
Load-tolerant Differentiation with Active Queue Management

Ulf Bodin*, Olov Schelén⊗ and Stephen Pink
Computer Science and Electrical Engineering

Luleå University of Technology, CDT, SE - 971 87 Luleå, Sweden
⊗also at Swedish Institute of Computer Science (SICS), Kista, Sweden

*also at Telia Research AB, Luleå, Sweden
{uffe, olov, steve}@cdt.luth.se

Abstract
Current work in the IETF aims at providing service differen-

tiation on the Internet. One proposal is to provide loss differ-
entiation by assigning levels of drop precedence to IP packets.
In this paper, we evaluate the active queue management (AQM)
mechanisms RED In and Out (RIO) and Weighted RED
(WRED) in providing levels of drop precedence under different
loads. For low drop precedence traffic, RIO and WRED can be
configured to offer sheltering (i.e., low drop precedence traffic
is protected from losses caused by higher drop precedence
traffic). However, if traffic control fails or is inaccurate, such
configurations can cause starvation of traffic at high drop
precedence levels. Configuring WRED to instead offer relative
differentiation can eliminate the risk of starvation. However,
WRED cannot, without reconfiguration, both offer sheltering
when low drop precedence traffic is properly controlled and
avoid starvation at overload of low drop precedence traffic. To
achieve this, we propose a new AQM mechanism, WRED with
Thresholds (WRT). The benefit of WRT is that, without recon-
figuration, it offers sheltering when low drop precedence traffic
is properly controlled and relative differentiation otherwise.
We present simulations showing that WRT has these properties.

1. Introduction

The traditional Internet architecture offers best-effort service
only. The Internet community has recognized the importance of
simplicity in forwarding mechanisms, but also that a single
service may not be enough to support the wide range of appli-
cations on the Internet. The Internet Engineering Task Force
(IETF) is therefore designing architectural extensions to enable
service differentiation on the Internet. The Differentiated Serv-
ices (DiffServ) architecture [1][2] includes mechanisms for
differentiated forwarding.

One proposed mechanism for DiffServ is to assign levels of
drop precedence to IP packets. This mechanism is included in
the Assured Forwarding (AF) per-hop behavior (PHB) group
[12]. AF can be used to offer differentiation among rate adap-
tive applications that respond to packet loss, e.g., applications
using TCP. The traffic of each user is tagged as being in or out
of their service profiles. Packets tagged as in profile are as-
signed lower drop precedence than those tagged as out of pro-
file. In addition, a packet within a user’s profile may be tagged
with one out of several levels of drop precedence. For now,
there are three levels of drop precedence specified for AF.

When creating differentiation with levels of drop precedence,
packets within an application data stream may get tagged with
different drop precedence levels depending on whether they are
considered in or out of profile. For AF, it is required that pack-
ets within an application data stream tagged with different drop
precedence levels are not reordered by routers. Packet reorder-
ing can reduce the performance of TCP and real-time applica-
tions using UDP.

Moreover, for AF, it is required that the levels of drop prece-
dence are ordered so that for levels x < y < z, Pdrop(x) < Pdrop(y)
<= Pdrop(z)1. Within this order, AF leaves freedom in further
tuning drop precedence probabilities. For example, drops can be
strictly given to high precedence traffic so that Pdrop(z) ap-
proaches 1 before any packets at other levels are dropped, or
drop probabilities can be relatively distributed among prece-
dence levels, etc. To characterize queuing mechanisms offering
multiple levels of drop precedence, we introduce two properties,
sheltering and load-tolerance.

We denote a drop precedence level as sheltered if traffic loads
at higher precedence levels only have minor effects on the loss-
rate experienced by traffic at this level. The sheltering property
holds for a queuing mechanism if it offers such protection for
traffic at one or more precedence levels. Sheltering is justified
by requirements for predictability. When sheltering is provided,
the network can be provisioned and traffic profiles can be de-
fined to offer users a predictable service for their in traffic. As
in traffic is sheltered, the aggregated amount of out traffic in
the network will only have minor effects on the predictability of
such service. However, if traffic control fails or is inaccurate,
sheltering can cause starvation of higher precedence traffic.

The load-tolerance property holds for a differentiating queu-
ing mechanism if it meets the following two requirements at
overload:

• Prevent starvation of high drop precedence traffic.
High drop precedence traffic must always get a useful share
of the bandwidth available (i.e., even if low drop precedence
traffic is not properly controlled).

• Preserve hierarchy among drop precedence levels.
Traffic at a drop precedence level must always experience
less drop probability than traffic at a higher drop precedence
level. As mentioned above, this is also a requirement for AF.

1 Pdrop(x) is the drop probability for traffic at precedence level x.

Load-tolerance can be justified by recommendations for the
DiffServ architecture. Preventing long-term starvation of best-
effort traffic (normally given the Default PHB) is advocated in
[2]. The DiffServ architecture allows packets initially tagged for
the Default PHB to be re-tagged with another PHB. Re-tagging
best-effort traffic with a high drop precedence level within an
AF class makes it possible to explicitly control the relation in
treatment between out traffic and best-effort traffic. This is
appealing since prioritized traffic (in and out traffic together)
can then be guaranteed equal or better treatment than best-effort
traffic. If best-effort traffic would be forwarded in a separate
queue to avoid starvation, such a guarantee is harder to provide.

Services sheltering in traffic and guaranteeing equal or better
treatment than best-effort can be constructed with a differenti-
ating queuing mechanism that does not by itself prevent starva-
tion. Then, to protect best-effort traffic against long-term star-
vation, one must however rely on accurate control of in traffic.

In the context of DiffServ, traffic control based on either dy-
namic admission control or statistically allocated service pro-
files has been discussed. Dynamic admission control is likely to
be adequate in protecting best-effort traffic against long-term
starvation. It may not however protect against transient starva-
tion. This is because the traffic control may fail due to inaccu-
racies in admission control and topology changes. Some ISPs
may accept transient starvation, but others may consider it im-
portant to avoid.

For statistically allocated, destination-independent, service
profiles, longer periods of overload may be encountered at to-
pology changes or for destinations that suddenly become more
attractive than expected. Consequently, traffic control based on
such service profiles may not be adequate in protecting best-
effort traffic against either long-term or transient starvation.

The objective of this work is to show that a drop differentiat-
ing queuing mechanism can be designed to offer sheltering if in
traffic is properly controlled (i.e., conditional sheltering) and to
meet our requirements for load-tolerance if traffic control fails
or is inaccurate. With these properties, traffic control need not
be accurate to protect high precedence traffic against long-term
starvation. Statistically allocated, destination-independent,
service profiles can then be used without risking long-term or
transient starvation of high precedence traffic. Moreover, con-
ditional sheltering and load-tolerance can be appealing to avoid
transient starvation when dynamic admission control is used.

Multiple levels of drop precedence can be created with an
AQM mechanism applied to a FIFO queue. An appealing prop-
erty of FIFO queues is that packets are forwarded in the same
order as they arrive. Thus, packet reordering is avoided.
Moreover, FIFO queues are suitable for high-speed links since
they can be implemented efficiently.

