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The future success of computer communications will largely depend on how effectively applications achieve their
desired quality of service (QoS). Active networks move closer to the goal of application specified QoS by allow-
ing user-specified network related computation to beinjectedinto the network elements. Although research into
active networks is in its infancy, one area that has not yet received much attention is the representation of active
programs. The Active Network Encapsulation Protocol (ANEP) has made a significant effort towards producing a
common definition, however, as the name suggests, ANEP has only gone as far as the packet header for encapsu-
lating an active program. The contribution of this paper is to show how an independent packet representation such
as Abstract Syntax Notation One (ASN.1) can be used as a common substrate for representing active programs.
An active networking framework, using ASN.1 whereby any active network solution can be deployed indepen-
dently of the active network element’s architecture is discussed. In this paper, we demonstrate the independent
representation using a simple procedural language. This technique however is language independent and can be
extended to cover any language including all those currently used in active networks. ASN.1 is ideally suited to
this purpose since it was originally conceived as a language for the representation of programs and data types in
protocol data units (PDUs). This solution maintains security, mobility and efficiency.

1. INTRODUCTION

When the ARPANET was conceived and deployed in 1969, it was designed with the phi-
losophy that multiple services be provided and distributed across a heterogeneous environ-
ment [1]. Theinternet, which was modelled on the ARPANET framework, is now hosting
a new generation of applications which require QoS. Although most would concede that
QoS over the Internet Protocol (IP) is an illusion, we are seeing the deployment of many
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protocols to help realise this illusion.
For a protocol to become ubiquitous, it needs to be standardised. The Internet Engineer-

ing Task Force (IETF), amongst others, has recognised this and has in place astandards
track process. Unfortunately, this process takes time. Alexander et al. [2] observe that
the time taken for a protocol to be conceived, developed, presented at SIGCOMM, stan-
dardised and then implemented can take between five and eight years. Despite the fact that
this delay acts as afilter which prevents poorly designed protocols gaining acceptance, the
standardisation process may see the protocol become outdated or further revised. Active
networks provide a mechanism whereby new services can be deployedon the fly, hence
removing this standardisation hurdle. Unlike conventional protocols, active networks con-
siderthe useran important factor.

Active networks view the network as a general computation engine. Data is treated as a
program that is executed as it traverses the network. This has led to a new area of research
which investigates how networks can perform computations on data which passes through
the elements [3]. An active network is an abstraction which allows user-specified actions
to be performed within the network switches [3; 4; 5]. Although active networks allow a
plethora of applications, they are ideally suited to network management. Active networks
promise an increase in the complexity and functionality of network functions that can be
offered by the network. This reduces the need for end node network related computation.

Many researchers have offered definitions and descriptions (some of which are described
in the next section) of what an active network architecture actually is. Although research
into active networks is still relatively new, the current trends emerging from this research
indicate that the delays experienced in thestandardisationof conventional protocols will
re-emerge. To minimise the impact of this problem, it is desirable to solve active net-
working issues using methods that are independent of any active network architecture. It
is envisaged that a common representation as proposed in this paper will accelerate the
development of these solutions.

The Active Network Encapsulation Protocol (ANEP) [6] has made a significant effort
towards defining a common representation for active programs. ANEP, as the name sug-
gests, defines a packet format for encapsulating an active program. ANEP uses a type,
length and value (TLV) style encoding, similar to that of Basic Encoding Rules (BER),
defined in X.209 [7]. The primary ANEP header specifies the type of active network archi-
tecture used, the options and the payload (which is an active program). The options field
(also a TLV encoded field) stores information about the program identification.

ANEP only goes as far as defining the active program header. The payload is arbitrarily
defined by the developer of the active network architecture. Although the payload can be
distingushed by the type identifier field, interoperability remains a challenge. If the vision
of a wide area active network is to be realised, it will be beneficial to have a standard
method for representing and encoding active programs. The use of the type identifier field
implies that there will be many methods of representing an active program, and it follows
that network elements may only handle a subset of these representations leading to all the
usual problems of interoperability between competing active network architectures.

In this paper, we shall draw upon existing knowledge in PDU specification (e.g. ASN.1
[8]) and encoding schemes (e.g. BER [7], External Data Representation (XDR) [9] and
Network Byte Ordering (NBO)) to show how active programs can achieve a high level of
interoperability. Any ASN.1 specification can be encoded into a byte code using any of the
aforementioned encoding schemes [10]. Throughout this paper, we shall refer to an ASN.1
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encoded specification as thecommon byte code. However, this byte code could be an NBO
byte code, an XDR byte code or a BER (or any of its derivatives) byte code.

