
Analysis of Errors in Network Load Measurements

Stanislav Belenki Sven Tafvelin
Department of Computer Engineering

Chalmers University of Technology
S-412 96 Göteborg, Sweden

{belenki,tafvelin}@ce.chalmers.se

ABSTRACT

The paper identifies elements in network monitoring
systems that cause errors in the load measurements found
in recent reports on network statistics from an academic
backbone network. Two types of network monitors are
investigated: counter-based and packet capturing. The
paper explains how to assign an accuracy term to the
load values in case of counter-based monitors and how to
eliminate distortion in the case of packet capturing
monitors. The paper also suggests an MIB to reduce the
counter-based measurement error.

1. INTRODUCTION

From the moment the Internet appeared it has been
measured in different ways in order to keep it working
and plan its further development. Perhaps the most
fundamental parameter of any communication network is
its load. Measured load values provide indications of the
overall performance of the network. It is on the basis of
these values that a deeper analysis of the network is often
carried out. For example, a load value exceeding 60% of
the nominal capacity of a network link may indicate that
the link is overloaded. Thus, it is necessary to identify
the cause of the overload: an increase in the number of
the users, misbehavior of a network protocol or a mistake
in the routing.

The most well understood network load
measurement is the periodic one. The measurement is
based on periodic accumulation of the number of octets
transmitted over the observed link over a certain time
interval. The resulting load samples reflect different
behavior aspects of the network depending on the length
of the time interval. Setting the interval to one hour may
thus help identify the busy periods of the network or link
over a day. On the other hand, load samples collected
with a periodicity of several seconds or a few minutes
enable keeping track of statistical properties of the traffic
that are otherwise averaged in more coarsely sampled
statistics. The statistical properties or alarms derived
from the finely sampled load values can be used e.g. for

security purposes [1].
The measured values of the network load must be

accurate enough to justify network management decision
based on them. In case these values are distorted due to
some flaw in the measurement system, it is difficult, if
not impossible, to rely on them and the decisions they
lead to. Thus, it is important to identify sources of the
distortion, as well as its character and magnitude, in
order to develop distortion-free measurement systems
[2].

There are two major ways to obtain periodic
samples of the network load. The first method relies on
polling the network nodes for counters of octets
transferred over interfaces of the nodes. The other
method derives the load samples from packet or flow
traces collected by such systems as tcpdump [3],
OCXmon [4] or NetFlow [5]. The first method is used by
the SNMP (Simple Network Management Protocol) and
requires the network nodes to run an SNMP agent that
serves the polls and maintains the counters. The second
method usually employs some dedicated hardware that
sniffs packets transmitted over the link to which it is
connected and saves the time stamped packet headers in
some log files. The log files are then processed by
summing the sizes of the packets for each time interval.
The systems that use the second method provide much
more detailed information on the traffic than do the
former systems and can use a single packet trace to
produce the periodic network load samples with different
sample interval length. However, these systems also
require much greater resources than the systems that use
the first method. Thus, collecting the traces usually
requires a dedicated host with comparatively large
storage capacity and a transmission medium splitter (e.g.
optical) per each observed link in case the transmission
medium is not shared. Furthermore, the use of flow-
based systems like NetFlow limits the range of the
sampling interval because the statistics are maintained
per flow. This makes impossible sampling of the load
over time intervals smaller than the duration of the
shortest flow . At the same time the first method might
require only one host that collects values of the octet
counters from a number of routers serving a whole
intranet. On the other hand queries issued by the host to
the routers require the latter to consume their resources
(e.g. CPU cycles) to process the queries while handling
the traffic itself.

This paper presents an investigation into the two
methods for obtaining the network load samples in order
to identify sources of errors of the network load values
generated by the systems based on these methods. The
investigation includes theoretical and quantitative
analyses of the errors. In a number of real life

measurements performed in the study the measurement
systems used are described in detail to assure that no
error other than that induced by the method it employs
distorts the load values.