In this paper we evaluate the appropriateness of two AQM
mechanisms, RIO [4] and WRED [5], in providing sheltering
under different loads. In section 3.3, we show that RIO and
WRED can be configured to offer sheltering. Then, however,
these mechanisms can cause starvation of higher drop prece-
dence traffic if there is an overload of low drop precedence
traffic, i.e., with such configuration they cannot meet our re-
quirements for load-tolerance.

In section 3.4.1, we show that WRED can meet our require-
ments for load-tolerance when configured to offer a relative
differentiation. Relative differentiation means, in this context,
that traffic at a drop precedence level experiences a loss-rate
defined in relation to the loss-rate experienced by traffic at
another precedence level. Next, in section 3.4.2, we show that
RIO can be configured to prevent starvation, but then a hierar-
chy among precedence levels cannot be guaranteed under peri-
ods of overload. That is, traffic tagged with a low drop prece-
dence level may experience a larger loss-rate than traffic at a
higher precedence level. Such a configuration of RIO is there-
fore not advisable.

Since neither RIO nor WRED can meet our requirements for
load-tolerance when providing sheltering, we propose a new
AQM mechanism, WRED with Thresholds (WRT). The benefit
of WRT is that, without reconfiguration, it offers sheltering if
low drop precedence traffic is properly controlled and relative
differentiation otherwise. Thus, WRT meets our requirements
for load-tolerance. We examine the load-tolerance of WRT
through simulations. With these simulations, WRT is compared
with RIO and WRED to show that WRT can offer the same
differentiation as these mechanisms. Moreover, simulations
evaluating properties of WRT when used to construct services
are provided.

Load-tolerant and conditional sheltering queuing mechanisms
are appealing for constructing predictable end-to-end services
that guarantee users equal or better service than users of the
best-effort service. The load-tolerance property allows traffic
control to be less conservative in considering rare network fail-
ures, as a relative differentiation is a minimum guarantee, and
traffic with higher drop precedence will not be starved. Al-
though services are discussed in this paper, we do not focus on
construction of end-to-end services. Our main contribution is
that we show how an AQM mechanism can be designed to
provide both conditional sheltering and load-tolerance.

The rest of this paper is structured as follows: In section 2,
related work is discussed. Section 3 discusses basic properties of
AQM using Random Early Detection (RED) as an example.
Then, the applicability of WRED and RIO for offering differen-
tiable levels of drop precedence is discussed. In section 4, a new
queue mechanism, WRT, is proposed. In section 5, we present
simulations to evaluate the basic properties of WRT. Section 6
discusses some implications WRT might have on end-to-end
service construction. Finally, in section 7 we summarize our
major findings.

2. Related Work

Differentiation in IP networks can be created with queue
management mechanisms, scheduling mechanisms using mul-
tiple queues, or combinations of those. Multiple queues may,
however, cause packet reordering. As pointed out in section 1,
reordering of packets within an application data stream should
be avoided when creating differentiation between levels of drop
precedence. For this reason, we do not consider multiple queue
schemes in this paper.

WRED and RIO, which we evaluate in this paper, are two
AQM mechanisms designed to offer multiple levels of drop
precedence. Another AQM mechanism that could be extended
to provide multiple levels of drop precedence is Fair RED
(FRED) [18]. However, since FRED relies on per-flow infor-
mation2, it can be expected to need more memory and process-
ing than simpler mechanisms such as WRED and RIO. For
queuing mechanisms, memory consumption and processing cost
should be minimized. In this paper, we present a new sheltering
AQM mechanism and show that it meets our requirements for
load-tolerance (as defined in section 1). This new mechanism
does not use any per-flow information. Since we can provide the
differentiation we are aiming for without per-flow information,
we do not evaluate FRED in this paper.

Within the IETF, there are works in progress evaluating dif-
ferent issues of the DiffServ architecture with simulations. One
issue studied is how to prevent unresponsive UDP traffic from
getting more than its fair share of the unreserved bandwidth in
an AF class [12]. In [14] and [15], the need for two or three
levels of drop precedence to solve this issue is studied. Moreo-
ver, in [16] different assignments of three drop precedence
levels to unresponsive UDP and responsive TCP traffic are
studied to evaluate this issue of fairness. Another issue studied
is how to achieve fairness among flows within an AF class. A
new tagging algorithm, the fair marker, is presented and evalu-
ated with simulations in [17].

None of the above-referred works study the aspect of load-
tolerance, which this paper is focused on. Those works implic-
itly presume that traffic at a sheltered drop precedence level is
forwarded separately from best-effort traffic. This can, for ex-
ample, be achieved with separate queues for sheltered and best-
effort traffic respectively. Some ISPs may prefer such solutions.
However, forwarding best-effort traffic separately from priori-
tized traffic (in and out traffic together) implies that out traffic
may get treated different to best-effort traffic. Moreover, with
separate queues, this difference is hard to control. Our work
shows that traffic at a sheltered precedence level can be for-
warded in the same queue as best-effort traffic without risking
starvation of high drop precedence traffic. This enables an ex-
plicit control of the relation in treatment between out traffic and
best-effort traffic, which can be beneficial. For example, with an
explicit control of this relation, prioritized traffic (in and out
traffic together) can be guaranteed equal or better treatment
than best-effort traffic.

2 Per-flow states are kept for flows present in the queue.

3. Active Queue Management (AQM)

WRED and RIO are two AQM mechanisms designed to pro-
vide multiple levels of drop precedence. They are both exten-
sions of RED. In this section, we describe RED (section 3.1),
RIO and WRED (section 3.2). Section 3.3 discusses the risk of
starvation when offering sheltering with WRED or RIO. In
section 3.4, we examine these mechanisms’ ability to meet our
requirements for load-tolerance (as defined in section 1) when
offering relative differentiation.

3.1 Random Early Detection (RED)

RED was originally proposed in 1993 by Floyd and Jacobson
[9] and is now recommended for deployment in the Internet
[10]. RED allows a router to drop packets before any queue
becomes saturated. Consequently, congestion responsive flows
will back-off early resulting in shorter average queue lengths.
This is appealing for several reasons. First, the queuing delay
will decrease, which is good for interactive applications. Sec-
ond, packet drops will not occur in bursts. RED achieves this by
dropping packets with a certain probability depending on the
average queue length (avg_ql in Figure 1).

drop probability
1.0

avg_ql

max_thmin_th

max_p

Figure 1 The RED mechanism.

3.2 Weighted RED and RED In and Out

WRED [5], defined and implemented by Cisco, and RIO, pro-
posed and evaluated with simulations by Clark and Fang [4],
are two AQM mechanisms defined for service differentiation in
IP networks. They are both based on RED and offer differentia-
tion by managing drop precedence.

With WRED, eight separate levels of drop precedence can be
supported. Each of these levels is configured with a separate set
of RED parameters (see Figure 2). RIO, on the other hand, has
only two sets of RED parameters. Hence, in its basic version,
two levels of drop preference are supported, i.e., one level for
packets tagged as in profile and another level for packets tagged
as out of profile.

drop probability
1.0

avg_ql

max_th(0)min_th(0)

max_p(0)

max_p(7)

 .

 .
 .

max_th(7)min_th(7) . . .

Figure 2 The WRED mechanism.

