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Abstract
The present paper focuses on self-similar

network traffic generation. Network traffic
modeling studies the generation of synthetic
sequences. The generated sequences must
have similar features to the measured traffic.
Exact methods for generating self-similar se-
quences are not appropriate for long traces.
Our main objective in the present paper is
to improve the efficiency of Paxson’s method
for synthesizing self-similar network traffic.
Paxson’s method uses a fast, approximate syn-
thesis for the power spectrum of the FGN
and uses the inverse Fourier transform to ob-
tain the time-domain sequences. We demon-
strate that a linear approximation can be used
to determine the power spectrum of the FGN.
This linear approximation reduces the com-
plexity of the computation without compro-
mising the accuracy in synthesizing the power
spectrum of the FGN. Our results show that
long traces can be generated in much less
time. To compare our method with existing
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ones, we will measure the running time in
generating long and short sample paths from
the FGN. We will also conduct experiments
to show that our method can generate self-
similar traffic for specified Hurst parameters
with high accuracy.

1 Introduction

Data traffic is the main component of modern
computer communication systems, and traf-
fic models are of crucial importance for as-
sessing their performance [19]. In practice,
stochastic models of traffic streams are rele-
vant to network traffic engineering and per-
formance analysis, and they are widely used
in predicting system performance. The basic
systems, of which traffic is a major ingredi-
ent, are queueing systems. Traditional traffic
models have often been devised and chosen
for the analytical tractability they induce on
the corresponding queueing systems. While
originally the validity and efficacy of models
for modern high-speed network traffic were
difficult to establish due to the unavailabil-
ity of empirical data, very large sets of traffic



measurements from working networks have
become available.

Recently, the notion of self-similarity has
been shown to apply to a variety of traffic
including wide area network (WAN) traffic
[16], local area network (LAN) traffic [13],
[21], frame data generated by variable-bit-
rate (VBR) video encoders [4], [10], and the
World Wide Web (WWW) transfers [5]. We
briefly review in the following some applica-
tions where self-similar traffic models have
been used.

� WAN traffic. When modeling network
traffic, packet and connection arrivals
are often assumed to be Poisson pro-
cesses in the past. Some recent stud-
ies have shown, however, that the dis-
tribution of packet interarrivals clearly
differs from the exponential distribu-
tion. In [16], it is concluded that Pois-
son arrival processes are quite limited
in modeling the burstiness of data traf-
fic, especially when many sources are
multiplexed together. It is shown that
the WAN traffic is much burstier than
Poisson model’s prediction over all time
scales. The greater burstiness of data
traffic has implications for many as-
pects of congestion control and network
performance. It is suggested in [16]
that the burstiness of empirical traffic
meshes well with self-similar network
traffic models.

� LAN traffic. An analysis of Ethernet
LAN traffic is performed in [13] and
[21]. It is shown that irrespective of
when and where the Ethernet measure-
ments are collected, the LAN traffic is
self-similar with different degrees of
self-similarity depending on the load
on the network. Traffic models based
on self-similar stochastic processes are

presented. It is also shown in the pa-
pers that the burstiness of LAN traf-
fic typically intensifies as the number
of active traffic sources increases, con-
trary to commonly held views.

� VBR video traffic. An analysis of a
few millions of encoded video frame
data generated by VBR video encoders
shows that the VBR video traffic ap-
pears to be statistically self-similar [4],
[10]. One advantage of the modeling
approach for video traffic based on long-
range dependence/self-similarity is that
it removes entirely the subjective iden-
tification of scenes and scene changes
in some currently available VBR video
traffic modeling literature.

� WWW transfers. In [5], it is observed
that traffic due to the WWW transfers
shows characteristics that are consis-
tent with self-similarity. They trace the
genesis of Web traffic self-similarity to
the heavy-tailed distribution of avail-
able file sizes in the Web. It has been
argued in [5] and others that transfer-
ring files whose sizes are drawn from
a heavy-tailed distribution will gener-
ate self-similarity in network traffic.

All the above studies provide inspirations
for an investigation of a new type of traf-
fic models. In particular, it is encouraged to
use stochastic processes which possess scal-
ing properties and which have distributions
with infinite moments. Self-similar structures,
and hence fractal processes, have been em-
ployed for this purpose. The study of [21]
and others have concerned about whether it
is possible to statistically distinguish between
measured network traffic and model gener-
ated traffic. Actual traffic exhibits correla-
tions over a wide time span (i.e.,long-range



dependence), while traditional traffic mod-
els typically focus on a very limited range of
time spans and are thusshort-range depen-
dentin nature.