The framework for the deployment of active networks described in this paper uses an
ASN.1 value definition, which is used to generate a byte code, to represent active pro-
grams. This gives all active network elements the ability to interpret a common definition,
even if a primitive structure (e.g.OCTET STRING) which represents a byte code is used,
meaning that any active network architecture can be deployed. Existing (or future) active
network architectures only require a method to produce an ASN.1 value definition, from
their programs. It follows therefore that active programs written in any language are trans-
lated into an ASN.1 definition. It has been shown [10] that an ASN.1 definition can be
encoded using any encoding scheme. Given the ASN.1 definition, any active network ele-
ment can execute the program irrespective of the active network architecture that produced
the PDUs since an active network element needs only to be able to interpret the common
byte code.

The process of moving from a high level language to ASN.1 is demonstrated in this pa-
per using a simple procedural language. Despite the simplicity of this language (although
some researchers suggest that active network elements should remain simple) it is sufficient
to show thatany language can be mapped to an ASN.1 value definition. The remainder of
this paper looks at existing active network architecutres. Given this, we examine the issues
which must be considered for a ubiquitous active network. Furthermore, we shall argue
that the new framework provides a consistent and coherent approach to active network-
ing without sacrificing security, mobility and efficiency. A solution is discussed whereby
ASN.1 is used to represent an active program from a user program.

2. BACKGROUND

Initial work [3; 5; 4] has argued that active networks are characterized by one of two ap-
proaches: discrete and integrated. The discrete approach looks at how programs can be
uploaded to a programmable node and then executed. The integrated approach, also called
thecapsuleapproach, treats every packet as a program. In this approach, the network ele-
ment contains a general purpose processor which executes the data (a program), modifies
a packet (if need be) and forwards the packet onto the next host. Thus, if a store and for-
ward network is to be used as an active network, the network will become store,compute
and forward. Tennenhouse [3] believes that this approach will allow fine grain instructions
to be implemented at strategic points in the network. Furthermore, the capsule approach
moves away from fixed packet formats meaning that there will be an inherent increase in
complexity.

The Netscript project [11] follows the discrete approach to active networking. It al-
lows programs to be delegated to a Virtual Network Engine (VNE) (an agent) in a similar
way to that used to upload a program to a host. Netscript can be applied to a variety of
network management applications which include Simple Network Management Protocol
(SNMP) agents and signalling. Unlike other architectures, Netscript looks at programming
the nodes rather than having every packet contain a program.

The Smart Packets project [12], currently under development at BBN, looks at how
programs written in thesprocketlanguage can be encoded within a single IPv4 or IPv6
datagram. The philosophy behind the Smart Packets project is to allow customised di-
agnostic and configuration of networks and networked hosts. Smart Packets follow the
capsuleapproach whereby aspanner, a stack based CISC type language, program which
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is compiled from asprocketprogram is encapsulated within an ANEP PDU. At each net-
work element exists an ANEP daemon which acts as an injection and reception point thus
providing store,computeand forward functionality. In addition, smart packets allow the
integration of normal data packets, whereby the router IP alert function is used to identify
ANEP PDUs. Schwartz et al. [12] argue that Smart Packets is acleanandsafeenviron-
ment whilst providing some interoperability via MIBs, a feature that has been neglected by
most active architectures.

The Switchware project [13; 14; 2] seeks to investigate the rapid development and de-
ployment of new network services. Switchware provides a facility for a basic network
service which is programmable so that services can be selected, either on a per-user, or
even a per-packet basis. Initally, services are deployed using the CaML language [15]
which is used in the Switchware testbed. Recently, the Programming Language for an
Active Network (PLAN) [16] was developed which provides a script-like functional lan-
guage at the user level. These programs are encoded into an ANEP packet. Switchware
was applied to a host, acting as a bridge, which allows thehot swappingbetween bridging
protocols [2].

Georgia Institute of Technology (GaTech) [17; 18; 19] propose an architecture for active
networking which uses theIPOPT APexperimental option field, defined by Bhattacharjee
et al. [17], of an IP PDU to indicate and encapsulate functions. The functions call a pre-
loaded routine, which, in turn, is executed on an active node. The pre-loaded routine can
be extended to provide aturing completefunction. Alexander et al. [2] argue that this
architecture is insecure as no method exists to validate loaded modules.

TheIPOPT APfield has also been applied to programmable congestion control, in par-
ticular, MPEG group of packet (GOP) discard. Bhattacharjee et al. [17; 19] discuss how
active networks can look for triggers that indicate that congestion has occurred and thus
take corrective action.