The main difference between WRED and RIO is that WRED
uses one average queue length to calculate drop probabilities
while RIO uses two average queue lengths. WRED calculates its
average queue length (avg_ql) based on all packets present in
the queue. RIO does that too but, in addition, it calculates a
separate average queue length for packets in the queue tagged
as in profile (avg_ql_in), see Figure 3.

Recommendations on how WRED and RIO should be param-
eterized can be found in [4] and [5] respectively. With the rec-
ommended setting of WRED, a relative differentiation is ob-
tained. The recommended setting of RIO provides sheltering.
We do not, however, stick to these recommendations in our
evaluation of these mechanisms. To examine whether RIO or
WRED can be configured to provide sheltering and meet our
requirements for load-tolerance, we need to consider any possi-
ble configuration of these mechanisms.

The parameter settings given in sections 3.3 and 3.4, where
creations of sheltered and relative differentiation respectively
are discussed should be seen as rough recommendations. As
pointed out in [13], finding an optimal RED configuration is
non-trivial.

drop probability
1.0

avg_ql_in

max_th_inmin_th_in

max_p_in

drop probability
1.0

avg_ql

max_th_outmin_th_out

max_p_out

Figure 3 The RIO mechanism.

3.3 Creat ing Sheltering

We denote a drop precedence level as sheltered if traffic loads
at higher precedence levels only have minor effects on the loss-
rate experienced by traffic at this level. Hence, this loss-rate can
be limited by controlling traffic at the sheltered level only (i.e.,
traffic at other drop precedence levels need not be controlled).

In this section, we show that neither WRED nor RIO can
meet our requirements for load-tolerance when configured to
provide sheltering. With these mechanisms, traffic at a shel-
tered level has to be properly controlled to avoid starvation of
higher drop precedence traffic and to ensure that a hierarchy is
preserved between precedence levels.

3.3.1 Sheltering with WRED

With WRED, sheltering is offered with parameter settings
satisfying the following two rules:

(1) max_th(n) < max_th(n-1) , and

(2) max_th(n) < min_th(n-1) (n = 1, …, 7)

where lower n means lower drop precedence.

The setting of the max_p(#)s does not affect the sheltering. A
configuration satisfying rules (1) and (2) is shown in Figure 2.
Satisfying these rules is needed to prevent uncontrolled traffic
at higher drop precedence levels from causing more than occa-
sional losses to traffic at lower precedence levels. For example,
uncontrolled traffic at precedence level one can be expected to
cause avg_ql to exceed max_th(1) with a few packets (or bytes)
for short periods. Hence, setting max_th(0) and/or min_th(0) ≤
max_th(1) would allow traffic at precedence level one to cause
more than occasional losses to traffic at precedence level zero.
This would break the sheltering of precedence level zero.

With a configuration satisfying rules (1) and (2), sheltering of
traffic at precedence levels 0 to 6 is offered. However, to avoid
starvation of traffic at drop precedence level 7, avg_ql must not
exceed max_th(7) for any longer period (which must be ensured
by traffic control applied to traffic at precedence levels 0 to 6)3.
In general, to prevent starvation of traffic at drop precedence
level n+1, traffic control applied to traffic at drop precedence
level n must ensure that avg_ql does not exceed max_th(n+1) (n
= 0, …, 6). Hence, WRED cannot meet our first requirement for
load-tolerance when configured to provide sheltering.

3.3.2 Sheltering with RIO

Since RIO uses a separate average queue length for packets
tagged as in profile, it offers sheltering with any configuration.
However, max_th_in should be set equal to or larger than
max_th_out. Otherwise, traffic tagged as in profile may experi-
ence a higher loss-rate than traffic tagged as out of profile. This
would break the hierarchy between precedence levels (i.e., if the
level for in packets is to provide lower drop precedence than the
level for out packets). Such configuration is not advisable since
it cannot meet our second requirement for load-tolerance, which
also is a requirement for AF.

The configuration of RIO shown in Figure 3 offers sheltering
and preserves the hierarchy. With this kind of configuration,
starvation of high drop precedence traffic (out traffic) can how-
ever occur if low precedence traffic (in traffic) is not properly
controlled. With RIO, this control has to ensure that avg_ql
does not exceed max_th_out for any longer period. Conse-
quently, RIO cannot meet our first requirement for load-
tolerance when configured to preserve a hierarchy between drop
precedence levels.

3 Traffic at precedence level 0 may cause avg_ql to exceed max_th0
with a few packets (or bytes). That would however not cause starva-
tion of that traffic since avg_ql will shrink below max_th(0) when
packets at that precedence level get dropped.

3.4 Creat ing Relative Diff erentiation

We consider two precedence levels to be relative differenti-
ated when traffic at these levels experiences a definable relation
in loss-rates. If, say, Ri is the loss-rate offered by drop prece-
dence level i and Rj is the loss-rate offered by drop precedence
level j when traffic is present at both these levels. Then the
relation in loss-rates between precedence levels i and j, for i < j,
can be specified as:

(3) Ri < k + l * Rj

or as:

(4) Ri = k + l * Rj (i, j = 1 … N)

where k and l are constants.

WRED can meet the requirements for load-tolerance when
configured to offer relative differentiation among drop prece-
dence levels. This is described in section 3.4.1. Section 3.4.2
shows that RIO is unable to offer relative differentiation.

3.4.1 Relative Differentiation with WRED

Relative differentiation is offered by WRED if all max_th(#)s
are set equally. The differentiation offered then depends on the
settings of min_th(#)s and max_p(#)s. These parameters should
be set to ensure a hierarchy between the levels of drop prece-
dence. That is, traffic at low drop precedence levels should, at
any average queue length longer than min_th(7), experience
lower drop probability than traffic at higher precedence levels.

drop probability
1.0

avg_ql

max_th(1)
max_th(0)

max_p(1)

max_p(0)

min_th(1)
min_th(0)

Figure 4 WRED configured to offer a relative differentiation.

With the setting of WRED shown in Figure 4, traffic at prece-
dence level zero will, when avg_ql exceeds the min_th(#)s,
experience less loss-rate compared to traffic at precedence level
one in times of congestion. An exact relation in loss-rates be-
tween traffic at different levels of drop precedence cannot how-
ever be guaranteed with WRED (i.e., the difference in loss-rates
can be larger or less than expected). This is because WRED
uses the average queue length (avg_ql) to differentiate between
precedence levels. This variable will vary over time with the
arrival-rate of packets. For example, if traffic at a drop prece-
dence level is burstier than traffic at other precedence levels.
Then the relation in loss-rates between that level and higher
drop precedence levels can be less than expected. Depending on
traffic characteristics, the relation in loss-rates between a pair of
drop precedence levels can also be larger than expected.

 An approach to improve the predictability of relations in loss-
rates is to keep backlogs on previous drops for each precedence
level. This approach is described and evaluated in [19].

3.4.2 Relative Differentiation with RIO

RIO cannot be configured to offer relative differentiation.
This is because RIO uses a separate variable (avg_ql_in) to
calculate the probability, Pin, of dropping an arriving packet
tagged as in profile. This separate variable does not contain any
information about the amount of packets tagged as out of profile
present in the queue. The calculation of Pin can therefore not be
related with the probability Pout of dropping the packet if it had
been tagged as out of profile.