A fundamental feature of a synthetic traf-
fic generator is to provide reliable data that
can be used instead of experimental traffic
traces to assess the performance and/or to di-
mension the network elements that deal with
such traffic. Another important issue for the
success of traffic modeling in teletraffic prac-
tice is the ability to quickly generate traces of
synthetic traffic from a chosen traffic model.
While exact methods for generating traces
from some basic self-similar processes exist,
they are in general only appropriate for short
traces and becomes impractical when the re-
quired number of samples becomes exceed-
ingly large.

This paper presents afastmethod for gen-
erating long traces of self-similar traffic. Our
method will also guarantee to generate self-
similar traffic with high degree of accuracy
in terms of burstiness measures (i.e., the Hurst
parameter estimated from the traffic trace).
There are three mathematical models used
often to model the self-similarity effect: The
fractional Gaussian noise (FGN), the frac-
tional Brownian motion (FBM), and the frac-
tional autoregressive integrated moving aver-
age (F-ARIMA) process. We will investigate
in this paper the use of FGN for generating
self-similar network traffic. Our goal is to
develop a fast method in generating the spec-
tral density function for the FGN so that the
FGN can be generated by taking the inverse
Fourier transform (FFT).

Approaches for generating self-similar se-
quences based on the three mathematical mod-
els mentioned above have been reported in
the literature. Paxson [15] reported a fast ap-
proach using FFT to generate the FGN. The
present approach constitutes an improvement

to Paxson’s and our simulation results in this
paper will show that the present approach and
Paxson’s approach can generate high quality
self-similar sequences (i.e., the Hurst param-
eters of the generated sequences agree with
the target values). An approach for generat-
ing self-similar traces based on the FBM was
reported in [12]. However, our simulation re-
sults show that the approach of [12] fails to
provide stationary increments which violates
one of the desired properties of FBM [11].
Hosking’s method reported in [9] for gener-
ating self-similar sequences based on the F-
ARIMA is known to be very slow. In addi-
tion, due to the iterative use of equations in
this approach, an improvement to the speed
of computation seems difficult. All these mo-
tivate the choice of FGN to model the self-
similar processes in the present study.

The present paper is organized as follows.
In Section 2, we present a brief review of the
FGN. In Section 3, we develop a method us-
ing a linear approximation to calculate the
power spectrum of the FGN. In Section 4, we
compare the method developed herein with
existing methods for generating self-similar
traffic in terms of the computation time. We
will also show the accuracy of the present ap-
proach in generating self-similar traffic with
given Hurst parameters. Finally, in Section 5,
we conclude the present paper with a few
pertinent remarks.

2 The Fractional Gaussian
Noise

Long-range dependence in a time series is
the presence of a significant correlation be-
tween observations of signals separated by
large time spans. It is closely linked with
self-similar stochastic processes and random
fractals which have been considered exten-



sively, though only recently, for signal pro-
cessing applications.

Let X = fXt : t = 0; 1; 2; � � � g be a
covariance stationary (also called wide-sense
stationary) stochastic process with mean�,
variance�2 and autocorrelation functionr(k),
k = 0; 1; 2; � � � . In particular, we assume
thatX has an autocorrelation function of the
form

r(k) � k�(2�2H)L(k) as k!1 (1)

whereH is called theHurst parameterand
L(�) is slowly varying at infinity, that is,

lim
t!1

L(zt)=L(t) = 1 for all z > 0 (2)

An example of such slowly varying functions
which satisfies (2) is given byL(t) = log(t).
The Hurst parameterH in (1) is in the range
1=2 < H < 1 and it characterizes the pro-
cess in terms of the degree of self-similarity
and long-range dependence. The degree of
self-similarity and long-range dependence in-
creases asH ! 1. For eachm = 1; 2; 3; � � � ;
let X(m) = fX

(m)
k : k = 1; 2; 3; � � � g de-

note a new time series obtained by averaging
the original seriesX over non-overlapping
blocks of sizem; that is, for eachm = 1; 2; 3;
� � � ; X

(m)
k is given by

X
(m)
k =

Xkm�m+1 + � � �+Xkm

m
;

k = 1; 2; 3; � � �

Note that for eachm, the aggregate time se-
riesX(m) defines a covariance stationary pro-
cess.