The general problem of accurate measurements of
Internet behavior is not new and has been investigated in
a number of ways ([6], [7], [8]), although the problem of
accurate load measurement has not received any
significant attention. Nevertheless, authors of [9]
explicitly mention the ability of TCP/IP stack
implementation to affect the results of their study,
meanwhile perhaps diminishing the significance of this
distortion with respect to the low speed network the
authors were studying.

The paper is organized as follows. Sections 2 and 3
describe the operation of each type of monitor and
elements of the monitors that induce errors along with
real life measurements of the errors. Section 4 provides a
discussion of the results obtained in the previous
sections, and section 5 concludes the paper.

2. COUNTER-BASED LOAD
MEASUREMENTS - SNMP
AGENT/CLIENT VERSION 3.5-
3 CARNEGIE MELLON
UNIVERSITY

2.1 The model

An SNMP[10] (Simple Network Management
Protocol) traffic monitoring system includes an SNMP
agent located at a host or a network node and an SNMP
management station usually located at a workstation. The
agent is responsible for maintaining a management
database known as MIB, which contains, among other
data, configuration, performance, fault parameters, and
other statistics of the host or node where it is installed.
The performance parameters also include statistics on
network interfaces of the host/node, namely the number
of octets passed through the interface in both directions,
counters of packets that belong to specific network
protocols, as well as other data of this type. Sometimes
the SNMP management station and the SNMP agent are
located at the same host. We, however, will investigate
the case where the agent is placed at a network node and
the management station is a remote workstation, which is
common in cases where the agent is located at a network
node.

To obtain load values from a remote SNMP agent,
the management station sends SNMP GetRequest
messages to the agent every T seconds. The agent
receives the request, processes it, and sends back an
SNMP GetResponse message containing the values of
the requested parameters. The monitoring station then

subtracts the number of reported octets from the value
resulting from the previous poll. (Wrap around of the
counters is taken into account when needed.) The
resulting number of octets is attributed to the last interval
T and this entry is logged into a file. The resulting
interactions are shown in Figure1.

SNMP agent

MIB

SNMP management
station

analyzing and
processing
software

GetRequest(vari)

GetResponse
(vari = value)

Figure 1. Interaction between an SNMP management
station and an SNMP agent

However, a closer look at these interactions and their
timing reveals details that can affect the accuracy of the
logged data. Figure 2 illustrates this by showing how the
interactions are decomposed into the following series of
events: before the GetRequest is actually sent to the
agent, it is delayed in the socket and interface queues of
the management station (MS Tx); the transmission of the
request to the agent‘s node adds another delay (Tx Ms →
Ag); there the request is queued in the network interface
device driver and then in its socket queues (Ag Rx
altogether); finally the request is delivered to the SNMP
software. The software performs the necessary inquiries
and constructs an SNMP GetResponse containing the
requested data (Ag SNMP). The response is transferred to
the management station in a fashion equivalent to the
transfer of the request from the management station to
the agent’s node (phases from Ag Tx to MS Rx). The time
required by an agent to read the relevant counters of the
network node (Ag SNMP) depends on the network
node‘s load situation. The higher the load, the longer the
time required to read the counters. Also the network
between the agent and the monitoring station may
experience different load conditions during the phases Tx
MS→Ag and Tx Ag → MS.

All these effects introduce variable delays in all the
above interactions. Thus, the real time between two
successive polls is distorted in two ways. First, it is
shifted by the minimum possible time it takes to process
the phases from MS Tx to Ag SNMP.

Ti
*

MS
Rx

Tx Ag→MSAg
Tx

Ag
SNMP

Ag
Rx

Tx MS→AgMS
Tx

Ti

Figure 2. Chain of events within SNMP request-response interaction

Ti+1
*Ti+1 Ti

*+TTi
*Ti

T assumed by the management station x

Real T* = T + x

time

Figure 3. Two successive SNMP request/response interactions

Second, it is changed by the difference between the
agent- and transmission-induced delays in successive
interactions. For example, if the processing time of the
request generated at time Ti was faster by x seconds than
that of the request issued at time Ti+1, the real time

interval would be T+x (the interval ends at time instance
T*

i+1). Packets processed by the node during these x
seconds are mistakenly accounted for in the time interval
(Ti+1-Ti, see Figure 3).

