEC only approach is used to disseminate

the environment data. What an appropriate API for
the transmission and reception of environment
information could look like is depicted in Figure 1.
The interface offered by the reliable multicast ser-
vice for the sender is comprised of four methods:
setData  is used to tell the reliable multicast ser-
vice what bulk data is to be transmitted. The bulk
data is typically contained in a file. Upon receiving
this message the reliable multicast service calcu-
lates the appropriate encoding of the data. As soon
as a recipient joins the session, the reliable multi-
cast service of the sender will start sending
encoded packets in an appropriate way. When the
last recipient leaves the session the service will
stop sending packets until new recipients join the
session. We expect that the information whether at
least one receiver is listening to the transmission is
provided by the reliable multicast transport proto-
col.

The application of the sender is informed about the
status of the service with two methodstrans-
missionActive  and transmissionInac-
tive . The first method is called when the service
starts sending data while the second signals that
the service has stopped sending data. If the data is
no longer valid (e.g., because a session is finished)
it is invalidated usinginvalidateData.

The application of the recipient usesgetData  to
signal that the service should retrieve the environ-
ment information from a specific multicast
address. The service will join the address for the
time required to receive the data and will then
notify the application withdataReceived . The
information about the number of packets required
for a complete reception of the environment infor-
mation should be signalled in-band by the reliable
multicast transport protocol.

Sender’s Reliable Multicast Service:

void setData(BulkData data)
void invalidateData()

Sender’s Application:

void transmissionActive()
void transmissionInactive()

Receiver’s Reliable Multicast Service:

void getData()

Receiver’s Application:

void dataReceived(BulkData data)

Figure 1: API for Environment Transmission



6.2. API for Event and State Transmission
As discussed above it can be expected that an
approach with an unstructured receiver group, sup-
plemented by proactive and, possibly, reactive
FEC is best suited for the transmission of event
and state information. There exist two opposing
opinions on how an API for the reliable multicast
based transmission of data like events and states
should be realized. The first is typically voiced by
developers of complex distributed interactive
media. They demand an API that makes the reli-
able multicast transmission transparent to the
application. They do not want to worry about how
reliability is actually realized. For this group an
interface similar to TCP sockets would seem opti-
mal.

The second opinion is based on the concepts of
application level framing (ALF) and integrated
layer processing (ILP) [2]. Supporters of this opin-
ion point out that a (sender) ordered, and reliable
delivery of data may incur inefficiencies when
packet loss occurs. This inefficiency stems from
the fact that a packet loss may cause already
received data to be buffered by a receiver until the
packet loss has been repaired. For example, if the
same sender transmits events for two different sub-
components and the first event gets lost, a trans-
parent, source ordered reliable multicast service
would buffer the second event until the loss of the
first event has been repaired. This is undesirable
since it could cause the second event to miss its
deadline, even though it could have been delivered
in time. ALF-based interfaces to reliable multicast
services seek to avoid this inefficiency by identify-
ing the minimal units of data that the application
can make use of. These minimal units of data are
called application data units (ADUs). They are
framed in a way so that a receiving application
knows what to do with the data. ADUs are handed
to the application as soon as they are received.
Ordering between ADUs has to be performed by
the application if such an ordering is desired. The
application is also responsible for explicitly
requesting lost ADUs and for providing the data
for the repair of lost ADUs. Typically, a reliable
multicast service with an ALF-based API does not
buffer any ADUs. It simply transmits them in an
appropriate way and performs loss detection. An
application that uses a reliable multicast service
with an ALF-based API is therefore likely to be
more efficient at the cost of increased complexity
at the application level. A prime example of such a
reliable multicast service is SRM [3].

Application level framing fits the transmission of
event and state data very well. The reason for this
is that events and states essentially represent
ADUs. Moreover in the requirements mentioned
above it was mandated that event and state data for
one sub-component should be delivered indepen-
dent of the data for other sub-components. This
cannot be realized with a transparent, source-
ordered reliability interface. At the same time,
however, the application should not be burdened
with storing outdated ADUs, as it is required, e.g.,
by SRM. Ideally the application should be
involved in the recovery of ADUs only when it
chooses to be so. This requires a different API than
commonly used for reliable multicast services
based on ALF.

As a compromise we propose to use a subscrip-
tion-oriented interface for the reliable multicast
service. It offers the required flexibility and effi-
ciency while the application is free to delegate
repair functionality to the reliable multicast ser-
vice. The interface uses the concept of ADUs.
Figure 2 shows that an ADU contains the follow-
ing information: an ID of the original sender of the
ADU, an ID of the sub-component the ADU refers
to, the data type (event vs. state data), a sequence
number, and the actual data. The sender ID and the
sub-component ID are unique and persistent for a
given session. The sender ID may be obtained
from a centralized source, by means of a distrib-
uted allocation algorithm or it may be calculated
from local information (e.g., from an Ethernet
card’s MAC address). The unique sub-component
ID can then be derived from the sender ID of the
participant that introduced the sub-component into
the session. A session participant may learn about
the mapping from sub-component IDs to names
that are meaningful to the application or the user
either through dedicated protocols, such as SNAP
[16], or by regular announcements as in RTP/I
[13]. With the information contained in the ADU a
receiving application knows exactly what the
ADU refers to and what to do with it. Most impor-
tantly a receiving application can process each
ADU independently.