4. Definition of a Load-tolerant AQM Mechanism

In this section, we define a new AQM mechanism that, with-
out reconfiguration, offers sheltering when low drop precedence
traffic is properly controlled and relative differentiation other-
wise. This new mechanism, Weighted RED with Thresholds
(WRT), is designed by combining RIO with WRED. However,
before presenting WRT, we define another mechanism, named
load-tolerant RIO (ltRIO), which is a special case of WRT.

4.1 Definition of Load-tol erant RIO (ltRIO)

We adopt, from RIO, the idea of calculating two separate av-
erage queue lengths. However, instead of discarding packets
tagged as in profile when avg_ql_in exceeds max_th_in (Figure
3), these packets are treated as if they were tagged as out of
profile. When avg_ql_in exceeds th_in, we use avg_ql (i.e., the
average queue length for all packets present in the queue) to
make drop decisions for in packets. Note that a decision of
treating in packets as if they were tagged as out of profile is for
one queue only. That is, packets tagged as in profile are not re-
tagged as out of profile.

To avoid starvation, max_th_in must be set lower than
max_th_out. This configuration provides sheltering as long as
avg_ql_in does not exceed min_th_in. If avg_ql_in does exceed
max_th_in, the AQM mechanism will behave as RED (i.e.,
there will be no differentiation).

Note that, for ltRIO, calculating a separate average queue
length for in packets is necessary to shelter those packets from
packets tagged as out of profile. That is, to ensure that in pack-
ets do not suffer from more than occasional packet losses caused
by overload of traffic tagged as out of profile.

4.2 Definition of WRED with Thresholds (WRT)

With ltRIO, packets are dropped using RED parameters cou-
pled to the average queue length for both in and out packets in
the queue. Thus, to perform random congestion signaling, RED
parameters coupled to avg_ql_in are not necessarily needed. At
overload, these parameters can however be used to perform
random early congestion signaling for in traffic.

By setting min_th_in equal to max_th_in, in traffic get pro-
tected from more than occasional losses caused by overload of
out traffic as long as avg_ql_in does not exceed these thresh-
olds. This is appealing when constructing services guaranteeing
in traffic very low loss-rates. Since we consider such services,
we chose to reduce the number of parameters present in ltRIO
by using a single threshold instead of a set of RED parameters
to make drop decisions for in traffic.

Since ltRIO does not offer any differentiation when avg_ql_in
exceeds max_th_in, the hierarchy among precedence levels may
get broken. One way to preserve the hierarchy when this hap-
pens is to switch from sheltered to relative differentiation.

As discussed in the previous section, WRED provides relative
differentiation when all max_th(#)s are set equally. Thus, we
combine ltRIO with WRED to get this property in our new
AQM mechanism. For this mechanism, we do not allow the
max_th(#)s to be set separately from each other. This is because
such setting may cause starvation of traffic at high drop prece-
dence levels.

The combined scheme, WRT (Figure 5), provides relative
differentiation between N levels of drop precedence when
avg_ql_in exceeds th_in. That is, when avg_ql_in exceeds
th_in, avg_ql is (as for ltRIO) used to make drop decisions for
in packets. However, in contrast to ltRIO, differently tagged in
packets can be relatively treated to each other and to out packet.
The relative differentiation is configured with the min_th(#)s
and the max_p(#)s parameters.

drop probability
1.0

avg_ql

max_thmin_th_in
min_th_out

max_p_in

do not drop any
packets tagged
as in profile

avg_ql_inth_in

max_p_out

use the above-depicted
mechanism for packets
tagged as in profile

Figure 5 The WRT mechanism.
for each packet arrival

calculate avg_ql and avg_ql_in;
if the packet is tagged as in

if avg_ql_in > th_in
if min_th_in < avg_ql < max_th

calculate probability Pin;
with Pin, drop this packet

else if avg_ql >= max_th
drop this packet

else if the packet is tagged as out
if min_th_out < avg_ql < max_th

calculate probability Pout;
with Pout, drop this packet

else if avg_ql >= max_th
drop this packet

Figure 6 The pseudo-code of WRT.

In this paper we only use two precedence levels, which are
called the in and out level respectively. Figure 6 shows how
WRT, with two levels of drop precedence, can be implemented.

The implementation has basically the same complexity as an
implementation of RIO4.

Whenever needed, WRT can be extended to support more lev-
els of drop precedence. Hence, WRT can be used to support the
AF PHB group in the IETF DiffServ framework. For AF, three
levels of drop precedence are specified [12]. To support three
precedence levels, WRT can be extended with one more thresh-
old associated with an additional average queue length. In this
case, the average queue length for the lowest precedence level is
calculated based on packets tagged with that level only. Next,
the average queue length for the middle level is calculated
based on packets tagged with that level and packets tagged with
the lowest precedence level. Finally, an average queue length is
calculated for all packets present in the queue.

When the average queue length for the lowest precedence
level exceeds the threshold associated with this level, packets at
this level are treated as if they were tagged with the middle
level. When both the average queue length for the lowest level
and the average queue length for the middle level exceeds their
thresholds, a relative differentiation between the three prece-
dence levels is provided. The relative differentiation depends on
how the min_th(#) and max_p(#) are configured for each of
these levels and the current traffic load.

The threshold for the lowest precedence level must be set to a
equal or lower value than the threshold for the middle level.
This is because the order at which the thresholds are set defines
the order in priority between the precedence levels. We recom-
mend the following configuration rules for a WRT queue with
N levels of drop precedence:

• th_(0) ≤ th_(1) ≤ … ≤ th_(N-1) < max_th

• max_p(0) < max_p(1) < … < max_p(N)

• all min_th(#)s set equally and larger than th_(N-1)

The first two rules are to achieve a hierarchy between prece-
dence levels. Setting all min_th(#)s equally creates a relative
differentiation that offers a fixed relation for any avg_ql be-
tween the value of these parameters and max_th. Moreover,
when low precedence traffic is properly controlled, setting
min_th(#)s larger than th_1 gives traffic at precedence level
zero a queue space equal to min_th(#)s – th_1 before any packet
at that level has to be dropped. Hence, that traffic can be given
a useful share of the bandwidth.

5. Simulations

In this section, we present simulations testing the load-
tolerance of ltRIO and WRT. The simulations are made with
the network simulator (ns) [11]. The simulation setup is de-
scribed in section 5.1. Using this setup, we validate that ltRIO
can offer the same differentiation as RIO and that WRT can
offer the same differentiation as WRED (section 5.2).

4 An efficient implementation of an AQM mechanism should use
integer arithmetic and a background process to make operations that
do not need to be made as part of the forwarding process.

To evaluate the behavior of these mechanisms when con-
structing services, we study how the differentiation offered
depends on the amount of traffic tagged as in profile (section
5.3). Next, we identify, for a specific traffic load, topology and
two configurations, the maximum load of in traffic for which
sheltering can be preserved (section 5.4). Thereafter, we study
the behavior of RIO, ltRIO and WRT when the load of in traffic
is gradually increased to exceed the maximum load of in traffic
for one of these configurations (section 5.5). Finally, we sum-
marize the simulations (section 5.6).