timeTi T*i Ti+1 T*i+1 Ti+2 T*i+2 Ti+3 T*i+3 Ti+4 T*i+4

εi+4εi+3εi+2εi+1εi

Ta
i+3Ta

i+1 Ta
i+2Ta

i

Figure 4. A number of successive GetRequest-GetResponse interactions

The above observations can be extended to intervals
that consist of more than two successive polls of the
counter. Figure 4 shows an example where the
downwards arrows are instances of the GetRequest
generation by the management station and the upwards
arrows are instances of the corresponding counter reads
by the agent. Let’s denote the time between Ti and T*

i of
the ith GetRequest-GetResponse interaction (Figure 2) as
εi and assume that the ith load sample derived from the ith

and the i+1st values of the counter is the first load sample
in the sequence shown by Figure 4. Then, xi = εi+1 -εi,
and the actual time period between the ith and the i+1st

counter reads is Ta
i = T + xi. In analogy the i+1st interval

is Ta
i+1 = T + xi+1, where xi+1 = εi+2 - εi+1. Thus if εi+1 > εi,

then Ta
i > T. Excess packets accounted for in this load

sample result in the calculation of a load value that is too
high compared to the true value. Conversely, if εi+1 < εi,
then Ta

i < T. In this scenario, the computed load value
for the interval T may miss some octets (this results in a
load value lower than the actual one), if packets have
arrived between time instances Ti + εi+1 and Ti + εi. On
the other hand, should εi+1 = εi, the calculated load value
would be correct. Note that averaging the load
calculation over a number of successive polls decreases

the error. If εi and εj refer to the first and the last load
values of the averaged sequence, the difference between
both limits the error.

2.2 Measurements

A number of tests were performed with four
different routers (three of Chalmers university’s
backbone, and one of the Swedish national academic
backbone). All the routers were queried by GetRequest
messages issued by a single central workstation. The
tests were carried out late afternoon on several days
within a one week time frame, with each test running for
approximately one hour. GetRequests were issued once
every two seconds. The queried objects were an ICMP
packet counter and the CPU load of the router. The
management station was running tcpdump (see section 3)
while sending and receiving the SNMP packets. The
linux kernel was modified to enable microsecond
precision of the tcpdump time stamps. The packet traces
were later used to calculate the delay differences of
successive queries. The data retrieved from single routers

Figure 5. Measured delay difference and CPU load

did not change significantly from one day to another.
Some of the time results are shown in Figure 5, where
the delay difference (i.e. x) is plotted aside with the CPU

load of the corresponding router. The top two rows of the
plots correspond to two boundary routers of the
university backbone (Routers A and B), the third row

shows data from a Swedish national academic backbone
router (Router C), and the bottom row contains plots
from one of the university’s backbone routers (Router
D). It should be noted, that the SNMP queries of Router
C had to pass through one of the two boundary routers.
Nevertheless the delay differences measured for Router C
are of a lower magnitude than those of the boundary
routers. This allows us to conclude that the delay
differences at Router C are not significantly affected by
the traffic conditions at Routers A and B. Figure 6 shows
a simplified topology of the network nodes and links
between them. Although the CPU load of Router D was
not lower than that of Router C, the delay differences of
the SNMP queries associated with Router D are
significantly lower in magnitude and variation than those
of Router C. The four measurements suggest, that a
higher variation of the CPU load results in a higher
magnitude of the delay difference. It should be noted,
that Router D was located closest to the workstation
issuing the GetRequest messages. One could argue, that
the delay difference may be proportional to the number
of hops between the SNMP agent and the management
station. However, the two boundary routers are closer to
the workstation than the router from the Swedish
national academic backbone (Router C), whereas the
delay difference associated with the latter is less
significant than that associated with the boundary
routers. This favors the conclusion that the magnitude
and frequency of delay differences were mainly caused
by internal router mechanisms. The two top plots show a
number of occasions where the delay difference exceeded
500 milliseconds. If the time interval T for the load
calculation was less than 50 seconds, these events could
distort the corresponding load calculation by introducing
an error of over 1%.

