
TCP Byte Counting Refinements

Mark Allman
NASA Glenn Research Center/BBN Technologies

21000 Brookpark Rd. MS 54-2
Cleveland, OH 44135

mallman@grc.nasa.gov

Abstract

TCP’s delayed acknowledgment algorithm has been shown to
hurt TCP performance. One method of gaining the perfor-
mance lost by reducing the number of acknowledgments sent
is to use alimited byte countingalgorithm. However, we show
that as outlined in [All98], limited byte counting is too ag-
gressive in some situations. This paper defines anappropriate
byte countingalgorithm to fix this aggressiveness. This paper
shows that appropriate byte counting is a better overall algo-
rithm. In addition, a scaled version of the appropriate byte
counting algorithm, which provides finer-grained control over
the aggressiveness of the algorithm, is outlined. In addition,
unlike previous work this paper considers the impact of byte
counting flows on competing traffic and shows that it is not
fundamentally unfair to competing flows that do not use the
new algorithm.

1 Introduction

The slow start algorithm [Jac88, APS99] TCP uses to initially
determine the available bandwidth of a network path has been
the subject of a number of recent research studies. During slow
start TCP underutilizes the capacity of the network path, espe-
cially if the round-trip time (RTT) between the sender and the
receiver is large (such as in satellite networks) [All97]. Sev-
eral strategies have been proposed to mitigate the impact slow
start has on performance.

[Hoe96] observes that the initial slow start period is of-
ten terminated by a large number of lost segments, hurting
TCP’s performance. [Hoe96] suggests setting TCP’sslow
start threshold(ssthresh) state variable to the appropriate
value, such that slow start ends without causing a large num-
ber of dropped segments. Estimating the appropriate value for
ssthreshis studied further in [AP99]. [AD98] refines the al-
gorithm for estimatingssthreshsuggested in [Hoe96] and pro-
poses using the estimate to increase the congestion window
(cwnd), the amount of outstanding data a TCP sender can in-
ject into the network, to half the estimate and pacing segments
into the network at an appropriate rate, rather than using the
standard slow start algorithm to increase the congestion win-
dow.

Another proposal for decreasing the impact of slow start on
performance is to use a larger initial value for the congestion
window. [APS99] allows the initial congestion window to be 1
or 2 segments1. [AFP98] outlines an experimental mechanism
for increasing TCP’s initial window to 3 or 4 segments (de-
pending on the segment size). Increasing the initial window
provides the most benefit for short flows and low bandwidth
network paths. Several researchers have studied the impact of
using a larger initial window [AHO98, PN98, SP98].

[All98] suggests using alimited byte counting(LBC) al-
gorithm to mitigate the impact of delayed acknowledgments
on TCP performance. TCP’s delayed acknowledgment strat-
egy [Bra89] has been shown to reduce the performance of
TCP transfers by slowing the growth ofcwnd [Pax97, All98,
PAD+99]. The standard TCP congestion control algorithms
[Jac88, APS99] call for a TCP sender to increase the size of
cwndby a single segment for each acknowledgment (ACK) re-
ceived during slow start. A receiver generating delayed ACKs
reduces the number of returning ACKs by approximately half
when compared to a receiver that generates an ACK for each
segment received. Therefore, the rate thatcwnd is increased
is also reduced. Using LBC, the amountcwnd is increased is
based on the amount of new data covered by each incoming
ACK, rather than being a constant.

As defined in [All98], LBC’scwnd increase during slow
start based loss recovery is slightly too aggressive. We slightly
alter the LBC algorithm and define anappropriate byte count-
ing algorithm that does not behave too aggressively during
loss recovery. In some networks byte counting, as defined in
[All98] and in section 3, may be too aggressive, yet the stan-
dard algorithm may not be aggressive enough. Therefore, we
briefly introduce a scaled version of byte counting that pro-
vides a way to control the aggressiveness of the algorithm.
[All98] lacks a discussion of the impact of byte counting flows
on transfers not utilizing the byte counting algorithm. How-
ever, judging the fairness of the algorithm is important from
the perspective of deploying byte counting in real networks.
Therefore, we present three preliminary experiments that help
gauge the impact a byte counting transfer has on non-byte
counting flows.