5.1 Simulation Setup

In the simulations, a simple topology with ten hosts (S0, …,
S9) connecting to their respective destinations (R0, …, R9) via
one common link is used. This link is a bottleneck of 30 Mbps
with 20 ms delay (Figure 7). The AQM mechanisms evaluated
are applied to the queue attached to the bottleneck link. Each
host has ten TCP Reno connections with their respective desti-
nation. The throughput for each of these TCP flows is measured
over the time of 16 simulated seconds. Every simulation goes
through an initiation phase of four simulated seconds before
measurements are initiated. This is to let the queue stabilize
before the behavior of the AQM mechanisms we want to evalu-
ate is observed.

30 Mbps
20 ms

 .
 .
 .

R1 R2

S0

S1

S9

 .
 .
 .

R0

R1

R9
 TCP flows

AQM

Figure 7 The simulation setup.

During the time when throughput is measured, the aggregate
throughput is close to 30 Mbps in all simulations. The TCP
connections are initiated randomly within the first simulated
second. All these connections have the same RTT (40 ms plus
queuing delay). With equal RTT for all connections, we avoid
that connections with shorter RTT get higher throughput than
connections with longer RTT. Such differences in throughput
would make our evaluation of load-tolerance complicated.

Certainly, the traffic distribution used in our simulations does
not correspond to what recently has been observed on the Inter-
net. To create a more realistic traffic scenario, a large amount
of short-lived TCP flows should be used in addition to long-
lived TCP flows, some portion of UDP traffic will also be
needed, and the amount of traffic present should be varied over
time with some heavy-tailed statistical distribution. Such a
scenario would however make the load vary randomly due to
the statistics used. Our simple traffic scenario enables us to
control the load more accurately, which is needed to evaluate
load-tolerance.

A time sliding window (TSW) rate estimator [4] is used for
each of the ten hosts to tag packets as in profile up to a certain
rate. Thus, one service profile is applied for all ten TCP con-
nections at every single host. The TSW rate estimator calcu-
lates, upon each packet arrival, the average rate for packets that
have arrived over a period. By tagging packets as out of profile
when the average rate exceeds a certain threshold, the bursti-
ness of TCP packets tagged as in profile is smoothed out.

As discussed in [4], there are two different approaches to how
packets can be tagged based on the rate estimated with TSW.
The first approach is more general and can be applied to aggre-
gated TCP traffic as well as to individual TCP connections. The
second approach should only be applied to individual connec-
tions but is then more effective if the estimator is placed close to
the sending host. Since we apply the estimator to an aggregate
of ten TCP connections, the first approach is more appropriate
for our simulations.

With the first approach, the TSW window size should be set
to a large value (i.e., in the order of a TCP saw tooth from 66 to
133 percent of the rate specified in the service profile). This is
recommended in [4]. Too large a TSW window, the traffic
tagged as in profile can become burstier (e.g., bursts shorter
than the TSW window size may not be detected and packets
tagged as in profile may thus be burstier). On the other hand,
too small a TSW window may cause the aggregate throughput
to be less than what is specified in the profile. For example, if
the rate at which an aggregate of TCP sources send packets
varies with a period shorter than the TSW window. Then pack-
ets may be tagged as out of profile too often. This is because the
rate estimated with a short TSW window varies more than it
would with a larger TSW window. If those out packets get
dropped in the network, the aggregate rate of the TCP sources
may not reach the target rate.

Consequently, the TSW window size may affect the through-
put experienced by individual TCP flows and thus the variation
in arrival-rate of packets tagged as in profile. Unfortunately,
this implies that there is a circular dependency between the
length in time of a saw tooth and the TSW window size. In
addition, the length of a saw tooth will vary because packets get
randomly dropped in the network. An appropriate TSW win-
dow size for a certain TCP connection is therefore hard to
choose based on known parameters only. Thus, it might be
necessary to adapt the TSW window size based on real-time
measurement of each individual TCP flow. We do not, however,
evaluate the issue of adapting the TSW window size in this
paper since it is focused on queuing mechanisms and not traffic
conditioning.

For all our simulations, the window size is set to 300 ms. This
value was chosen from the following calculations. Assume that
the target rate of a certain TCP connection is set to 500 kbps. In
our simulations, the RTT is 80 ms (including average queuing
delay) and the average packet size is 8000 bits. This TCP con-
nection will then on average have five packets on the fly and an

average congestion window of five packets of data5. Optimally,
the number of packets on the fly and the size of the congestion
window will then vary between 1.33 * 5 and 0.66 * 5. The
variation is thus 0.67 * 5 = 3.35 packets. Since TCP increases
its congestion window with at most one segment of data6 for
each RTT during congestion avoidance, the length in time of a
TCP saw tooth is 3.35 * 0.08 = 0.268 s.

5.2 Properties of ltRIO and WRT

In this section, the properties of ltRIO and WRT are evaluated
in comparison with RIO and WRED. Especially, we study the
differentiation these mechanisms offer during overload of traffic
tagged as in profile. To perform this evaluation, the average
throughput experienced by TCP sources sending all their pack-
ets tagged as in profile is observed (i.e., these sources have
unlimited rate profiles). This is compared with the average
throughput experienced by other TCP sources sending all their
packets tagged as out of profile (i.e., sources with zero-rate
profiles). The fraction of TCP sources with unlimited rate pro-
files is varied between 10 and 90 percent in steps of 10. The
results are plotted in graphs with the average throughput at the
y-axis and the fraction of sources with unlimited rate profile at
the x-axis. Figure 8 shows the results for WRED and RIO when
configured to offer sheltering with the risk of starving high
precedence traffic at overload (configuration 1 of WRED and
RIO).

WRED is, in this simulation, configured with max_th(0) set
to 200 packets, min_th(0) to 150 packets, max_th(1) to 100
packets, min_th(1) to 50 packets, max_p(0) and max_p(1) to 5
percent. The parameters for the other six precedence levels are
not relevant since only level zero and one are used (level one is
applied to traffic tagged as in profile and level zero to traffic
tagged as out of profile). RIO is configured equally (i.e.,
max_th_in set to 200 packets, min_th_in to 150 packets,
max_th_out to 100 packets, min_th_out to 50 packets,
max_p_in and max_p_out to 5 percent).

Figure 8 Throughput with WRED and RIO (configuration 1).

5 (500 kbps * 0,080 s) / 8000 bits = 5 packets on the fly on average.
6 One segment of data is equal to the payload of one packet.

With the configuration used in Figure 8, TCP sources with
zero-rate profiles are starved completely (i.e., they do not get
any bandwidth since all their packets are dropped by the queu-
ing mechanism). This implies that with these configurations,
neither WRED nor RIO can meet our first requirement for load-
tolerance. For this simulation scenario and configuration of
WRED and RIO, these mechanisms behave equally (i.e., the
average throughput for TCP sources with rate profiles is the
same for WRED and RIO).

Although the configuration of RIO used for the simulation
presented in Figure 8 is the one recommended, we also evaluate
a configuration for which RIO avoids starvation of out traffic
(configuration 2 of RIO). Unfortunately, this configuration may
give lower loss-rates to high precedence traffic than to low
precedence traffic (i.e., the hierarchy among precedence levels
may not be preserved). Figure 9 shows the results for RIO with
this configuration together with the results for ltRIO.