Research at Massachusetts Institute of Technology (MIT) [3; 20; 4; 21] have seen the
development of a capsule and programmable switch based active network architecture.
This active network research has seen significant development in the application of active
networks to various network problems [22; 23]. The result of this is a toolkit, called the
Active Network Toolkit (ANTS) [21] which allows the development and deployment of
active programs.

MIT’s capsule approach to active networks had focused on using the option field in
the IPv4/IPv6 header to store a code fragment [4] (similar to the approach at GaTech).
Wetherall et al. [4] demonstrated a prototype through the use of a subset of Tcl how simple
programs, for example, the activetraceroute, can be encoded within an IP PDU and exe-
cuted. Research efforts now focus on ANTS [21] which is an active network architecture
for building and deploying network protocols. Unlike previous architectures, ANTS allows
active protocols to be deployed at the end systems as well as mid points of a network.

Current prototypes of ANTS use the Java [24] Virtual Machine. Programs are written
in Java and transferred (over the user datagram protocol (UDP)) to the active host. To
demonstrate the effectiveness of ANTS, several examples were used one of which was the
multicast negative acknowledgement (NACK) suppression problem [21; 20].

So far, we have examined various active network architectures. In the next section, we
consider the issue of whether active networks should have a common representation.
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3. OPEN ISSUES

As mentioned in Section 1, the main motivation behind the establishment of active net-
works is that user-driven code, related to the network, can be injected into the network
elements. Each of the architectures described in Section 2 uses a different method to repre-
sent programs. Despite the fact that [3] has classified active networks into two approaches,
there is no standard language for each type of active program and there is no way to distin-
guish between an integrated or discrete program. Consider the following program:

if dest-addr <> host-addr
append host ip to pdu

else
bounce pdu back to source host

endif

This program is a simple activetraceroute. It can be treated as a discrete program
which is executed on each packet passing through a host, or this program can be treated
as a capsule which is executed at every hop. If an architecture that supports both discrete
and integrated approaches is used, then a program syntax that distinguishes between both
methods is required.

There is no common method for encoding an active program. We have seen in the
previous section two methods for encoding an active program. If the program was written
for Switchware, then it would be encoded in CaML byte code. Alternatively, if ANTS is
used then a Java byte code is used. MIT’s Active IP and GaTech’sIPOPT AParchitectures
each use different encoding schemes on top of Network Byte Ordering (NBO). ANEP, on
the other hand, uses an encoding scheme that resembles BER.

Undoubtedly, the proliferation of active network technologies will see the number of
architectures increase, as will the number of encoding schemes. If the vision of an active
network is realised and a wide area active network is to be deployed then:

(1) Programs need to be encoded using an encoding scheme that is independent of the
underlying network layer substrate. An active network architecture independent of the
network layer substrate means that issues such as fragmentation, packet loss, discard
algorithms etc. need not be considered.

(2) Interoperability between architectures needs to be maintained. If multiple active net-
work architectures exist then the issue of interoperability must be addressed.

(3) Active processing within the network elements must be given the same priority as
routing/switching and thus it should not be treated as a secondary function. The effect
of this has been demonstrated by the fact that remote monitoring (RMON) agents,
which are embedded in routers, tend to drop packets when the traffic load is high [25].
Some reviewers have observed that in advocating the active network paradigm, an
additional layer (which interprets or executes a program) may degrade performance.
This is correct, however this addition is mandatory if the active network philosophy
is to be fulfilled. It follows that network elements have to maintain a high level of
efficiency meaning the active network language must be simple. This also implies that
routers must not have multiple active architectures.

Interoperability issues with non-active architectures have seldom been discussed in ac-
tive network texts. An example of such an interoperability issue is interfacing an active
network architecture to a network management information base (MIB). With the excep-
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tion of Netscript [11] and Smart Packets [12], the other architectures do not communicate
with a MIB.

All of the architectures presented in the previous section exhibit both language and en-
coding scheme dependencies. To achieve ubiquitous active networking, network elements
only need to be able to understand a common program format. For all of the discussed
architectures, multiple representations are required by the network elements irrespective
of the underlying architecture.

In the next section, we describe a new framework which is independent of any encoding
scheme or language and can represent all of the existing active network architectures. Our
framework is designed to integrate easily with other network management entities (such as
SNMP agents and MIBs) as well as fully exploiting the concept of active networking.

4. THE SOLUTION

The active network framework proposed is demonstrated using a simple language. The
program is converted to an ASN.1 [8] value definition which is encoded using BER [7].
Using the capsule approach to active networking, these programs (encapsulated inside a
datagram) will traverse a route and the program will be executed at every intermediate
node supporting this language. The packet is decoded from BER back to a value definition
so the contents (program) can be interpreted.