SNMP
Management

Station

Router D

Router C

Router B

Router A

Figure 6. Simplified topology of the network between
the routers and the workstation

3. PACKET CAPTURING
MONITORS

3.1 The Model

The packet capturing monitors capture all or some
of the packets on the network link to which they are
connected. The capturing is achieved by setting the
network interface card (NIC) into promiscuous mode by
one method or another. For example, most Ethernet NICs
can be set to the promiscuous mode by a command. If the
link is a shared media, the connection does not require
any modifications. However, when the media is
dedicated, some sort of tapping hardware, e.g. optical
splitter, is required. The monitor’s software attaches a

time stamp to the header of every packet it gets from the
NIC and saves the resulting data structure in a log file.
There are two key aspects in this procedure of obtaining
the packet and time stamping. The first aspect is the level
of the network stack of the operating system where the
time stamp is attached, and the second is the precision of
the time stamp. These two aspects affect the accuracy of
the time stamp.

The possible components of an operating system,
Linux 2.0.36 in particular, where the time stamp can be
attached to the packet header are: the NIC interrupt
routine, the NIC bottom half handler, the socket-level
software, and, finally, the monitoring software operating
at the user level. The further from the interrupt function
the time stamping is done, the more the time stamp value
of the packets is increased as compared with its real
arrival time. The increase comes from the processing of
the packets at each of the stages. Consequently,
alternating loads imposed on the operating system can
produce alternating differences between the real arrival
time instance and the time stamp value. In the linux
kernel, the NIC interrupt function records the arrival
time of every packet into the corresponding field of the
socket buffer structure. The structure is used to pass the
packet further up the network stack [11]. The field is
then read by tcpdump with the help of libpcap library
routines.

The influence of the time stamp precision is quite
explicit: the higher the precision, the more exactly one
can identify the arrival instance of every packet. The
value recorded in the socket buffer data structure by the
interrupt function is read from a hardware clock in the
computer. In the original version of the interrupt routine,
the value has a precision of 10 milliseconds, but some
minor adjustments to the code allow for microsecond
precision of the value.

Figure 7 shows an example of tcpdump output
format. The first field is the time stamp in format
hours:minutes:seconds.microseconds, the rest is Ethernet
source and destination addresses, the Ethernet type,
length of the Ethernet frame and higher level protocol
data.

To obtain values of the link load over a period of T
seconds from a tcpdump output, one must write a simple
script. The script would use the time stamp of the first
packet from the output to derive the time origin for the
sequence of the periods of T seconds.

Assume a tcpdump output longer than one sampling
period T. The analyzing script scans the output and
accumulates the number of octets in packets that have
arrived within the sampling time intervals. The
accumulated number of octets can later be divided by T
to produce the link capacity utilization over the period.
Let a packet be the first falling into one of the sampling
intervals. That is, the time stamp (i.e. the clock value) of
this packet is greater than T*n, the beginning of the nth

sampling interval. Therefore all octets contained in the
packet will be accounted for in this interval. However, it
is possible that the packet had begun to arrive before
T*n. Thus, the front part of the packet does not belong to
the nth interval but is accounted for in it by the script. At
the same time, the front octets of the packet are excluded
from the previous interval value.