The notion ofself-similarityandasymp-
totic self-similarityhas been introduced in the
literature (see, e.g., [4], [13], [15], [20]). A
processX is exactly or asymptotically second-
order self-similar if the corresponding aggre-
gate processesX(m) are the same asX, or,
become indistinguishable fromX at least with

respect to their autocorrelation functions. The
fractional Gaussian noise (FGN) [13] and the
fractional Brownian motion [11] are exam-
ples of exactly self-similar processes and the
fractional autoregressive integrated moving
average process is an example of asymptoti-
cally self-similar processes [3].

The simplest models with long-range de-
pendence are self-similar processes, which
are characterized by hyperbolically decaying
autocorrelation functions. Self-similar and
asymptotically self-similar processes are par-
ticularly attractive traffic models because the
long-range dependence can be characterized
by a single parameterH. Self-similar traf-
fic models offer parsimonious descriptions of
complex traffic processes, though the com-
plete analysis of these models is an area where
further research is needed [7]. Self-similarity
manifests itself in a couple of different ways:
A spectral density that diverges at the origin
[f(�) � 1=��; 0 < � < 1], and a non-
summable autocorrelation function (indicat-
ing long-range dependence) [4]. Another char-
acteristic that spans many time scales is the
heavy-tailed nature of the density function
describing self-similar processes [5].

In [14], the FGN is introduced as a fam-
ily of random processes that the interdepen-
dence between values of the process at in-
stants of time far distant from each other is
small but non-negligible. The term “frac-
tional noise” can be explained from spectral
theory. Classically, a white noise is defined
as a random process having a spectral density
independent of the frequencyf . As a result,
the time integral and derivative of the white
noise, and its repeated integrals or deriva-
tives, all have spectral densities of the form
f�2�, with � an integer. Fractional noise,
on the contrary, can be defined as having a
spectral density of the formf�2�, with � a
non-integer fraction. This explains the term



“fractional noise,” or more precisely “frac-
tional white noise.” By repeated integration
or differentiation, one can restrict� to any
interval of unit length. It can be shown that
for the FGN,� = H + 0:5 [14].

In the present paper, we adopt the nota-
tion in [2], where the power spectrum of the
FGN is given by

f(�;H) = A(�;H)
�
j�j�2H�1 +B(�;H)

�
(3)

for 0 < H < 1 and�� � � � �, where

A(�;H) = 2 sin(�H) �(2H +1)(1� cos �)

and

B(�;H) =

1X
k=1

h
(2�k + �)�2H�1

+(2�k � �)�2H�1
i

(4)

In the above expression forA(�;H), �(�) in-
dicates the Gamma function. Simple calcu-
lations show that the FGN is exactly second-
order self-similar with self-similarity param-
eterH, as long as0:5 < H < 1 [7], [13].

3 Computation of the FGN
Power Spectrum Using a
Linear Approximation

There are several existing methods reported
in the literature for synthesizing sample paths
of self-similar processes including the FGN.
The existing methods includeautoregressive
processes[13], [20], fractional autoregres-
sive integrated moving average process[3],
[4], [9], fast Fourier transform(FFT) [15],
alternating renewal process[21], queueing
processes[13], [16], [20], random midpoint

displacement[12], spatial renewal process
[18], andwavelet transformation[8].

An approach is proposed in [15] for gen-
erating the FGN using FFT. Suppose that the
power spectrumf(�;H) of the FGN process
in (3) is known. Then, we can construct a
sequence of complex numbers correspond-
ing to this power spectrum, i.e., construct a
frequency-domain sample path. An inverse
Fourier transform can then be used to obtain
the time-domain counterpart sequence. The
main difficulty with this approach lies in ac-
curately computingf(�;H) in a timely man-
ner. Another problem is to find a frequency-
domain sample path that truly corresponds to
the FGN power spectrum. In [15], an ap-
proximation is performed by using the mid-
point value of two integrals and by retaining
some terms of the infinite summation that is
used to calculate the FGN power spectrum.