This paper is organized as follows. Section 2 outlines
the network layout for the simulations presented in this pa-
per. Section 3 outlines theappropriate byte countingalgo-
rithm and presents simulations showing the behavior of the al-
gorithm. Section 4 investigates adding a scale factor to allow

1In practice, most TCP implementations maintain the congestion window in
terms of bytes, rather than segments. However, to simplify the discussion we
discuss the congestion window in terms of segments in this paper. The conver-
sion between segments and bytes is straightforward.



finer-grained control of the byte counting algorithm. Section
5 studies the fairness implications of using appropriate byte
counting. Finally, section 6 outlines our conclusions and pro-
vides a discussion of future work in this area.

2 Simulation Environment

We used thens [MF95] network simulator to conduct the ex-
periments presented in this paper. The entire network layout
for our simulations is given in Figure 1. The sender,S, trans-
mits data to the receiver,R, via a gateway,G. The bottleneck
bandwidth is 1.5 Mbps (approximately T1 rate). The length
of the queue in the gateway is 40 segments (approximately
twice thedelay-bandwidthproduct of the network path). Some
of the simulations presented in this paper use RED queueing
[FJ93, BCC+98]. The RED parameters used in those experi-
ments are given in table 1.

S

G

R

10 Mbps -- 0 ms

1.5 Mbps -- 50 ms

Figure 1: Simulated network topology used in all simulations
presented in this paper.

Parameter Value
minth 7
maxth 21
wq 0.002
maxp 0.1

Table 1: RED parameters.

The standard TCP Reno [Jac88, APS99] and TCP SACK
[MMFR96, FF96] modules provided inns are used for the
baseline tests, and modifications of these modules are used to
investigate byte counting. The segment size used in these tests
was 1000 bytes. In addition, all TCP flows used in these sim-
ulations employed an initial congestion window of 2 segments
(currently allowed by [APS99] and discussed in [AFP98]).
The advertised window size was 20 segments (roughly the
delay-bandwidthproduct of the network).

3 Appropriate Byte Counting

Currently, the slow start algorithm increases TCP’sconges-
tion window(cwnd) by a constant amount for each acknowl-
edgment (ACK) received [APS99]. [All98] investigates the
performance of a limited byte counting (LBC) algorithm for
increasingcwndbased on the number of bytes acknowledged,
rather than by one segment for each ACK received. The idea

behind the LBC algorithm is that the sender should not re-
duce the rate ofcwndgrowth based on whether or not the re-
ceiver generates delayed acknowledgments. However, blindly
incrementingcwndbased on the number of new data bytes ac-
knowledged upon receipt of each ACK is overly aggressive
during slow start based loss recovery, as well as in the face
of stretch ACKs (acknowledgments covering more than 2 seg-
ments of previously unacknowledged data). The remedy sug-
gested in [All98] is to place an upper bound of 2 segments
on the increase ofcwndin response to a single ACK. This al-
lows cwnd to open in a similar manner regardless of whether
or not the receiver implements delayed acknowledgments, but
not opencwnd in a very over-aggressive manner during loss
recovery.

However, even using the limit provided by LBC, byte
counting is slightly more aggressive than the standard algo-
rithm during slow start based loss recovery. An ACK for
N previously unacknowledged segments during loss recovery
does not indicate thatN segments have left the network, as
such an ACK indicates during a connection’s initial slow start
period. The only accurate determination that can be made
when an ACK arrives during slow start based loss recovery
is that at least one segment has left the network2. In addition,
[APS99] specifies that a TCP receivershould notdelay ACKs
during loss recovery (i.e., ACKs for out-of-order segments).
So, if delayed ACKs are not generated LBC is not needed
to ameliorate their impact. However, as defined in [All98],
LBC will attempt to counteract the delayed ACKs anyway and
end up being too aggressive. Therefore, we defineappropriate
byte counting(ABC) as using limited byte counting only dur-
ing the initial slow start period3. Also note that the behavior
of ABC (or LBC) is nearly identical to the standard behav-
ior when the receiver is generating an ACK for each incoming
segment. Only in the case of ACK loss is the behavior different
(the ABC algorithm will increasecwndmore than the standard
algorithm). However, given that the difference is slight we did
not experiment with ABC in conjunction with receivers that
ACK each segment.