It was decided to use ASN.1 and BER as the specification and encoding schemes since:

(1) ASN.1 [8] is already a standardised specification. ASN.1 has been used in a vari-
ety of network applications such as the Message Handling System framework [26]
and the Intelligent Network framework [27]. Furthermore, ASN.1 is already used to
specify network management PDUs, for example SNMP [28] and Common Manage-
ment Information Protocol (CMIP) [29]. This is an important consideration since it
will facilitate the integration of existing network management functions into an active
network.

(2) In the context of an active network, ASN.1 inherently provides the ability to specify
an active program which acts like a protocol specification. Steedman [30] claims that
ASN.1 is reminiscent of a high level programming language. It is argued that the
protocol designer can describe the program without the need for encoding rules.
By having an active program act as a PDU specification, the packet as a whole can be
combined and treated as one active PDU specification. Other architectures, mentioned
previously, view the packet payload as being isolated from the headers. This is an
important feature when using the capsule approach and an active program is required
to modify the packet header as it traverses the network. The isolated nature of the
payload suggests that extra functionality is required to map fields in the header to
the program. However, if a combined specification was used, then mapping fields
becomesnatural.

(3) Debugging an active program would be a lot easier using a standardised specification.
Because we treat a program as a packet specification, packet analysers that understand
BER can decode the program.

(4) A more fault tolerant solution is provided. As we will show, if a capsule needs to
maintain state then local memory is required. We can represent local memory as an
ASN.1 specification. If the active router is shut down, and a backup router is active
then all active memory can be transferred to the next host.
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(5) ASN.1 offers the ability to provide definition security using theENCRYPTEDdata
type. BER can also be encrypted using the Rivest, Shamir and Adleman (RSA) algo-
rithm, or alternatively Canonical Encoding Rules (CER)1 can be used as the encoding
scheme. Tantiprasut et al. [31; 10] have also shown that ASN.1 specifications can be
encoded in any encoding scheme meaning our framework is encoding scheme inde-
pendent. This is important since it was observed, in Section 2, that several encoding
schemes have been proposed by the various research groups.

5. REPRESENTATION

In this section, we outline a simple active network language that is converted to an ASN.1
specification. The active language proposed is a simple procedural language (with only
one procedure – the mainline) and is provided as aproof of conceptfor our work. For
reasons of code security and speed, we decided to omit advanced language features (e.g.
recursion and multiple functions), however this language remains functionally complete.
This language is specified in ASCII text, parsed and converted to an ASN.1 specification.
Once a valid ASN.1 specification has been defined, it is encoded using a standard encoding
scheme for transmission.

For all of the other architectures described in Section 2, either they need to map their
language into an ASN.1 value definition or need to build a compiler which translates their
language directly into an ASN.1 value definition. ASN.1 has the ability to map any binary
sequence onto any value definition which includes anOCTET STRING, as it will be the
case for binary data, compiled programs or byte code. It is noted that the use of anOCTET
STRINGwill require a higher level definition because the contents are opaque to the net-
work element. However, for the remainder of this paper, our language is an ASN.1 defined
active language.

In this paper, we use a simple programming language, however any other language can
be mapped to an ASN.1 definition. Tantiprasut et al. [31; 10] describe how any PDU
definition can be mapped to an ASN.1 definition using any arbitrary encoding scheme.
This can be extended to bytecode (encapsulated within a PDU) mapping, thus it follows
that any language that can be represented as a bytecode can be used in our framework. That
is, our framework is language independent. This is important since we observed, in Section
2, that several different languages have been proposed by the various research groups.

At the highest level, an active program is one that is made up of a code segment and
a data segment. The code segment is one that stores instructions to be processed at the
active node. The data segment stores any data that needs to be carried with the program.
The following fragment of an ASN.1 definition shows how an active program is repre-
sented. The code segment is anINSTRUCTIONand the data segment is aSEQUENCE
OF VARTYPE.

As shown below, the data and code segments are separated to provide code security and
quick data retrieval. Code security is provided wherebyCODESEGMENTis not changed
throughout execution. Furthermore, this separation allows the data segments to be easily
loaded at runtime.

ACTIVEPROGRAM ::= [APPLICATION 2] SEQUENCE
{

codeseg [1] CODESEGMENT,

1Steedman [30] refers to CER asConfidentialEncoding Rules.
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dataseg [2] DATASEGMENT
}

Data which can be stored in a program can be one of the following data types:
BOOLEAN, INTEGER, OBJECT IDENTIFIER , OCTET STRING, SEQUENCE OF
BOOLEAN, SEQUENCE OF INTEGER, SEQUENCE OF REAL, SEQUENCE OF OBJECT
IDENTIFIER andSEQUENCE OF OCTET STRING.