As we can see from equation (4), each
term in equation (4) is a function of the in-
dex k of the summation and the frequency
�. The calculation of the power spectrum of
the FGN implies the computation of an in-
finite summation for every frequency�. In
order to find a fast and accurate way to ap-
proximate equation (4), we need to analyze
the terms in the summation. Usually,� takes
values in the range from0 to � due to sym-
metry of the spectrum. The number of fre-
quency samples depends on the length of the
trace required. The best way to evaluate the
summation consists of exploiting the speed
improvement of vector operations offered by
the programming languages. In this case,�
is a vector which contains the different dis-
crete frequency values.

Consider the first term in (4),

(2�k + �)�2H�1:

This term decreases ask goes to infinity. Ac-
tually, for big values ofk this term remains



approximately constant for all the values of
� in the range0 � � � �. Table 1 shows
the relative errors between(2�k + �)�2H�1

and its linear approximation in the form of
p�+ q for several values ofk and�, wherep
andq are determined by minimizing a mean-
squared error. We can see from the table
that the error is much larger fork = 1 than
that fork > 1. As the value ofk increases,
(2�k + �)�2H�1 is approximately a linear
function of �. For k � 3 the deviation is
very small. Table 2 shows the relative er-
rors between the second term in (4),(2�k �
�)�2H�1, and its linear approximation. We
can draw conclusions similar to the above
from Table 2.

Table 1: Deviation of(2�k + �)�2H�1

from linearity (H = 0:75).

� k = 1 k = 2 k = 3 k = 4

0.314 6.03% 2.14% 1.09% 0.65%
0.628 1.64% 0.65% 0.34% 0.21%
0.943 �1:87% �0:51% �0:23% �0:13%
1.257 �4:36% �1:31% �0:62% �0:36%
1.571 �5:66% �1:72% �0:82% �0:48%
1.885 �5:61% �1:72% �0:82% �0:48%
2.199 �4:06% �1:26% �0:61% �0:36%
2.513 �0:81% �0:33% �0:17% �0:11%
2.827 4.31% 1.10% 0.49% 0.28%
� 11.48% 3.06% 1.39% 0.79%

As shown in Tables 1 and 2, each term
in (4) (k � 3) can be approximated using
a linear function of�. Because the addi-
tion of linear functions is also a linear func-
tion, it is possible to use a linear approxima-
tion to estimate the infinite sum in equation
(4). The illustration in Tables 1 and 2 sug-
gests that a better approximation using a lin-
ear function forB in (4) should not include
the terms fork = 1 andk = 2. Figure 1
showsB2:1 for different values ofH. The
index 2: 1 means that the summation was

performed starting withk = 2 and ending
at ak that the remaining error in the compu-
tation ofB2:1 is less than0:0001%. In this
case,B2:1 is almost a linear function of�.
For 0:7 < H < 1 the linear approximation
does a better job than for0:5 < H < 0:7.
On the other hand,B3:1 can be perfectly ap-
proximated, for anyH, using a linear func-
tion of �, as illustrated in Figure 2. In the
sequel, we will develop a method for using
a linear approximation to evaluate equation
(4).

Table 2: Deviation of(2�k � �)�2H�1

from linearity (H = 0:75).

� k = 1 k = 2 k = 3 k = 4

0:314 49.21% 5.68% 2.07% 1.06%
0:628 19.70% 2.08% 0.37% 0.37%
0:943 �0:75% �0:52% �0:24% �0:14%
1:257 �13:35% �2:19% �0:88% �0:47%
1:571 �19:24% �3:01% �1:19% �0:63%
1:885 �19:51% �3:03% �1:19% �0:63%
2:199 �15:23% �2:32% �0:91% �0:48%
2:513 �7:37% �0:94% �0:35% �0:18%
2:827 3.13% 1.03% 0.47% 0.27%
� 15.4% 3.54% 1.53% 0.85%

Using (3) to get the power spectrum in-
volves the infinite summation as in (4). We
will now write (4) as

B(�;H) =
2X

k=1

h
(2�k + �)�2H�1

+(2�k � �)�2H�1
i
+B3:1

where

B3:1 =
1X
k=3

h
(2�k + �)�2H�1

+(2�k � �)�2H�1
i



In order to approximateB3:1 using a linear
function of�, we defineD(�;H) as

D(�;H) = p�+ q (5)

To show the dependence ofp andq onH, we
should express them asp(H) andq(H), re-
spectively. Nevertheless, to avoid using cum-
bersome notation, we will usep andq with-
out forgetting their dependence onH. We
will determinep andq through optimization
in the sense of a mean-squared error. We de-
fine the mean-squared error" as

" =

Z �

0

[B3:1(�;H)�D(�;H)]2 d� (6)

The integral goes from0 to � because we
need to minimize the error only in that in-
terval.