Figures 2 and 3 show the behavior of ABC in compari-
son to that of LBC and the standard algorithm under various
amounts of network load for TCP SACK4 flows. Drop-tail
queueing was used in these experiments. In these figures, the
“ACK Every Segment” line denotes a standard TCP sender
communicating with a receiver that generates an ACK for each
arriving segment. The “Delayed ACKs” line shows the behav-
ior of a standard TCP sender transmitting data to a receiver
implementing delayed ACKs. The “Appropriate Byte Count-
ing” and “Limited Byte Counting” lines show the behavior of
ABC and LBC senders when communicating with a delayed
ACK receiver. In these simulations, a given number of random
length flows (shown on thex-axis) were generated at a random
starting time during the simulation period (100 seconds). Each
point on the plots represents the average of 30 different ran-
dom scenarios. While these scenarios are not necessarily rep-
resentative of real-world traffic patterns, they provide insights
into the behavior of the algorithms under a varying amount of
network load.

Figure 2 shows the throughput (unique data bytes per sec-

2A TCP implementation may be able to use the received SACK blocks to
derive better information about the number of segments being acknowledged.

3ABC can also be used during the slow start that follows a long idle period
in some TCP implementations.

4For this set of experiments, the TCP Reno behavior was very similar to the
TCP SACK behavior shown and therefore we omitted the TCP Reno plots for
brevity.



0

10000

20000

30000

40000

50000

60000

70000

80000

90000

50 100 150 200 250 300 350 400 450 500

T
hr

ou
gh

pu
t (

by
te

s/
se

co
nd

)

Flows

Drop-Tail Queueing

ACK Every Segment
Delayed ACKs

Appropriate Byte Counting
Limited Byte Counting

Figure 2: Impact on throughput of ABC on SACK-based flows over a network utilizing a drop-tail queue.

0.75

0.8

0.85

0.9

0.95

1

50 100 150 200 250 300 350 400 450 500

G
oo

dp
ut

Flows

Drop-Tail Queueing

ACK Every Segment
Delayed ACKs

Appropriate Byte Counting
Limited Byte Counting

Figure 3: Impact on goodput of ABC on SACK-based flows over a network utilizing a drop-tail queue.

0.7

0.75

0.8

0.85

0.9

0.95

1

50 100 150 200 250 300 350 400 450 500

G
oo

dp
ut

Flows

RED Queueing

ACK Every Segment
Delayed ACKs

Appropriate Byte Counting
Limited Byte Counting

Figure 4: Impact on goodput of ABC on SACK-based flows over a network utilizing a RED queue.



ond) as a function of the number of flows generated during the
simulation. First, using the standard algorithm with delayed
ACKs provides the lowest throughput, due to the less aggres-
sive nature of this variant when compared to the others studied.
The figure shows that the throughput benefit of using ABC is
nearly identical to that gained by using LBC. Furthermore, us-
ing ABC (or LBC) provides much better throughput than the
standard algorithm in the face of delayed acknowledgments.
The throughput gained by an ABC/LBC sender when faced
with delayed ACKs is almost as high as the throughput gained
when using the standard algorithm and receiving an ACK for
each segment sent. The ABC/LBC algorithms coupled with
delayed ACKs make a TCP sender slightly more bursty than
the standard algorithm when receiving an ACK for each seg-
ment, which explains the discrepancy in throughput [All98].
This figure indicates that using ABC can achieve nearly the
same throughput benefit as eliminating delayed ACKs, while
not increasing the amount of network traffic (by roughly half
as many ACKs). In addition, this figure shows that there is
nearly no performance hit for using ABC over LBC.