In our active programming language, they are defined as:

VAR
<variable1> : <type> [DEFAULT value],
<variable2> : <type> [DEFAULT value],

.

.

.
<variablen> : <type> [DEFAULT value];

Of these data types,OBJECT IDENTIFIER is of the most importance. Although we
have some active hosts, it is desirable to have some access to a MIB to query variables.
The purpose of theOBJECT IDENTIFIER is to define a value which tells the active
interpreter to substitute the value of the variable binding in its place. For example, the
statementA = [1.3.6.1.2.1.1.4.1]; would tell the active interpreter to retrieve
the value of the MIB variablemib2.interfaces.ttl.1 into variable A.

With the exception of theSEQUENCE OFtypes, a default value can be assigned to the
variable. It was intended that theSEQUENCE OFvariables be used for collecting and
storing a log of a particular data type as it traverses the network (e.g. collecting a list of
host names). An example declaration of a data segment is:

VAR
HOPCOUNT : INTEGER DEFAULT 0,
TIME : REAL DEFAULT 0.0,
MIBVAR : OBJID DEFAULT [1.3.6.1.2.1.1.4.1];

This would be mapped to the following ASN.1 value definition:

dataseg { -- SEQUENCE --
integer 0,
real 0.00000000000000000E+00,
objectid { 1 3 6 1 2 1 1 4 1 }

}

Throughout the program, each variable can be referred to by its name, however when
encoded, a numerical identifier is used. The first variable is referred to as variable 1, second
variable as variable 2 and so on.

In addition to a data segment, the headers in an active program are encapsulated meaning
they can also be used as variables. From an ASN.1 specification, fields in the PDU header
can be referred to in the same way as variables in the main program. Given the following
IP header (defined in ASN.1) [10]:

IpPDU ::= SEQUENCE
{

version INTEGER,
hlen INTEGER,
service INTEGER,
total-len INTEGER,
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id INTEGER,
flags BIT STRING,
offset BIT STRING,
ttl INTEGER,
protocol INTEGER,
checksum INTEGER,
srcaddr INTEGER,
dstaddr INTEGER,
options OptionType OPTIONAL,
data IpDataType

}

We can refer to any of these fields in our active program. For example, to swap the
source and destination addresses2 we can do the following:

VAR
TEMP : INTEGER DEFAULT 0;

BEGIN
TEMP = srcaddr;
srcaddr = dstaddr;
dstaddr = TEMP;

END;

As mentioned previously, our work focuses on thecapsuleapproach to active programs.
Should a capsule need to maintain state at an active node, it can do so in one of two ways.
Firstly, a program can modify a MIB variable, or alternatively the program can modify a
variable which is stored in the active router. These variables are defined in the same way
as the data segment.

The code segment is made up of a sequence ofINSTRUCTIONwhich can be one of:
PROGRAM, COMPARISON, REPETITION andASSIGNMENT.

TheASSIGNMENTstatement in our active programming language is the same as a typ-
ical programming language construct whereby a value is assigned to a variable. An as-
signment is expressed asvariable = expression . To provide interoperability with
network management frameworks, the assignment can also be expressed asobjectid
= expression . For example, the active program (shown below) turns on an RMON
ethernet statistics probe (given an index of 6000).

BEGIN
[1.3.6.1.2.1.16.1.1.1.21.6000] = 2;
[1.3.6.1.2.1.16.1.1.1.21.6000] = 1;

END;

This program is represented as the following ASN.1 value definition:

decodedprogram ACTIVEPROGRAM ::= { -- SEQUENCE --
codeseg program { -- SEQUENCE OF --

assignmentsnmp { -- SEQUENCE --
variable {1 3 6 1 2 1 16 1 1 1 21 6000},
expression value integer 2

},
assignmentsnmp { -- SEQUENCE --

variable {1 3 6 1 2 1 16 1 1 1 21 6000},

2For simplicity, the destination and source addresses is an integer. It has been observed that the address can also
be stored as anOCTET STRING.
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expression value integer 1
}

},
dataseg { -- SEQUENCE OF --
}

}

The defined ASN.1 data typeEXPRESSION(as the name suggests) stores an expression
which is to be evaluated by the interpreter.EXPRESSIONis conceptually an expression
tree where expressions can be encapsulated inside other expressions.