A reliable multicast service must provide a
transmitADU  method. As parameters this
method accepts the ADU and additional informa-
tion about how to transmit it. The first part of this
additional information identifies the amount of
redundancy data that should be applied to the
ADU as proactive FEC. Allowing the application
to influence how proactive FEC is used is very



important since the application has important
knowledge about the transmission requirements
for a given ADU. The second part of the additional
information identifies the time during which the
ADU, including all redundancy, should be trans-
mitted. For example, when transmitting an event
the value for the time should be chosen so that all
data does have the opportunity to arrive at the
receivers before the deadline of the event is
reached. This supports the use of congestion con-
trol mechanisms that are aware of the timing
restrictions in the application. If the reliable multi-
cast service is not able to meet these deadlines
because of network congestion, it should notify the
application by callingcongestion . As man-
dated above, the application should then refrain
from sending events and states untilconges-
tionResolved  is called.

Once an ADU has been handed to the reliable mul-
ticast service the application must be free to dis-
card it. It is the reliable multicast services’ job to
buffer ADUs for retransmissions. This is appropri-

ate since the reliable multicast service has infor-
mation about the time for which the ADU needs to
be buffered in order to make a reliable delivery
very likely.

The setInterest  method allows potential
receivers to specify reliability quality-of-service
settings on the level of sub-components and ADU
types (event vs. state ADUs). The parameters
allow to specify a pair of one sub-component and
one ADU type, and a quality-of-service that
should be used by the reliable multicast service for
ADUs that belong to the pair. We envision that the
following quality-of-service settings are of use for
distributed interactive media:

• NONE. ADUs are delivered as they are
received. If an ADU gets lost it will not be
recovered, nor will the application be informed
about the loss. This is the setting that should be
chosen for sub-components that are not of
interest for the local recipient.

• DETECT. Same as above, but the application is
informed if an ADU gets lost. This requires
sequence number monitoring and tail loss
detection. Loss detection may be very useful
for events in continuous distributed interactive
media. A retransmission of the lost event may
be useless for a continuous medium since the
deadline of the event would not be kept. Instead
of requesting a retransmission, the application
may therefore trigger the repair of the damaged
shared state.

• RELIABLE. ADUs are delivered immediately
after they have been received. If an ADU or a
part of an ADU gets lost, the loss will be
repaired by retransmission. This is frequently
required for state transmissions.

• ORDERED. ADUs transmitted by a single par-
ticipant are handed to the application in the
order in which they were transmitted. If neces-
sary, ADUs are buffered by the receiver until
the packet loss for previous ADUs has been
repaired. Only lost ADUs of the same type,
referring to the same sub-component, may
cause an ADU to be buffered. This may be used
by non-continuous media for event and state
transmissions.

The application must provide areceiveADU
method which is invoked by the reliable multicast
service to deliver an ADU to the application. In the
event that the application has chosen to use the
loss detection quality-of-service, it receives an
aduLost  message whenever an ADU gets lost

Application Data Unit (ADU) Definition:

Adu ::= SenderID SubID Type SeqNo Data

with Type element of {EVENT, STATE}

Reliable Multicast Service:

void transmitAdu(Adu adu,
                 float proactiveFec,
                 long deadline)

void setInterest(SubID subID,
                 Type type,
                 Qos qos)

with Qos element of {NONE, DETECT,
                     RELIABLE, ORDERED}

Application:

void receiveAdu(Adu adu)

void congestion()

void congestionResolved()

void aduLost(SenderID senderID,
             SubID subID,
             Type type,
             SeqNo seqNo)

void couldNotRecover(SenderID senderID,
                     SubID subID,
                     Type type,
                     SeqNo seqNo)

Figure 2: API for State and Event Transmission



for the specified sub-component/ADU-type pair.
This function contains the ID of the lost ADU’s
sender, the sub-component ID, the type, and the
sequence number.

The final function that needs to be provided by the
application is required because ADUs should be
buffered for retransmission only during a limited
time. This amount of time should be large enough
so that it is very unlikely that a repair request will
arrive after the ADU has been discarded. However,
since a reply to the retransmission request cannot
be guaranteed with absolute certainty, the applica-
tion needs to be informed should this situation
arise. This is done usingcouldNotRecover . In
this case the application needs to repair the prob-
lem. An application for a distributed interactive
medium is able to perform this repair since the
same functionality is also needed in other situa-
tions, e.g., to accommodate latecomers. It should
be noted that this is an exceptional situation which
should occur only on very rare occasions.

7. CONCLUSION AND OUTLOOK
In this paper we investigated the use of reliable
multicast for distributed interactive media, such as
shared whiteboards, networked computer games
and distributed virtual environments. In a first step
we presented our model for the distributed interac-
tive media class and summarized existing mecha-
nisms to achieve reliable multicast. With this
information we were able to reason what reliable
multicast mechanisms should be used for which
aspects of distributed interactive media. In particu-
lar we found that the static and large environment
information is best transmitted using a FEC-only
approach. The main reason for this choice is the
ability to join an ongoing transmission at any time.
For the data transmission during a live session
(i.e., events, and states) only mechanisms with an
unstructured receiver group are acceptable. In
order to support the real-time nature of event data
these mechanisms need to be complemented by
proactive FEC.

It was discussed how to design an appropriate
application programming interface so that conve-
nient access to the reliable multicast service is
guaranteed for distributed interactive media appli-
cations. We proposed to use a compromise
between traditional interfaces where reliability is
established transparently for the application, and
those approaches which rely on application level
framing in combination with applications that are
network aware. In particular our design prevents

the typical inefficiencies of a completely transpar-
ent approach, while it does not burden the applica-
tion with tasks like the buffering of data for
retransmission purposes.

The work presented here has shown that the most
important pieces of functionality required to pro-
vide an appropriate reliable multicast service for
distributed interactive media are already available.
What remains to be done is to take the existing
mechanisms, combine them in the right way, and
provide them with an appropriate interface such
that applications for distributed interactive media
can make efficient and easy use of the resulting
reliable multicast service. We are currently investi-
gating diverse reliable multicast implementations
in order to adapt them to the findings presented
here.
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