The minimum value of" is obtained when
@"=@p = 0 and@"=@q = 0. Hence, using
Leibnitz’s rule [17] to derive under the inte-
gral sign, we get

@"

@q
=

Z �

0

2

"
1X
k=3

�
(2�k + �)�2H�1

+(2�k � �)�2H�1
�
� (p�+ q)

#
(�1)d�

The summation inside the integral defines a
function which is continuous on the closed
and bounded interval [0,�]. We can inter-
change the order of the summation and the
integral [6] to obtain

@"

@q
= �2

1X
k=3

�Z �

0

(2�k + �)�2H�1d�

+

Z �

0

(2�k��)�2H�1d�

�
+2

Z �

0

(p�+q)d�

By letting@"=@q = 0, we get

1X
k=3

�Z �

0

(2�k + �)�2H�1d�

+

Z �

0

(2�k��)�2H�1d�

�
=

Z �

0

(p�+ q)d�

which implies that

�2

2
p + �q = F (H) (7)

whereF (H) is given by

F (H)=

1X
k=3

�
(2�k��)�2H�(2�k+�)�2H

2H

�
(8)

We proceed in the same manner to calculate
@"=@p. By letting@"=@p = 0, we get

1X
k=3

"Z �

0

�(2�k + �)�2H�1d�

+

Z �

0

�(2�k��)�2H�1d�

#
=

Z �

0

(p�2+q�)d�

After some manipulations, we get

�3

3
p+

�2

2
q = G(H) (9)

whereG(H) is given by

G(H) =
1X
k=3

"�
(2�k)(2�k + �)�2H

+(2�k)(2�k � �)�2H�2(2�k)�2H+1
�
=2H

�
�
(2�k + �)�2H+1 + (2�k � �)�2H+1

�2(2�k)�2H+1
�
=(2H � 1)

#
(10)

We note that (10) is for the case whenH >
0:5. For comparison studies in Section 4, we
also derivedG(H) for H = 0:5 as

G(H) =
1X
k=3

"
2�k

2�k + �
+

2�k

2�k � �



+ ln(2�k + �) + ln(2�k � �)

�2� 2 ln(2�k)

#
(11)

Solving forp andq in equations (7) and (9),
we get

p = �
6

�2
F (H) +

12

�3
G(H) (12)

q =
4

�
F (H)�

6

�2
G(H) (13)

Equations (12) and (13) are the core of
our approximation. Figure 3 shows plots of
the functionspn versus the number of terms
used in the summation (n) for several values
of H. The slope of the linear approximation,
p, converges very fast, and a value ofn = 20
seems to be sufficient. The illustration for
function q shows thatq does not converge
that fast, and a minimum value ofn = 200
is required. We also performed experiments
for qn usingn = 400, which resulted in no
significant improvements.

We note that in the computation of (3)
and (4) for the power spectrum of the FGN,
infinite summations are required for every�.
In the present approach, using the linear ap-
proximation forB3:1 as in (5), we do not
need to perform infinite summations for any
�. Instead, we only need to perform two in-
finite summations as in (8) and (10)/(11) for
the computation of parameters(p; q) in the
linear approximation. This is a significant
computational reduction.

The approximation in [15], as described
earlier, utilizes the midpoint value of two in-
tegrals and retains some terms of the infinite
summation for the calculation of the FGN
power spectrum. In comparison, the present
approach utilizes linear approximation for the
infinite summation of the FGN power spec-
trum. It is emphasized that in both the present

approach and that of [15], an inverse Fourier
transform (i.e., FFT) is performed to obtain
the time-domain sequence. We will perform
a comparison study of the present approach
with that of [15] in the next section.

4 Simulation Studies

In this section, we will compare the com-
putation time in generating self-similar net-
work traffic based on the FGN, the fractional
Brownian motion, and the fractional autore-
gressive integrated moving average process,
and compare the accuracy of the traffic gen-
erated with given Hurst parameters.