20:52:23.772446 0:e0:29:1b:c3:82 0:e0:4f:60:48:c0 0800 60: 129.16.20.181.1673 > 207.25.71.22.80: . ack 21454 win 8048 (DF)
20:52:23.777616 0:e0:29:1b:c3:82 0:e0:4f:60:48:c0 0800 60: 129.16.20.181.1673 > 207.25.71.22.80: . ack 24374 win 8760 (DF)
20:52:23.778548 0:e0:29:1b:c3:82 0:e0:4f:60:48:c0 0800 60: 129.16.20.181.1673 > 207.25.71.22.80: . ack 27294 win 8760 (DF)
20:52:23.851792 0:e0:29:1b:c3:82 0:e0:4f:60:48:c0 0800 60: 129.16.20.181.1679 > 209.67.3.82.80: . ack 2863519882 win 8760 (DF)
20:52:23.852849 0:e0:29:1b:c3:82 0:e0:4f:60:48:c0 0800 419: 129.16.20.181.1679 > 209.67.3.82.80: P 0:365(365) ack 1 win 8760 (DF)
20:52:23.874430 0:e0:29:b:cf:a ff:ff:ff:ff:ff:ff 0800 243: 129.16.20.173.138 > 129.16.255.255.138: udp 201
20:52:23.889148 0:e0:4f:60:48:c0 9:0:7:ff:ff:ff 020b 537: 3 > 2 at-lap#73 512

Figure 7. An example of tcpdump output

Let us denote the size of the left part of a packet hit
by the beginning of a sampling interval as X, and the size
of the left part of the packet hit by the end of the
sampling interval as Y. Assign z = X - Y. If z is not zero,
the load value of the time interval becomes erroneous. If
z is more than the amount of empty space (i.e. the idle
time times the link capacity) of the link during the

interval, the resulting link utilization over the interval
will be more than 100%. Even if z is smaller than the
amount of the empty space or it is negative, it still
imposes an error on the load value. Figure 8 illustrates
the scenario. If the load values are averaged over a time
period substantially longer than T, the significance of the
error is reduced.

.

Tn+1Tn

X
time

Y

Figure 8. The distortion as an effect of processing tcpdump output

However, if the sampled values are used to report the
peak load, one must take into account the error, whose
maximal value is the number of octets in the longest
possible packet.

To form an idea about the behavior of the distortion
it was decided to calculate the probability of the event
where distortion z takes certain values. The algorithm
shown below was used to calculate the probability over
the entire positive range of the distortion z = [0, MAX]
(the case for the negative range is symmetric), where
MAX is the maximum packet length:

for(z = 0 to MAX)
for(L = z to MAX)

for(R = 0 to MAX){
 if(L > 0 & R > 0)

 prob[z]+ = P{L}P{R}P{X - Y = z}λ2;
 if(R = 0 & L > 0)

 prob[z]+ = P{L} P{X = z}λ(1-λ);
 else
 prob[z]+ = (1-λ)2;
}

 Here L is the length of the packet hit by the start of
the interval, and R is the length of the packet hit by the
end of the interval. P{X - Y = z} was calculated with the
assumption that the start and the end of the interval hit
every packet uniformly within each packet’s length. That
is, if a B-octet long packet is hit, the probability P{X =
x} (or P{Y = y}) is 1/B. Thus P{ X - Y = z } =

()1 1
1

L R
n − , where n is the number of points on the

line X - Y = z [12]. P{L} and P{R} are probabilities that
packets of length L and R appear on the link. The
probabilities were taken from an experimental packet
length histogram derived from a wide area network
packet trace [13]. Figures 9 and 10 show the histogram.
Figure 10 shows the frequency in logarithmic scale to
stress the few occurrences of packets longer than 1500
bytes (in the oval region). The resulting probability
distribution functions of the distortion are shown in
Figures 11 and 12, where the former assumes 100%
utilization of the link and the latter assumes 60%
utilization. As can be seen, when the utilization is less
than 100% the probability P{z ≠ 0} scales by a factor of

about λ2, while the probability of zero distortion takes

on an increase of (1-λ)2.
Assume a link with nominal capacity of C bits/sec,

and a time interval over which the load values are
calculated equal to T sec. The relative distortion with
respect to the interval can then be found as z/(TCλ),
where λ is the link utilization during time interval T.
With T = 10 sec, C = 34 Mbit/sec, λ = 0.6 and z = 700
octets, the relative distortion is 2.7*10-3 % of the real
load value.