Figure 3 shows the goodput5 as a function of the number
of flows generated during each simulation. The plot shows
that using the standardcwnd increase algorithm with delayed
ACKs achieves the best goodput. In this situation, a TCP
sender is not nearly as aggressive as the other three versions
of TCP shown in the plot. Therefore, it is expected that the
less aggressive TCP variant also experiences the least amount
of loss. The figure shows that LBC provides lower goodput
than the standard algorithm when receiving an ACK for each
segment. However, ABC shows slightly better goodput than
the standard algorithm when each segment is ACKed. The
discrepancy between LBC and ABC shows that the extra seg-
ments sent during recovery by an LBC sender are largely un-
necessary for loss recovery. That is, each ACK during slow
start based loss recovery generally points to a segment that has
been lost in the network. Transmitting segments other than
the one pointed to by the incoming ACK may be unnecessary.
Therefore, increasing the number of these possibly unneces-
sary segments generally decreases the goodput of the transfer.
ABC reverts to the standardcwnd increase algorithm during
loss recovery via slow start and therefore does not send the ex-
tra segments transmitted by LBC and therefore shows better
goodput.

Simulations with RED queueing in the congested gateway
show throughput averages similar to those shown in figure 2.
The goodput for the tests conducted with RED queueing is
shown in Figure 4. The goodput in the RED environment is
less than in the drop-tail for all versions of TCP tested due to
RED’s early dropping mechanism. In other words, RED in-
creases the drop rate for the network but in doing so reduces
the average queue size so that the gateway is not biased against
bursty senders. The figure illustrates both these facets of RED
queueing. The figure shows that ABC still achieves slightly
better goodput than LBC indicating that LBC is sending un-
necessary segments during slow start style loss recovery.

4 Scaled Byte Counting

In some cases ABC may be too aggressive while the standard
algorithm coupled with delayed ACKs may not be aggressive
enough. In this section we explore ascaledversion of ABC
(SABC) that can be used to further tune the algorithm. During

5Goodput is defined as the ratio of the number of unique data bytes sent to
the total number of data bytes sent.

slow start, SABC incrementscwndaccording to Equation 1,
whereN is the number of previously unacknowledged seg-
ments covered by the incoming ACK andSis thescale factor.

cwnd = cwnd + 1 + ((N � 1) � S) (1)

The congestion window is first incremented by a single seg-
ment for the data segment that triggered the transmission of
the ACK, per the standard algorithm. Then,cwnd is further
incremented by some fraction of a segment for each additional
newly acknowledged segment covered by the ACK. Setting
S = 0 makes this algorithm identical to the standard algo-
rithm (i.e., no credit for more than one segment per ACK). Set-
ting S = 1 yields unlimited byte counting (i.e., we increment
cwndby 1 full segment for each new segment acknowledged).
Making S > 1 would violate the ideas presented in [Jac88]
becausecwndwould more than double every RTT during slow
start. SABC is only used during the first slow start period (i.e.,
not during loss recovery via slow start). For example, con-
sider the case whenS = 0:5 and the TCP sender receives two
ACKs, each for two outstanding segments. Also, assume the
currentcwnd value isC. Upon receiving the first ACK the
sender will incrementcwndtoC = C + 1 + 0:5 = C + 1:5
and 3 segments will be transmitted (2 due to the window slid-
ing and 1 due to thecwnd increase). Additionally, the sender
will have 0.5 segments left in the congestion window, which
will remain unused (at this point) since TCP sends only when
it can transmit a full segment. The next ACK will again in-
crease the congestion window by 1.5 segments. However, this
time TCP will transmit 4 segments (2 for the window sliding
and 2 for thecwndincrease).