To compare first the approximation error
of the present approach with [15], we calcu-
lated the relative error of our approach for the
computation ofB(�;H). The relative error
is defined as

Er =
B(�;H)� [B1:2(�;H) + p�+ q]

B(�;H)

=
B3:1(�;H)� (p�+ q)

B(�;H)
(14)

In the calculation ofB(�;H) in (14), we used
10,000 terms in the summation which is the
same number of terms as used in [15]. In
all our simulation studies, a Sun SPARC 20
workstation and Matlab were used to run our
algorithms. As we can see from Figure 4, the
relative error does not exhibit any bias and it
is almost independent ofH with a maximum
value of 0.15%. On the other hand, it has
been reported in [15] that Paxson’s approx-
imation exhibits an error up to 0.5% with a
positive bias.

There are three different methods to esti-
mate the Hurst parameter of self-similar pro-
cesses [4]: (1) time-domain analysis based
on the R/S statistics; (2) frequency-domain



analysis based on the periodogram; and (3)
analysis of variances of the aggregate pro-
cesses, i.e., the variance-time plot method.
We conduct in this paper a comparison study
of the three methods for estimating the Hurst
parameter of sequences generated using our
approach. The results are shown in Table 3.
For each value ofH = 0:50; 0:55; � � � ; 0:95,
we synthesized 100 sample series of length
32,768 using the present approach. Then, we
used the above three methods to estimate the
value ofH. Table 3 shows the mean (the
first row) and the standard deviation (the sec-
ond row) for each value ofH estimated using
each method. As we can see from Table 3,
the variance-time plot method, with a max-
imum deviation 9%, has the smallest devi-
ation in most cases, while the periodogram-
based method shows the smallest bias among
the three methods. For aggregation of traffic
generated using the present approach at lev-
els ofm = 1; 2; 4; 8; 16; 32; 64; 128; 256; 512;
1024, we estimated the Hurst parameters us-
ing the three methods mentioned above. The
estimates were extremely stable and practi-
cally constant over the range of aggregation
levels1 � m � 1024. The standard devia-
tion was below 0.005 for both the variance-
time plot method and the periodogram-based
method. For the R/S statistics method, the
standard deviation was a little higher than the
other two methods, and values around 0.07
were observed. Because the range includes
small values ofm, the synthetic series can be
regarded as exactly self-similar [4], [13]. We
recall that the FGN is exactly second-order
self-similar.

Our next simulation compares the com-
putation time of the present approach and that
of [15] in approximating the infinite summa-
tionB(�;H) for the computation of the FGN
power spectrum. The results are shown in
Table 4. We note that in Table 4, we only

show the time for the computation ofB(�;H),
and it does not include the computation time
for the inverse FFT, for example. We can
see from Table 4 that Paxson’s approxima-
tion takes about twice as much time as ours
in all cases considered. By carefully com-
paring Paxson’s method with ours, we can
see that Paxson’s method requires more than
double vector operations than our method and
hence, it requires more computation time and
more memory space than our method.

Table 3: Comparison of the three methods
for estimating the Hurst parameter.

Target Variance- R/S Periodo-
H Time Statistics gram

0.50 0.500 0.553 0.506
0.006 0.017 0.004

0.55 0.550 0.595 0.551
0.006 0.018 0.020

0.60 0.598 0.633 0.604
0.006 0.021 0.009

0.65 0.650 0.675 0.656
0.005 0.019 0.009

0.70 0.697 0.712 0.707
0.006 0.021 0.008

0.75 0.747 0.751 0.759
0.007 0.023 0.008

0.80 0.793 0.783 0.807
0.006 0.021 0.008

0.85 0.839 0.819 0.858
0.007 0.023 0.009

0.90 0.877 0.847 0.908
0.009 0.019 0.010

0.95 0.912 0.877 0.959
0.009 0.020 0.007

To compare the total time needed for gen-
erating self-similar sequences, we conducted
the following simulation study. Table 5 shows
the running time of several algorithms for gen-
erating self-similar sequences. The second
column of Table 5 shows the running time



of our approach based on the linear approx-
imation. This table also shows the running
time using Paxson’s approximation [15]. In
our approach and the approach of [15], an in-
verse Fourier transform is performed to gen-
erate the time sequence for self-similar traf-
fic. Again, because Paxson’s method requires
more than double vector operations than our
method, it requires more computation time
and more memory space than our method.
The rest of Table 5 shows the running time of
the random midpoint displacement method
(RMD) for generating the fractional Brow-
nian motion [12], the spatial renewal process
(SRP) method for generating the FGN [18],
and the Hosking’s method for generating the
fractional autoregressive integrated moving
average process [9]. Each method has advan-
tages and disadvantages. Hosking’s method
is the slowest one, while our method is the
fastest of all the methods in Table 5.