Figure 9. Experimental packet length histogram Figure 10. Experimental packet length histogram,
logarithmic scale

Figure 11. Probability distribution function of the
distortion, 100% load

Figure 12. Probability distribution function of the
distortion, 60% load

3.2 Measurements

A one hour tcpdump trace was analyzed with help
of a simple parsing script. The trace was obtained from
the department’s local area network. It would be
interesting to sniff links between the routers measured in
the previous section. Comparisons of the counter-based
measurements and the tcpdump measurements may
reveal other sources of errors. However, we do not have
the possibility to directly access the routers and sniff
their links. Although we have a router for experimental
purposes, we do not have the means to create a realistic
heavy load on it. The script used to process the
departmental tcpdump trace detected the cases where the
edges of the sampling periods hit the packets. The
sampling period was chosen to be 5 seconds; the

observed link was a full duplex 10 Mbit Ethernet. Figure
13 shows the measured error, and figure 14 shows the
corresponding 5-second load values. Figure 15 shows a
histogram of the packet sizes in the trace. About a
quarter of all of the packets were 1514 octets long. This
makes the fraction of such packets greater than in the
histogram used to calculate the probability density
function of the error. This difference explains higher than
expected levels of the error. Figure 16 shows the relative
error calculated as zi/li, where zi is the error of sample i
and li is the value of sample i. As was expected, the
highest error caused little impact on the high load values,
whereas the same error can cause an impact of more than
3% on low load values.

Figure 13. Experimental distortion of load values derived
from a packet trace

Figure 14. Relative load observed from the packet trace

Figure 15. Packet length histogram of the packet trace Figure 16. Experimental relative distortion

4. DISCUSSION

Both types of network monitors examined were
found to be capable of distorting values of the network
load. It is of course natural to try to eliminate or reduce
the errors. Let us start with the counter-based monitors.
There are temporal uncertainties in the measurement
process that make it impossible to eliminate the error.
Consider two GetRequest-GetResponse interactions.
Assume that the management station can precisely
measure the delay, ε, between the request and the
response. The agent reads the counter at the Ag SNMP
phase of the interaction. The phase is preceded and
succeeded by the station-to-agent phases and the reverse
phases, respectively. Since the duration of all of the
phases can vary, even equal response-request delays of
two successive polls do not guarantee that there were T

seconds between the reads. That is, while total sums of
the phases of two interactions are equal, the individual
phases can be of a different duration. And the differences
may cause shifts of the read instances with respect to
each other.

Still, there is a way to calculate the range of the
error. Assume that the delays of two successive request-
response interactions are εi and εi+1. There are two worst
cases that represent the shortest and the longest possible
time distance between the two counter reads. The longest
possible distance can be produced if the station-to-agent
phases in the first interaction and the agent-to-station
phases in the second interaction are of the shortest
possible duration. It is also required that the first read is
done early in the Ag SNMP phase, while the second read
is done late in the phase. The shortest possible distance
appears if the delays of the phases in the previous case
are exchanged with each other. Let us denote all the
phases on the left from Ag SNMP by S→A, and all the

phases on the right from Ag SNMP by A→S. The longest
distance is found as Ti+1 + (εi+1 - min(A→S)) - Ti -
min(S→A) = T + εi+1 - min(A→S) - min(S→A). The
shortest distance between the reads is Ti+1 + min(S→A) -
Ti - (εi - min(A→S)) = T - εi + min(S→A) + min(A→S).
The derivation of the marginal error terms from these
equations is straight-forward. Assume that the link is
100% - loaded during the time that is added or removed
from interval T. The error of the measurement is then in
the range [-(εi - min(S→A) - min(A→S))C;(εi+1 -
min(A→S) - min(S→A))C]. C is the link speed. Thus, if
the delays and the min(S→A) and min(A→S) terms are
known, the management stations can calculate the error
range. If ε is significantly larger (which is our
experience) than the terms min(S→A and min(A→S),
these terms can be neglected. The station can attach the
range to the load value to indicate the possible error in it.