Figures 5 and 6 show the costs and benefits of SABC with
several choices forS in a drop-tail queueing environment. The
TCP used for these simulations utilizes the TCP SACK option.
The traffic patterns used in these simulations are the same sce-
narios used in the previous section, with each point again rep-
resenting the average of 30 random scenarios. As expected,
Figure 5 shows that as we increaseS (and therefore, make the
TCP sender more aggressive) we decrease the average good-
put. However, Figure 6 shows that as we increaseS, TCP
is able to attain better throughput on average. Simulations of
Reno-based TCP yield similar results. Tests involving RED
queues show approximately the same results with respect to
throughput. However, the difference in the drop rate among
the various values ofS is diminished with RED queueing due
to RED’s ability to handle bursts better than drop-tail queues,
as shown in Figure 7. These figures confirm that using a scaled
version of the ABC algorithm allows finer-grained control over
the aggressiveness of the algorithm. Further tests in real net-
works are needed to determine if this additional control is use-
ful.

5 Fairness of Byte Counting

In order to deploy a new TCP mechanism in the global In-
ternet, it must be fair to traffic that does not employ the new
algorithm. This section presents several experiments aimed
at assessing whether TCP with the ABC algorithm competes
fairly against non-ABC traffic, or whether the algorithm steals
resources from non-ABC transfers.

5.1 One-on-One Tests

To investigate the impact one ABC transfer has on one non-
ABC transfer we constructed a set of simulations consist-
ing of one long TCP flow and one relatively short TCP



0.75

0.8

0.85

0.9

0.95

1

50 100 150 200 250 300 350 400 450 500

G
oo

dp
ut

Flows

Drop-Tail Queueing

ACK Every Segment
Delayed ACKs
SABC, S=0.25
SABC, S=0.50
SABC, S=0.75

Figure 5: Impact on goodput of SABC on SACK-based flows over a network utilizing a drop-tail queue.

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

50 100 150 200 250 300 350 400 450 500

T
hr

ou
gh

pu
t (

by
te

s/
se

co
nd

)

Flows

Drop-Tail Queueing

ACK Every Segment
Delayed ACKs
SABC, S=0.25
SABC, S=0.50
SABC, S=0.75

Figure 6: Impact on throughput of SABC on SACK-based flows over a network utilizing a drop-tail queue.

0.7

0.75

0.8

0.85

0.9

0.95

1

50 100 150 200 250 300 350 400 450 500

G
oo

dp
ut

Flows

RED Queueing

ACK Every Segment
Delayed ACKs
SABC, S=0.25
SABC, S=0.50
SABC, S=0.75

Figure 7: Impact on goodput of SABC on SACK-based flows over a network utilizing a RED queue.



Long/Short Throughput Dropped Segment
Ratio Ratio

DA/DA 1.00/1.00 1.00/1.00
DA/ABC 1.00/1.09 1.02/1.94
ABC/DA 1.00/0.91 1.97/1.08

ABC/ABC 0.99/1.09 1.98/2.42

Table 2: One-on-One Tests: TCP SACK, Drop-Tail Queueing. Each reported value is the ratio between the experimental transfer
and a similar transfer when delayed ACKs were used for all connections.

flow. The short flow (5,000,000 bytes) was initiated and com-
pleted within the time required to complete the long transfer
(20,000,000 bytes). The simulation was repeated 30 times
with random start times for the short transfer (however, the
short transfer always ended before the long transfer).

Table 2 shows the one-on-one simulation results with a
drop-tail queue in the congested gateway and SACK-based
TCP. The first column of the table reports the TCP variants
used for the long and short transfers (with “DA” denoting a
sender using the standardcwnd increase algorithm and a re-
ceiver that generates delayed ACKs). The second column
gives the throughput ratio for both transfers between the sce-
nario in question and the simulations utilizing delayed ACKs
and the standardcwnd increase algorithm for both transfers.
The third column reports the ratio of number of dropped seg-
ments when compared to the standardcwndincrease algorithm
in the face of delayed ACKs for both transfers.

The table shows that throughput for the long transfer is
stable across all combinations of TCP variants presented. In
addition, introducing ABC into one or both flows does not
change the throughput of the short flow by more than 10%
(up or down). In addition, the simulations show that the more
aggressive ABC flows do not drastically increase the drop rate
of the competing DA flows, even though the overall drop rate
for the network is increasing.