TheCOMPARISONtakes on a standard programming language comparison. Given the
following construct:

IF (condition) THEN
PROGRAM;

It is mapped onto the following ASN.1 type:

COMPARISON ::= SEQUENCE
{

expression [1] EXPRESSION,
instruction [2] INSTRUCTION

}

For the purpose of this work, it was decided not to implement theELSE statement.
Although this addition is not difficult, its omission is to keep the active programming lan-
guage simple.

In the active programming language, theREPETITION statement takes on the form of:

WHILE (condition) DO
PROGRAM;

As with anyWHILEstatement, the encapsulated program is executed repetively until the
condition evaluates to FALSE. TheWHILEstatement is mapped onto the following ASN.1
type definition:

ITERATION ::= SEQUENCE
{

expression [1] EXPRESSION,
instruction [2] INSTRUCTION

}

6. IMPLEMENTATION AND RESULTS

6.1 Encoding

All active programs developed under this framework will follow the process as shown in
Figure 1. At the source end, the program is parsed and converted into an ASN.1 value def-
inition. Once a definition has been derived, it is converted to a byte code for transmission
over the wire. For the purpose of this exercise, we shall use BER [7]. The intermediate
nodes then decode this byte code back into an ASN.1 value definition which is executed.

If the data segment in the program is modified, the ASN.1 value definition is re-encoded
and routed to the next hop. Upon completion, the variables can be retrieved by decoding
the byte code back to the ASN.1 value definition and examining the data segment.

Variables stored in the data segment are persistent. That is, the data segment is not
reinitialised as it traverses the execution path. Initialisation of the variables in the data
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Fig. 1. Active Program Process

segment is set at compile time. The fact that the data segment is persistent means that
variables maintain state information from hop to hop. This is demonstrated in the active
tracerouteexample shown in the next section.

Initially the original program is parsed and compiled to an ASN.1 value definition.

6.2 Decoding

Active hosts that receive an active packet execute the code. Before execution, the packet
must be decoded into the ASN.1 type definition. When a packet arrives at an active node,
the active program is separated from the PDU header. The program is passed to a SNACC
[32] function where theACTIVEPROGRAMdata structure is built. Although we have sep-
arated the PDU header, the header must remain available throughout execution.

Following a successful decode, the program is executed. Using the SNACC
ACTIVEPROGRAMdata structure, the interpreter recursively inspects every value and ex-
ecutes an instruction. Throughout execution, the active program may modify variables in
the data segment and PDU header.

Upon successful execution, the program is reencoded and reencapsulated ready for for-
warding to the next node.

The process of decoding, executing and then reencoding provides some useful features
which are not available in other active network architectures. Firstly, the encoding scheme
can be different for part of an active route. For example, if we have an active program that
is executed on part of two intranets, the active architecture can be configured to transmit a
program in BER within each intranet. Active programs for the internet link however can be
transferred using CER or over an IPSEC tunnel with encryption, as some reviewers have
pointed out. This allows some measure of security to be provided. Another example would
be an active program that is transported over different frame types. Suppose a program is
transported over IP and Transport Protocol Class 4 (TP4). Active programs that travel over
IP may be encoded using NBO and when they travel over TP4, they may be encoded using
BER. Despite the fact that these protocols will treat the active program as opaque data, it
logically follows that protocol analysis will be simpler as the packet is no longer disjoint.
That is, the data is related to the header.

Using a known encoding scheme will aid in the filtering of active programs that use
packet headers or known network management data types (e.g.OBJECT IDENTIFIER).
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For security reasons, not all MIB variables may be changed by an active program. Given
an active program which changes a MIB variable, a filter can be applied which masks
the variable binding. This could be used to prevent the active program from modifying a
particular MIB variable.

Currently, independent encoding is limited in the existing or proposed models. When a
program is encoded into its byte form (i.e. Java byte code, CaML byte code), it cannot be
changed throughout execution.

6.3 Examples

In this section, we examine various examples of how this active framework can be used
in various areas of network management. The first two examples are taken from [4; 16]
and are used to relate this work to other active network architectures. Whilst the exam-
ples shown here are coded in our simple procedural language, we should iterate that these
examples could have been coded in any language and implemented on any of the existing
(or proposed) active network architectures. All that is required is a method to translate the
code into the generated byte code.

6.3.1 Active Traceroute

traceroute[33] is a common utility which utilises the time to live (TTL) field, in the IP
datagram, and theICMP TIME EXCEEDEDresponse to determine the mid points of a
route. Every time a PDU makes a hop, the TTL field is decremented. When the TTL field
equals 0, anICMP TIME EXCEEDEDresponse is sent to the sender. Thus,traceroute
sends out packets, incrementing the TTL field each time (starting at 0) until the route
is found. The increasing TTL value means that every router a packet traverses will be
discovered.