RIO is, in this simulation, configured with max_th_in and
min_th_in set to 100 packets, max_th_out to 200 packets, and
min_th_out to 100 packets. Hence, the value of max_p_in is not
relevant (since max_th_in and min_th_in are equal). The
max_p_out parameter is set to 5 percent. ltRIO has the same
configuration (i.e., the parameters present in both these mecha-
nisms are set equally). The th_in parameter in ltRIO is set to
100 packets.

Figure 9 Throughput with ltRIO and RIO (configuration 2).

It can be seen in Figure 9 that ltRIO offers the same differen-
tiation as RIO when the number of flows with unlimited rate
profiles is less than 57 percent. Above that load, ltRIO behaves
as RED while RIO no longer preserves the hierarchy between
the in and out precedence levels. That is, for RIO, the loss-rates
experienced by flows with unlimited rate profiles are higher
than the loss-rates experienced by traffic with zero-rate profiles.
For ltRIO, loss-rates are approximately equal for traffic with
unlimited rate profiles and traffic with zero-rate profiles. Thus,
ltRIO can offer sheltering without the risk of giving less quality
to traffic tagged as in profile than to high precedence traffic.

Figure 10 shows the results for WRT and WRED configured
to offer relative differentiation (configuration 2 of WRED).
WRED is in this simulation configured with max_th(0) and
max_th(1) set to 200 packets, min_th(0) and min_th(1) to 100
packets, max_p(1) to 5 percent, and max_p(0) to 4 percent. As
for the simulations presented in Figure 8, the parameters for the
other six precedence levels are not relevant. The parameters
present in both mechanisms are set to the same value. The
max_th parameter in WRT is set to 100 packets.

Figure 10 Throughput with WRT and WRED (configuration 2).

In Figure 10 it can be seen that both WRED and WRT offer a
relative differentiation when the number of flows with unlim-
ited rate profiles exceeds 50 percent. The average throughput
per TCP flow experienced by flows with unlimited rate profiles
is higher that the average throughput experienced by flows
using zero-rate profiles. That is, for WRT, the loss-rates experi-
enced by flows with unlimited rate profiles are lower than the
loss-rates experienced by traffic with zero-rate profiles. This
differentiation is the same as the one offered with WRED.
When the number of flows with unlimited rate profiles is less
than 50 percent, WRT offers the same differentiation as RIO
and ltRIO.

Hence, with this particular configuration, WRT behaves as
RIO and ltRIO if the number of flows with unlimited rate pro-
files are less than 50 percent and otherwise as WRED. This
means that WRT preserves the hierarchy between drop prece-
dence levels at all load scenarios tested. These observations
indicate that WRT offers sheltering when low precedence traffic
is properly controlled and relative differentiation otherwise.

5.3 Differentiat ion during O verload

Allowing sources to have unlimited rate profiles represents an
extreme situation of overload since the admission control pres-
ent is based only on the number of flows. We consider this as a
worst case scenario when control of the aggregated traffic
tagged as in profile has failed completely. Simulations with this
kind of overload provide an indication of how sensitive the
differentiation is to various amounts of TCP sources using un-
limited rate profiles. To investigate this sensitivity, we apply a

common profile of 5 Mbps to ten percent of all TCP flows (i.e.,
all flows from host S9). The sources with unlimited rate profiles
vary between 0 and 80 percent. Hence, the graph in Figure 11
goes from 0 to 90 percent of flows with rate profiles instead of
from 10 to 90 percent as in the previous graphs. This is to show
the throughput the flows from S9 would have had if there was
no overload (i.e., there are no TCP sources with unlimited rate
profiles). In this simulation, we use the same configuration of
ltRIO as for the simulation presented in Figure 9.

Figure 11 ltRIO under severe overload.

Figure 11 shows how the average throughput experienced by
the ten controlled TCP sources degrades with an increasing
number of flows using unlimited rate profiles. The controlled
TCP sources are those with a common rate profile of 5 Mbps. It
can be seen that a few uncontrolled TCP sources do not cause
any severe degradation in throughput experienced by the TCP
sources sharing the 5 Mbps profile. However, when the amount
of uncontrolled sources goes above 45 percent, there is no dif-
ferentiation whatsoever.

The rather gentle service degradation shown in Figure 11 pre-
sumes that the flows with unlimited rate profiles are responsive
to network congestion signaling (i.e., packet drops). Unrespon-
sive applications can cause this degradation to be much more
drastic.

5.4 Bandwidth Allocation Limits

As mentioned above, ltRIO and WRT offer the same differen-
tiation (i.e., sheltering) as RIO if avg_ql_in never exceeds th_in
and the same differentiation (i.e., relative differentiation) as
WRED otherwise. The question is then at which load differen-
tiation changes from being sheltered to being relative. To study
this issue, we have done a set of iterative simulations. Through
these simulations, we find for two settings of ltRIO and three
load scenarios (i.e., number of TCP flows with rate profiles) the
maximum load of in traffic that can be supported without caus-
ing avg_ql_in to grow larger than th_in. The maximum load of
in traffic is controlled by the aggregate TSW target rate. We
denote the maximum aggregate TSW target rate as the band-
width allocation limit.

Besides varying the target rate in the TSW rate estimator, we
used the same configuration as in the simulation of ltRIO
shown in Figure 9. Table 1 presents the maximum rates for two
different settings of th_in, i.e., ½ and ¾ of max_th (the max_th
parameter is set to 200 packets). For each of these settings, we
have simulated three scenarios with 30, 40 and 50 percent of all
flows having rate profiles.

th_in/max_th ½ ¾

Flows with rate
profiles (%) 30 40 50 30 40 50

Maximum load
(Mbps)
(% of link speed)

14.04
46.8

13.13
43.8

14.35
47.8

22.13
73.8

24.11
80.4

22.13
73.8

Table 1 Bandwidth allocation limits with ltRIO.

Table 1 shows how the bandwidth allocation limit depends on
how th_in is set in relation to max_th (Figure 5). For these
simulations, setting th_in to ½ and ¾ of max_th_out result in a
bandwidth allocation limit close to ½ and ¾ of the link speed
respectively. Those relations cannot, however, be expected to
hold for any configuration of ltRIO and any possible traffic
load. This is because the bandwidth allocation limit will depend
on the variation of avg_ql_in. The larger this variation is, the
less bandwidth can be allocated without risking that avg_ql_in
exceeds th_in. Such things as the window size in the TSW rate
estimator, the configuration of the average queue length esti-
mator in the AQM mechanism (RIO, ltRIO or WRT), and traf-
fic burstiness affect the variation of avg_ql_in. Thus, the exact
limit can only be found with real-time measurements. Never-
theless, our results indicate that a rough estimation of the
bandwidth allocation limit for a certain link can be made based
on the configuration of ltRIO.

5.5 Load-tolerance of RIO, ltRIO and WRT

In this section, we study the behavior of RIO, ltRIO and WRT
when the load of in traffic (i.e., the amount of bandwidth allo-
cated) is gradually increased to exceed the bandwidth allocation
limit for one of these configurations (i.e., th_in is set to ½ of
max_th). We examined the average throughput experienced by
10 TCP sources sharing a rate profile for in traffic of 5 Mbps in
comparison with TCP sources having zero-rate profiles.