There are other methods to reduce the error in the
counter-based systems. [14] proposes to fetch the local
system time of the network node together with the
counter value. The SNMP variable sysUpTime used in
that method stores the time in seconds. As was shown by
measurements in section 2, distortion of the polling
interval takes values of up to half a second. Therefore,
the value of the system up time is not precise enough to
reduce or eliminate the error. Another possible
improvement could be to attach the management station
to the network node via a dedicated link, e.g. the serial
port. This method eliminates part of the error caused by
variations in the transmission delays. However, the
method does not eliminate the part of the error caused by
changes in the node’s load. Furthermore, such a solution
potentially requires the management station to be in the
geographical vicinity of the monitored network node.
This can be impossible in cases of remote monitoring.

We propose an idea that would allow network nodes
to periodically read the counter values using the nodes’
own timing facilities. The management stations would
instruct the network nodes on the variables that they
want to poll and on the time period of the polling. If the
nodes consider this polling a priority job by e.g. running
the procedure on an interrupt timer (the transmission of
the GetResponse itself can be of low priority), the
accuracy of the measurements is significantly improved.
Implementation of this idea can be carried out through a
modification of the Alarm group of RMONv1 [10]. The
resulting polling group would then look like this:

pollTable
pollEntry

pollIndex
pollInterval
pollVariable
pollOwner
pollMangementTarget
pollStatus

Here, pollIndex is a field used to identify a particular
entry in the poll table; pollInterval stores the number of
seconds of the polling interval; pollVariable identifies
the object id (oid), i.e. the variable, that is polled;
pollOwner contains a textual description of the
management station; pollManagementTarget contains an
index for the SNMP-TARGET-MIB[15] that stores data
necessary to identify the management station on the

network; pollStatus indicates the validity of the entry. If
such an MIB is implemented, the management station
sends a single SetRequest message containing values for
all the objects except pollStatus (which is managed by
the node’s SNMP agent). The pollIndex value in the
request is an increment of the previous row pollIndex
value. The agent validates the values and sets pollStatus
to the “valid” value. It then starts to collect the value of
the variable and sends it to the management station in a
GetResponse message every pollInterval seconds. If
necessary, a more precise time interval can be defined by
the addition of a pollIntervalMsec object to the table that
would store the microsecond part of the polling interval.
Moreover, the solution excludes the loss of the
GetRequest packets issued by the management station.

The significance of the load measurement errors
varies with the application of the measurements.
Apparently, the error displayed in the measurements in
section 2 is most likely negligible when the sampling
period is e.g. one hour. An example of an application in
which the error can be significant is the use of the
measurements to control actions such as alarms or
policing. The shorter the sampling interval, the higher
the probability that the action will be affected by the
error. One area in which the importance of the error is of
no doubt is the correctness of the measurement system. If
the source and magnitude of the error are not known, the
operation of the entire measurement system can be
questioned.

The potential error magnitude discovered in this
study applies only to the network configuration used. As
can be seen from the measurements performed, the tested
nodes were not heavily loaded. At the same time, the
distortion of the polling interval that was revealed was
quite significant. Thus it is possible that heavily loaded
network nodes can produce more severe distortions of
the polling.

As for the packet capturing monitors, the following

approach can be used to eliminate the error: if (∆ =
[(first packet arrival time) - (packet length)/(speed of the

link)] < Ti), then add to the previous load value (T - ∆
)(speed of the link) bits and subtract the same number of
bits from the current load value.

5. CONCLUSIONS

This paper presents the results of our work on the
accuracy analysis of network load measurement systems.
The two most common types of network monitors –
counter-based and packet capturing - were investigated
in order to find the elements that may be responsible for
causing erroneous values of the periodic network load
samples. A linux-based implementation of each of the
systems was studied.

It was found that both systems are capable of
inducing errors in the load values. While the errors of the
packet capturing systems are limited by the number of
octets in the longest packet, counter-based monitors were
found to be potentially capable of unlimited distortion of
the load values.