Table 4: Running time in seconds for
approximatingB(�;H).

Length Our approach Paxson’s

8,192 0.18 0.37
16,384 0.37 0.80
32,768 0.84 2.06
65,536 1.64 3.38
131,072 3.27 6.84
262,144 6.49 14.97
524,288 13.00 27.12

1,048,576 86.99 168.69
2,097,152 379.36 724.50

The method based on the alternating re-
newal process [21] requires the multiplexing
of an infinite number of independent process.
This is one of its disadvantages, and a bal-
ance between speed and quality of the gen-
erated sequence must be determined. The
SRP method has the same disadvantage. It

requires a minimum aggregation level of ten.
The running times shown in Table 5, for the
SRP model, were calculated using an aggre-
gation of ten independent processes; the prob-
ability distribution was approximated using
a piecewise function of five linear functions.
The quality of the generated traffic using the
SRP is not satisfactory, and the value of the
Hurst parameter does not remain constant for
several levels of aggregation, which agrees
with the findings in [18]. The RMD method
is one of the fastest, as shown in Table 5.
Nevertheless, it fails to provide stationary in-
crements whenH 6= 0:5 which implies that
the resulting process is only an approxima-
tion of FBM [8]. Furthermore, the wavelet
interpretation of the RMD method indicates
that the system is not orthonormal [8]. The
FFT method, using Paxson’s approximation
and the present approach based on a linear
approximation, generates high quality self-
similar sequences, where the Hurst parame-
ters of the samples agree with the target val-
ues. We observed that the Hurst parameter
remains constant for several levels of aggre-
gation in the variance-time plot, in the R/S
statistics, and in the periodogram.

Finally, we use Figure 5 to show a few
synthetic self-similar series generated using
the present method. From this figure, we can
clearly see that strongly correlated data are
generated for large values ofH. For large
H, the series tends to exhibit low frequency
cycles, which is a typical behavior of self-
similar/LRD traces. It is also observed in the
figure that for values ofH close to 0.5 (short-
range dependence) the sequence resembles
white noise, as expected.

It is worthwhile to say that using the lin-
ear approximation method presented in this
paper to calculate the FGN power spectrum
allows us to quickly generate high quality
self-similar sequences.



Table 5: Running time in seconds for
generating self-similar sequences.

Length Our approach Paxson

65,536 5 7
131,072 10 12
262,144 22 24
524,288 45 48

1,048,576 94 260
2,097,152 259 659

Table 5 (Continued)

Length RMD SRP Hosking

65,536 32 1,306 5,826
131,072 66 4,575 24,152
262,144 130 16,510 104,214
524,288 262 62,213 440,361

1,048,576 530 245,140 too long
2,097,152 1,100 949, 172 too long

5 Conclusions

Long-range dependence is often encountered
in practice, not only in hydrology and geo-
physics, but in all fields of statistical appli-
cations including traffic engineering. If not
taken into account, it can completely invali-
date statistical inference [1], [4]. For many
situations, new statistical methods as well as
properties of classical techniques are suffi-
ciently known nowadays to be used in prac-
tice. From a practical point of view, fast and
accurate approximations for generating syn-
thetic self-similar traffic are needed.

We developed in the present paper a new
approach for approximating the power spec-
trum of the fractional Gaussian noise (FGN).
To deal with the infinite summation of the
FGN spectral density function, we computed
the first two terms exactly, and approximated
the rest of the summation using a linear func-
tion. We illustrated the validity of our ap-
proach. We also provided simulation results

to compare the present approach with exist-
ing ones in terms of the computation speed
and the accuracy in generating self-similar
traffic with given Hurst parameters. We con-
cluded that our approach is the fastest in com-
putation speed among all the methods in our
simulation and our approach guarantees to
generate self-similar traffic with high degree
of accuracy in terms of burstiness measures.
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Figure 5: Traces generated using the present approach for several values ofH.