This example highlights the importance of an active network as the conventional algo-
rithm relies on the source node to gather all the information about a route. Wetherall et
al. [4] have provided an example, called an active traceroute, whereby the host address
is returned to the original source. The example to follow shows how an active traceroute
is implemented, firstly as an active program which is specified by the user and secondly,
as a generated ASN.1 value definition. It is this value definition which is translated into a
generated byte code (using an encoding scheme) for transmission.
VAR

STATUS : INTEGER DEFAULT 1,
HOSTS : SEQOCTETSTR,
TEMP : OCTETSTR DEFAULT " ";

IF (STATUS = 1) THEN
BEGIN

/* Append IP address to list of hosts, stored in HOSTS */

HOSTS = HOSTS UNION host-ipaddr;

/* Check to see if finished. If so, then set a status flag
so the return path is not traced. */

IF (host-ipaddr = ip-dest) THEN
BEGIN

STATUS = 0;

/* Swap source and dest packets in the IP header so the
packet is returned to the sender. */

TEMP = ip-dest;
ip-dest = ip-source;
ip-source = TEMP;

END;
END;

The generated ASN.1 code is as follows:
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decodedprogram ACTIVEPROGRAM ::= { -- SEQUENCE --
codeseg comparison { -- SEQUENCE --

expression brackexp exp { -- SEQUENCE --
expression1 value integer 1,
evaluator 8,
expression2 var 1

},
instruction program { -- SEQUENCE OF --

assignment { -- SEQUENCE --
variable 2,
expression exp { -- SEQUENCE --

expression1 var 2,
evaluator 7,
expression2 var 2000

}
},

comparison { -- SEQUENCE --
expression brackexp exp { -- SEQUENCE --

expression1 var 111,
evaluator 8,
expression2 var 2000

},
instruction program { -- SEQUENCE OF --

assignment { -- SEQUENCE --
variable 1,
expression value integer 0

},
assignment { -- SEQUENCE --

variable 3,
expression var 111

},
assignment { -- SEQUENCE --

variable 111,
expression var 110

},
assignment { -- SEQUENCE --

variable 110,
expression var 3

}
}

}
}

},
dataseg { -- SEQUENCE OF --

integer 1,
seqoctstr { -- SEQUENCE OF --

},
octetstr ’20’H -- " " --

}
}

This version of the active traceroute provides the same functionality astraceroute, how-
ever it does not rely upon the Internet Control Message Protocol (ICMP). This program
simply appends the host address onto the host sequence in the data segment as it traverses
the network from source to destination. It assumes however that the host address is locally
obtained.

When this active program reaches the end of the route, the source and destination headers
in the IP datagram are swapped, thus the packet is routed back to the original source. To
prevent the return route being stored in the data segment, a status variable is set.

Although this program has the same functionality as the active traceroute described in
[4], the features highlighted in the previous section are evident here; for instance, the active
traceroute can be extended to execute over multiple protocol stacks; for example, if a PDU
is carried by ATM, it may be desirable to append the ATM NSAP or E.164 [34] address to
the PDU.

A further extension is the addition of security. By changing encoding schemes, security
can be improved. For example, by using CER, information about a route can be encrypted.
CER [35] is designed to offer more security by enciphering parts of a transmitted encoding.
As a consequence, issues in security such as who signs, encrypts and authenticates the
packet will need to be considered. This simple change reduces a weakness in conventional
traceroutewhereby a protocol analyser could be used to passively watchtracerouteat work
in order to determine a route.
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The active traceroute exhibits better fault tolerance. Given that the end system assumes
a “good” route already exists, if a route is severed, it logically follows that the example can
be extended to include diagnostic code which is returned (by querying the MIB) explaining
why/when the route went down. Moreover, the program can be made to wait or discover
an alternative route.

6.3.2 Active Ping

ping is another common UNIX utility which usesICMP ECHOREQUESTand
ICMP ECHORESPONSEPDUs to determine if a host is alive.ping works by sending
out anICMP ECHOREQUESTto the destination host. If the destination host receives this
request, then anICMP ECHORESPONSEis returned.