The total amount of bandwidth allocated is varied between 5
and 40 Mbps. Three sets of simulations were made with 30, 50
and 70 TCP sources using rate profiles. That is, 10 TCP sources
share a rate profile of 5 Mbps and 20, 40 and 60 TCP sources
have rate profiles between a total of 0 and 35 Mbps. The other
60, 40 and 20 TCP sources have zero-rate profiles.

Figure 12 shows the results for RIO configured to offer shel-
tering with the risk of starving high precedence traffic at over-
load (configuration 1 of RIO). This is the same configuration as
the one used for the simulation presented in Figure 8.

Figure 12 RIO under limited overload (configuration 1).

In Figure 12, it can be seen that the average throughput of the
ten TCP sources with a common rate profile of 5 Mbps is more
than 400 kbps7 for all loads used in these simulations. No
packet tagged as in profile were dropped when the amount of
bandwidth allocated was equal or less than 30 Mbps. However,
the TCP sources with zero-rate profiles experienced very high
loss-rates. When the amount of bandwidth allocated was 35
Mbps or more, the TCP sources with zero-rate profiles did not
get any data through. All out packets were then dropped.
Hence, our first requirement for load-tolerance is not met.
WRED behaves equally as RIO when configured as for the
simulation presented in Figure 8 (configuration 1 of WRED).

Figure 13 shows the results for RIO configured to not guar-
antee low drop precedence traffic lower loss-rates (configura-
tion 2 of RIO). This configuration is the same as in the simula-
tion presented in Figure 9.

Figure 13 RIO under limited overload (configuration 2).

In Figure 13 it can be seen that, if the total amount of band-
width allocated is less than 15 Mbps (i.e., ½ the link speed), the
average throughput of the ten TCP sources with a common rate

7 The expected average throughput of the ten TCP sources with a
common rate profile of five Mbps is 500 kbps (5000 / 10 = 500).

profile of 5 Mbps is more than 500 kbps. When more band-
width is allocated, the differentiation depends on the number of
TCP sources having rate profiles. With 70 percent TCP sources
having rate profiles, TCP sources with zero-rate profiles experi-
ence more throughput on average than the ten connections
sharing a 5 Mbps rate profile (i.e., our second requirement for
load-tolerance is not met). This behavior can also be observed
in Figure 9.

In Figure 14, the results for ltRIO are shown. The same con-
figuration of ltRIO as in the simulations presented in Figure 9
is used.

Figure 14 ltRIO under limited overload.

By comparing Figures 13 and 14 it can be seen that ltRIO of-
fers a similar differentiation as RIO with configuration 2 if the
total amount of bandwidth allocated is less than 15 Mbps. In
addition, these two mechanisms offer a similar differentiation if
the number of TCP sources having rate profiles is 30 percent. If
there are more than 50 percent or more of the TCP sources with
rate profiles, ltRIO behaves, as expected, as RED (i.e., no dif-
ferentiation is offered).

Finally, in Figure 15 the results for WRT are shown. The
same configuration of WRT as in the simulations presented in
Figure 10 is used.

Figure 15 WRT under limited overload.

In Figure 15, it can be seen that WRT offers a similar differ-
entiation as RIO and ltRIO if the total amount of bandwidth
allocated is less than 15 Mbps. However, while RIO fails in
preserving the hierarchy among precedence levels (configura-
tion 2 of RIO, shown in Figure 9 and 13) and ltRIO behaves as
RED at high loads (Figure 9 and 14), WRT provides relative
differentiation when sheltering cannot be offered. This is also
shown in Figure 10. RIO can be configured to preserve the
hierarchy among precedence level, but out traffic may then
suffer from starvation (configuration 1 of RIO, shown in Figure
8 and 12). Hence, WRT is the only queue mechanism of these
three that can meet our requirements for load-tolerance when
supporting conditional sheltering.

5.6 Summary of Simulat ion Results

We have shown that WRT offers, without reconfiguration,
sheltering when in traffic is properly controlled and relative
differentiation otherwise. RIO can be configured to offer shel-
tering, but cannot offer relative differentiation with any con-
figuration. WRED can offer relative differentiation with one
configuration and sheltering with another configuration.
WRED cannot however offer both these kinds of differentia-
tions without reconfiguration.

The sheltering WRT offers is shown to be the same as for RIO
when the amount of in traffic is controlled below a certain limit
and the relative differentiation is shown to be the same as for
WRED.

Our simulations indicate that the bandwidth allocation limit
when differentiation changes from sheltered to relative differ-
entiation can roughly be estimated based on the configuration of
WRT. However, the actual bandwidth that can be allocated will
be less if avg_ql_in has a non-negligible variation.

6. Service Construction

In this paper, we introduce two properties, sheltering and
load-tolerance, to characterize differentiating queuing mecha-
nisms. We show that an AQM mechanism can be designed to
support conditional sheltering and load-tolerance without re-
configuration.

A load-tolerant and conditional sheltering queuing mecha-
nism is appealing for constructing predictable and advanta-
geous end-to-end services. We say that a service is advanta-
geous if it guarantees users equal or better service than users of
the best-effort service8. If there is a high probability that users
of a service receive an expected throughput, we say that the
service is predictable.

Predictable and advantageous services can be constructed with
a differentiating queuing mechanism that does not by itself
prevent starvation. Then, to protect best-effort traffic against
long-term starvation, one must however rely on accurate control
of in traffic.

8 A discussion on how to guarantee equal or better service than best-
effort is provided in section 1.

Dynamic admission control is likely to be adequate in pro-
tecting best-effort traffic against long-term starvation. Statisti-
cally allocated service profiles may however not be adequate in
protecting best-effort traffic against neither long-term nor tran-
sient starvation.

With a load-tolerant and conditional sheltering queuing
mechanism, statistically allocated service profiles can be used
for predictable and advantageous services without risking long-
term and/or transient starvation of best-effort traffic. Moreover,
transient congestion when using dynamic admission control can
be avoided with such a mechanism. Using statistically allocated
service profiles and dynamic admission control for predictable
and advantageous services are discussed in section 6.1 and
section 6.2 respectively.

6.1 Statistically Allocated Service Profiles

For statistically allocated, destination-defined (i.e., service
profiles defining specific hosts or stub-networks as destina-
tions), service profiles, periods of overload may occur if net-
work routing topology changes. Moreover, for statistically allo-
cated, destination-independent (i.e., service profiles defining
specific networks as destinations), service profiles, periods of
overload may be encountered for destinations that suddenly
become more attractive than expected.

Since statistically allocated service profiles are likely to be
semi-statically allocated, it may take some time to re-allocate
these profiles after a failure has been detected. Hence, with
statistically allocated service profiles, best-effort traffic cannot
be protected against long-term and transient starvation unless
the queuing mechanism is load-tolerant.

With a load-tolerant and conditional sheltering queuing
mechanism, predictable and advantageous services can be con-
structed with statistically allocated service profiles without
risking long-term or transient starvation. For such services,
both destination-defined and destination-independent service
profiles can be used. Rough estimations of in traffic load, which
can be verified with periodic measurements, are likely to be
sufficient for creating such services.

6.2 Dynamic Admission Control

With dynamic admission control, service requests are either
accepted or rejected dependent on whether free capacity is cur-
rently available or not. The amount of free capacity can be es-
timated from measurements and/or by comparing the total
service capacity and current service allocations.