Table 3 shows the behavior of SACK-based TCP variants
in a RED queueing environment. This table shows that the
throughput obtained by the long transfer is stable regardless of
whether ABC is utilized by the sender. Furthermore, when the
short transfer is made using ABC the throughput increases,
when compared to a short DA flow. However, when ABC
is used for the long flow and DA for the short transfer, the
DA flow obtains less throughput than it does when competing
against a long DA flow. The long flow (ABC, in this case) is
not stealing the bandwidth from the short flow, as the reported
throughput for the long ABC flow is similar in each simulation
reported. However, the ABC flow increases the delay along the
network path (by increasing the queue length) and therefore it
takes the DA flow longer to obtain an appropriate congestion
window, leading to lower throughput.

5.2 Several Concurrent Connections

The next experiment performed to judge the fairness of ABC
when competing with non-ABC transfers is to run a set of 16
parallel TCP connections across the network. The 3,000,000
byte transfers are started at the same time. We expect that if
the TCP algorithms are completely “fair”, each will receive the
same amount of the bottleneck bandwidth. We used thefair-
ness index[Jai91] given in Equation 2 to quantify the fairness
of the set of connections.

f(x1; x2; � � � ; xn) =

 
nX

i=1

xi

!2

n �

nX
i=1

x2i

(2)

When given a set of non-negative throughputs (x1,x2, etc.)
Equation 2 yields a value between 0 and 1. If alln throughputs
are the same the equation yields 1. Ifm of then throughputs
are the same, with the remainingn � m connections receiv-
ing zero throughput the equation yieldsm=n. Note that these
simulations are not necessarily realistic, but do provide insight
into an algorithm’s fundamental ability to share a congested
link in a very simple situation.

Table 4 shows results from various simulations constructed
to test ABC’s fairness. All simulations consisted of 16 TCP
connections, as described above. However, the number of
flows utilizing each variant of TCP explored in this paper is
varied. The table indicates how many flows used each TCP
variant tested, as well as the fairness index for each simula-
tion. The scenarios presented were constructed to show the
fairness behavior in a range of situations (i.e., some Reno TCP
connections, some SACK TCP connections, etc.). The table
shows that in both drop-tail and RED queueing environments
and with both Reno and SACK TCP, ABC shares the band-
width as well as either the standard increase algorithm when
receiving an ACK for every segment (AE) or when receiving
delayed acknowledgments (DA) (i.e., the fairness index yields
a value very close to 1).

5.3 Many Concurrent Connections

Finally, we tested the fairness of ABC in the context of a ran-
dom traffic mix. As in sections 3 and 4, we used 30 random
scenarios consisting of a variable number of TCP flows (50–
500) that were started at random times throughout the course
of the simulation period (100 seconds). We conducted these
tests with SACK-based TCP flows. Half the flows in each
run utilized the standardcwnd increase algorithm, with the
other half of the connections using ABC. The receiver gen-
erated delayed ACKs for all flows. Figures 8 and 9 show the
results of these experiments when utilizing a drop-tail queue in
the congested gateway. The two lines marked “Pure Delayed
ACKs” and “Pure ABC” are the average throughput for runs
in which all connections utilized the standard algorithm or the
ABC algorithm (as reported in section 3). The “Mixed De-
layed ACK” line indicates the average goodput or throughput
of the connections utilizing the standardcwnd increase algo-
rithm in the mixed traffic simulation. Likewise, the “Mixed
ABC” line shows the average goodput or throughput of the
ABC flows in the mixed traffic environment.



Long/Short Throughput Dropped Segment
Ratio Ratio

DA/DA 1.00/1.00 1.00/1.00
DA/ABC 1.00/1.15 1.07/1.71
ABC/DA 1.01/0.90 1.69/1.03

ABC/ABC 1.01/1.01 1.74/1.67

Table 3: One-on-One Tests: TCP SACK, RED Queueing. Each reported value is the ratio between the experimental transfer and a
similar transfer when delayed ACKs were used for all connections.