We developed a solution that allows elimination of
the errors in the case of the packet capturing monitors by

using the packet length field in the packet headers. In the
case of the counter-based monitors an error range was
defined that takes into account two extreme cases of the
polling interval error. These cases are caused by
uncertainty in the exact composition of the error. To
calculate the error range, the management station needs
to know the delays in the GetRequest-GetResponse
interactions. The station also needs to know the
minimum transmission delays between the SNMP
application and the agent software. A modification to the
alarm RMON MIB group was also suggested that would
allow the management station to issue a single request
for a number of periodic responses from the agent. In
combination with the agent process running on a timer
interrupt, the modification can reduce the error in this
type of monitor. The advantage of the proposed MIB
group over the RMON alarm group is twofold: it allows
for precise load sampling and it offloads the alarm
function from the router, transferring it to the
management station.

It should be noted that the distortion inherent to the
packet capturing monitors can also be present in counter-
based monitors. This is true if the agent operates like a
packet capturing monitor except that it does not time
stamp the packets that it counts. In this case it is
impossible to eliminate the distortion by the method
described above.

Although packet capturing monitors provide an
exact picture of the network load, their demand for
dedicated resources does not allow them to be used
exclusively. The proposed MIB for periodic polling of
object values maintained by the network nodes makes
possible retrieval of the values in the exact periodic
manner. This makes such a solution preferable, where the
errors induced by the edges of the sampling interval
hitting packets are negligible.

6. ACKNOWLEDGMENTS

We thank the anonymous reviewer for providing helpful
comments. We also thank Chalmers University
Networking Group for the equipment used in the
measurements as well as for interesting discussions on
the subject.

7. REFERENCES.

[1] Phillip A. Porras, Alfonso Valdes. Live traffic
analysis of TCP/IP Gateways. In proceedings of
the 1998 ISOC Symposium on Network and
Distributed System Security

[2] V. Paxson, G. Almes, J. Mahdavi, M. Mathis. rfc
2330 Framework for IP Performance Metrics.

[3] V. Jacobson, C. Leres, and S. McCanne, tcpdump
available via anonymous ftp to ftp.ee.lbl.gov

[4] National Laboratory for Applied Network
Research, Measurement and Operation Analysis
Team, http://moat.nlanr.net/

[5] Net Flow home page available via http to
http://www.cisco.com/univercd/cc/td/doc/product/r
trmgmt/nda/index.htm

[6] Vern Paxson. On Calibrating Measurements of
Packet Transit Times. Proceedings of
SIGMETRICS’98.

[7] Guru Parulkar, Douglas Schmidt, Eileen Kraemer,
Jonathan Turner, and Anshul Kantawala. An
Architecture for Monitoring, Visualization, and
Control of Gigabit Networks. IEEE Network,
September/October 1997

[8] K. Claffy, G. Polyzos and H-W. Braun,
“Measurement Considerations for Assessing
Unidirectional Latencies.” Internetworking:
Research and Experience, Vol. 4, No. 3, September
1993

[9] Timo Alanko, Markku Kojo, Heimo Laamanen,
Mika Lijeberg, Marko Moilanen, Kimmo
Raatikainen. Measured Performance of Data
Transmission Over Cellular Telephone Networks.
ACM Computer Communication Review, Vol. 28,
No. 2, October 1995.

[10] William Stallings. SNMP, SNMPv2, and RMON
Practical Network Management. Second Edition .
Addison-Wesley Publishing Company, Inc. 1996.
ISBN 0-201-63479-1

[11] Alessandro Rubini. Linux Device Drivers. O’Reilly
and Associates, Inc.1998. ISBN 1-56592-292-1

[12] Yannis Viniotis. Probability and Random
Processes for Electrical Engineers.
WCB/McGraw-Hill. 1998. ISBN 0-07-067491-4

[13] National Science Foundation Cooperative
Agreement No. ANI-9807479, the National
Laboratory for Applied Network Research,
available via http to
http://www.nlanr.net/NA/Learn/packetsizes.html

[14] Tobias Oetiker, Dave Rand, MRTG: Multi Router
Traffic Grapher. http://ee-
staff.ethz.ch/~oetiker/webtools/mrtg/mrtg.html

[15] D. Levi, P. Meyer, B. Stewart. SNMP Applications,
rfc 2573