When dynamic admission control is used, service profiles are
often allocated dynamically as well. Dynamic admission control
and allocation of service profiles can be made by a control sys-
tem (e.g., a Bandwidth Broker [6] or a QoS agent [7][8]) or a
signaling protocol (e.g., the Resource Reservation Protocol
(RSVP) [3]).

For dynamically allocated, destination-defined, service pro-
files, the control system or the signaling protocol may fail in
adapting fast enough to changes in network routing topology.
Moreover, if measurement based admission control is used, the
control mechanism may accidentally accept traffic causing

temporary overload of in traffic until this condition is detected.
Destination-independent service profiles might be possible to
allocate and change dynamically if service preemption can be
tolerated. Temporary overload of in traffic is however still likely
to occur during the process of changing service profiles. Hence,
although dynamic admission control is likely to protect best-
effort traffic against long-term starvation, it may not protect this
traffic against transient congestion. Some ISPs may accept
transient starvation, but others may consider it important to
avoid.

With a load-tolerant and conditional sheltering queuing
mechanism, both transient and long-term starvation is avoided.
Consequently, traffic control needs to be less conservative in
considering rare network failures (which may cause changes in
network routing topology). Less conservative, perhaps meas-
urement-based, control mechanisms that dynamically allocate
service profiles can increase the utilization of resources allo-
cated for predictable and advantageous services. The utilization
of these resources can be increased for both destination-defined
and destination-independent service profiles.

7. Conclusions

In this paper we have evaluated the appropriateness of two
AQM mechanisms, RIO [4] and WRED [5], in offering shel-
tering under different loads. A drop precedence level is said to
be sheltered if traffic loads at higher precedence levels only
have minor effects on the loss-rate experienced by traffic at this
level. Sheltering is justified by requirements for service predict-
ability. For this evaluation, we say that a differentiating queuing
mechanism is load-tolerant if it can meet the following two
requirements at overload:

• Prevent starvation of high drop precedence traffic.
High drop precedence traffic must always get a useful share
of the bandwidth available (i.e., even if low precedence traf-
fic is not properly controlled).

• Preserve hierarchy among drop precedence levels.
Traffic at a drop precedence level must always experience
less drop probability than traffic at a higher drop precedence
level.

Load-tolerance is appealing when using statistically allocated,
destination-independent, service profiles. Longer periods of
overload may then be encountered at topology changes or for
destinations that suddenly become more attractive than ex-
pected. Without load-tolerance, long-term starvation of high
precedence traffic may then occur. Avoiding long-term starva-
tion of traffic at high drop precedence levels is desired when
best-effort traffic is forwarded at such levels. Forwarding best-
effort traffic with high drop precedence in the same queue as in
traffic enables services guaranteeing equal or better treatment
than best-effort.

We show, though simulations, that RIO and WRED cannot
meet our requirements for load-tolerance when configured to
offer sheltering. At overload, RIO can only meet one of the two
requirements with one single configuration (i.e., with two dif-
ferent kinds of configurations, RIO can meet both require-

ments). WRED can only meet the requirements if configured to
provide relative differentiation. Relative differentiation means,
in this context, that traffic at a certain level experiences an
average loss-rate defined in relation to the average loss-rate
experienced by traffic at another level.

As neither RIO nor WRED can offer sheltering and meet our
requirements for load-tolerance, we have proposed a new AQM
mechanism, WRT. WRT calculates a separate average queue
length for packets at a sheltered level. Packets at this level are
not dropped as long as this average queue length stays below a
certain threshold. If the average queue length for packets at
sheltered level exceeds the threshold these packets are reclassi-
fied to a level that can be relatively differentiated to other lev-
els. This action prevents high drop precedence traffic from
being starved and preserves the hierarchy between precedence
levels. WRT is thus load-tolerant according to our definition.

We have shown through simulations that WRT offers shel-
tering when in traffic is properly controlled and relative differ-
entiation otherwise. Moreover, the sheltering offered by WRT is
shown to be the same as for RIO when the amount of prioritized
traffic is controlled below a certain limit and the relative differ-
entiation is shown to be the same as for WRED.

8. References

[1] Black D. et. al. (1998), An Architecture for Differentiated
Services, IETF RFC 2475, December 1998.

[2] Nichols K. et. al. (1998), Definition of the Differentiated
Services Field (DS Field) in the IPv4 and IPv6 Headers,
IETF RFC 2474, December 1998.

[3] Braden R. et. al. (1997), Resource Reservation Protocol
(RSVP) - Version 1 Functional Specification, IETF
RFC2205, September 1997.

[4] Clark D. and Fang W. (1998), Explicit allocation of best-
effort packet delivery service, IEEE/ACM Transactions on
Networking, Volume 6, No. 4, pp. 362 – 373, August
1998.

[5] Technical Specification from Cisco, Distributed Weighted
Random Early Detection, URL:
http://www.cisco.com/univercd/cc/td/doc/product/software/
ios111/cc111/wred.pdf.

[6] Nichols K., Jacobson V. and Zhang L (1997),
A Two-bit Differentiated Services Architecture for the
Internet, November 1997, URL: ftp.ee.lbl.gov/papers
/dsarch.pdf.

[7] Schelén O. and Pink S. (1998), Resource Reservation
Agents in the Internet, The 9th International Workshop on
Network and Operating Systems Support for Digital Audio
and Video (NOSSDAV98), July 1998.

[8] Schelén O. and Pink S. (1998), Aggregating Resource
Reservations over Multiple Routing Domains, IWQoS'98,
May 1998.

[9] Floyd S. and Jacobson V. (1993), Random Early Detection
Gateways for Congestion Avoidance, IEEE/ACM Trans-
actions on Networking, August 1993.

[10] Braden B. et al (1998), Recommendations on Queue Man-
agement and Congestion Avoidance in the Internet, IETF
RFC2309, April 1998.

[11] UCB/LBNL/VINT Network Simulator - ns (version 2)
(1999), URL: http://www-mash.cs.berkeley.edu/ns/.

[12] Heinanen J. et. al. (1999), Assured Forwarding PHB
Group, IETF RFC 2597, June 1999.

[13] May M., Bolot J., Diot C. and Lyles B. (1999), Reasons
not to deploy RED, IWQoS´99, June 1999.

[14] Jain R., Liu C., Goyal M. and Durresi A (2000), Perform-
ance Analysis of Assured Forwarding, IETF DRAFT Feb-
ruary 2000.

[15] Elloumi O., De Cnodder S. and Pauwels K. (1999), Use-
fullness of three drop precedences in Assured Forwarding
service, IETF DRAFT, July 1999.

[16] Seddigh N., Nandy B. and Pieda P. (1999), Study of TCP
and UDP Interaction for the AF PHB, IETF DRAFT,
September 1999.

[17] Kim H. (1999), A fair Marker, IETF DRAFT, April 1999.

[18] Lin D. and Morris R. (1997), Dynamics of Random Early
Detection, SIGCOMM´97, September 1997

[19] Dovrolis C. and Ramanathan P. (1999), A Case for Rela-
tive Differentiation Services and the Proportional Differ-
entiation Model, IEEE Network, 13(5): 26-34, September
1999 (special issue on Integrated and Differentiated Serv-
ices in the Internet), URL:
http://www.cae.wisc.edu/~dovrolis/homepage.html