Queue Reno Reno Reno SACK SACK SACK Fairness
Type AE DA ABC AE DA ABC Index
RED 0 0 0 16 0 0 0.9980
RED 0 0 0 0 16 0 0.9992
RED 0 0 0 0 0 16 0.9990
RED 0 0 0 0 8 8 0.9945
RED 0 0 0 8 0 8 0.9979
RED 0 0 0 4 6 6 0.9955
RED 16 0 0 0 0 0 0.9984
RED 0 16 0 0 0 0 0.9991
RED 0 0 16 0 0 0 0.9981
RED 0 8 8 0 0 0 0.9912
RED 8 0 8 0 0 0 0.9980
RED 4 6 6 0 0 0 0.9929
RED 0 4 4 0 4 4 0.9928

Drop-Tail 0 0 0 16 0 0 0.9993
Drop-Tail 0 0 0 0 16 0 0.9968
Drop-Tail 0 0 0 0 0 16 0.9986
Drop-Tail 0 0 0 0 8 8 0.9973
Drop-Tail 0 0 0 8 0 8 0.9974
Drop-Tail 0 0 0 4 6 6 0.9976
Drop-Tail 16 0 0 0 0 0 0.9985
Drop-Tail 0 16 0 0 0 0 0.9932
Drop-Tail 0 0 16 0 0 0 0.9940
Drop-Tail 0 8 8 0 0 0 0.9985
Drop-Tail 8 0 8 0 0 0 0.9880
Drop-Tail 4 6 6 0 0 0 0.9943
Drop-Tail 0 4 4 0 4 4 0.9865

Table 4: Jain’s Fairness Index

0.75

0.8

0.85

0.9

0.95

1

50 100 150 200 250 300 350 400 450 500

G
oo

dp
ut

Flows

Drop-Tail Queueing

Pure Delayed ACKs
Mixed Delayed ACKs

Pure ABC
Mixed ABC

Figure 8: Impact on goodput of ABC flows in a mixed traffic environment. TCP SACK-based flows are used over a network
utilizing a drop-tail queue.



0

10000

20000

30000

40000

50000

60000

70000

80000

90000

50 100 150 200 250 300 350 400 450 500

T
hr

ou
gh

pu
t (

by
te

s/
se

co
nd

)

Flows

Drop-Tail Queueing

Pure Delayed ACKs
Mixed Delayed ACKs

Pure ABC
Mixed ABC

Figure 9: Impact on throughput of ABC flows in a mixed traffic environment. TCP SACK-based flows are used over a network
utilizing a drop-tail queue.

As Figure 8 shows that both versions of TCP obtain nearly
the same goodput regardless of whichcwndincrease algorithm
is being used in the competing traffic. Figure 9 shows that each
variant of TCP receives approximately the same throughput
regardless of which version of TCP it is competing against.
However, there is a very slight throughput advantage for ABC
when competing against the standardcwndincrease algorithm
in a number of the simulations. Utilizing RED queueing in the
congested gateway yields similar results.

6 Conclusions and Future Work

The following are the conclusions we can draw from the simu-
lations presented in this paper, as well as some areas for future
work.

� ABC is more appropriate than LBC during loss recov-
ery via slow start, due to the unnecessary extra seg-
ments transmitted by LBC. Furthermore, ABC increases
throughput, as well as the drop rate in a similar manner
to turning off delayed ACKs without introducing more
traffic into the network. However, ABC still needs to be
tested over a wide range of real network paths. One area
of possible concern may be in increasing the burstiness
of TCP in network paths with a very small number of
buffers available.

� SABC provides a finer-grained control over the increase
of cwndand may provide a way to tune the algorithm if
ABC turns out to be overly aggressive in real network
experiments. SABC shows more promise in networks
with drop-tail gateways, and not so much in RED envi-
ronments (due to RED’s ability to handle small bursts
better than drop-tail gateways).

� ABC does not show any fundamental bias against com-
peting traffic in the simulations presented in this paper.

� Finally, the simulations presented in this paper offer a
glimpse of how ABC is likely to perform. However, ex-
periments conducted over the Internet are required be-
fore ABC can be judged to be safe for widespread im-
plementation.

Acknowledgments

This paper has benefited from conversations with a great num-
ber of people. I would like to thank the following people for
their constructive discussions on byte counting: Sally Floyd,
Dan Glover, Chris Hayes, Matt Mathis and Jeff Semke. In ad-
dition, Shannon Steinfadt and the anonymous CCR reviewers
provided useful comments on an earlier version of this paper.
My thanks to all!



References

[AD98] Mohit Aron and Peter Druschel. TCP: Improving
Startup Dynamics by Adaptive Timers and Con-
gestion Control. Technical Report TR98-318,
Rice University Computer Science, 1998.

[AFP98] Mark Allman, Sally Floyd, and Craig Partridge.
Increasing TCP’s Initial Window, September
1998. RFC 2414.

[AHO98] Mark Allman, Chris Hayes, and Shawn Oster-
mann. An Evaluation of TCP with Larger Ini-
tial Windows. Computer Communication Re-
view, 28(3), July 1998.

[All97] Mark Allman. Improving TCP Performance Over
Satellite Channels. Master’s thesis, Ohio Univer-
sity, June 1997.

[All98] Mark Allman. On the Generation and Use of
TCP Acknowledgments.Computer Communica-
tion Review, 28(5), October 1998.

[AP99] Mark Allman and Vern Paxson. On Estimating
End-to-End Network Path Properties. InACM
SIGCOMM, September 1999. To appear.

[APS99] Mark Allman, Vern Paxson, and W. Richard
Stevens. TCP Congestion Control, April 1999.
RFC 2581.

[BCC+98] Robert Braden, David Clark, Jon Crowcroft,
Bruce Davie, Steve Deering, Deborah Estrin,
Sally Floyd, Van Jacobson, Greg Minshall, Craig
Partridge, Larry Peterson, K. Ramakrishnan,
S. Shenker, J. Wroclawski, and Lixia Zhang.
Recommendations on Queue Management and
Congestion Avoidance in the Internet, April
1998. RFC 2309.

[Bra89] Robert Braden. Requirements for Internet Hosts
– Communication Layers, October 1989. RFC
1122.

[FF96] Kevin Fall and Sally Floyd. Simulation-based
Comparisons of Tahoe, Reno, and SACK TCP.
Computer Communications Review, 26(3), July
1996.

[FJ93] Sally Floyd and Van Jacobson. Random
Early Detection Gateways for Congestion Avoid-
ance. IEEE/ACM Transactions on Networking,
1(4):397–413, August 1993.

[Hoe96] Janey Hoe. Improving the Start-up Behavior of
a Congestion Control Scheme for TCP. InACM
SIGCOMM, August 1996.

[Jac88] Van Jacobson. Congestion Avoidance and Con-
trol. In ACM SIGCOMM, 1988.

[Jai91] Raj Jain. The Art of Computer Systems Per-
formance Analysis: Techniques for Experimental
Design, Measurement, Simulation and Modeling.
Wiley, 1991.

[MF95] Steven McCanne and Sally Floyd. NS (Net-
work Simulator), 1995. URL http://www-
nrg.ee.lbl.gov.

[MMFR96] Matt Mathis, Jamshid Mahdavi, Sally Floyd, and
Allyn Romanow. TCP Selective Acknowledge-
ment Options, October 1996. RFC 2018.

[PAD+99] Vern Paxson, Mark Allman, Scott Dawson,
William Fenner, Jim Griner, Ian Heavens, Kevin
Lahey, Jeff Semke, and Bernie Volz. Known TCP
Implementation Problems, March 1999. RFC
2525.

[Pax97] Vern Paxson. Automated Packet Trace Analysis
of TCP Implementations. InACM SIGCOMM,
September 1997.

[PN98] Kedarnath Poduri and Kathleen Nichols. Simu-
lation Studies of Increased Initial TCP Window
Size, September 1998. RFC 2415.

[SP98] Tim Shepard and Craig Partridge. When TCP
Starts Up With Four Packets Into Only Three
Buffers, September 1998. RFC 2416.