As with the active traceroute, active ping is a well known example used in active net-
works [4; 16]. Following is a representation of the active ping in its original source form.
VAR

STATUS : INTEGER DEFAULT 1,
TEMP : OCTETSTR DEFAULT " ";

IF (STATUS = 1) THEN
BEGIN

/* If the packet has reached the destination then swap the
IP address so the packet can be re-routed to the original
source. */

IF (host-ipaddr = ip-dest) THEN
BEGIN

/* The status is set to 0 so that when the packet returns
the ping does not re-iterate. */

STATUS = 0;
TEMP = ip-dest;
ip-dest = ip-source;
ip-source = TEMP;

END;
END;

Active ping follows the same structure as the active traceroute whereby the source and
destination addresses are swapped when it reaches the destination. Like the active tracer-
oute, security and fault tolerance are improved using our scheme.

The ability to moveping into the network demonstrates the concept of an active network.
Given that a user specified program is in the network, we can easily extend this to provide
user specific diagnostic functions without having to rely upon ICMP. For example, if the
active ping program cannot be forwarded, the program can query the local MIB to retrieve
the status of the next hop.

6.3.3 Other Examples

In this section, we consider some other examples, one of which demonstrates the interop-
erability between an active network and existing network management architectures.

The Path Maximum Transmission Unit (MTU) discovery technique [36] exploits the
don’t fragment (DF) bit in the IP datagram and theICMP DESTUNREACHPDU to dis-
cover (by estimation) the minimum transmission unit for an arbitrarily defined internet
path. Mogul and Deering [36] argue that PDUs sent out with a size bigger than the path
MTU are non-optimal as the PDUs are prone to fragmentation.

Discovering the path MTU involves repeatedly sending out an IP datagram, of an arbi-
trarily defined size, with the DF bit set. If the MTU is large, anICMP DESTUNREACH
PDU with afragmentation needed and DF setcode is returned to the source. The MTU is
decreased until a datagram can be delivered to the destination.

Another method of discovering a better approximation of the path MTU is to query
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a MIB on each intermediate router. Assuming that the MIB exists, the variable
mib2.interfaces.ifmtu.1 (where1 can be substituted for the interface number)
can be queried. By querying the MIBs along a route, a better approximation of the MTU
can be found. Determining the mid points of a route will require the routing table to be
queried or the execution of atraceroute. This increases the complexity in discovering a
better MTU.
VAR

MTU : INTEGER DEFAULT 32767,
STATUS : INTEGER DEFAULT 1,
TEMP : OCTETSTR DEFAULT " ";

IF (STATUS = 1) THEN
BEGIN

/* If we are at the end of the path then return packet to
sender by swapping the source and destination addresses. */

IF (host-ipaddr = ip-dest) THEN
BEGIN

STATUS = 0;
TEMP = ip-dest;
ip-dest = ip-source;
ip-source = TEMP;

END;

/* Query the MIB and if the MTU is less than the stored MTU
then update the stored MTU. */

IF ([1.3.6.1.2.1.2.1.4.1] < MTU) THEN
MTU = [1.3.6.1.2.1.2.1.4.1];

END;

By combining the MIB query and active networks, a better and quicker approximation
of the path MTU can be discovered. The program (shown in its native form) can query the
ifmtu MIB variable as it traverses the network, in much the same way astraceroute. If
the MTU is less than the MTU variable in the data segment then it is replaced with the new
variable.

The previous three examples show how our active network framework can be used in
the IP stack. We will now show that our proposed active framework can be used in ATM
by looking at how active networks can be used for congestion control in the Available Bit
Rate (ABR) service. Using active networks in a switched architecture such as ATM was
first proposed in [17; 37].

The ABR service, defined by the ATM Forum [38] and the ITU-T [39] as a service which
uses leftover bandwidth for sources with unpredictable traffic requirements, such as data
services. When a call is being established, the source negotiates, amongst other things, an
initial cell rate (ICR) and a peak cell rate (PCR). When the call is connected, data can be
transferred at a rate (the allowed cell rate (ACR)) between the ICR and PCR. Ideally, the
connection would like to maintain the PCR, however if congestion occurs, the connection
is reduced to an explicit rate (ER)3 which is less than the ACR. The ER is the point that
allows the source to transmit whilst utilising the full remaining bandwidth. Additionally,
the ER is calculated in a way such that the other ABR sources maintain a fair share of the
link.

Determining the ideal ER is a problem that has been investigated by many researchers
[40; 41; 42; 43; 44; 45; 46; 47]. All of the proposed algorithms are “hard wired” into the
switch meaning that if two switches have different algorithms then interoperability prob-
lems may exist. Utilising an active network architecture suggests that it becomes possible
for the source to “program” the switches along the path with the desired ER algorithm.
VAR

3The desired transfer rate.
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MCR : INTEGER DEFAULT 365566,
ER : INTEGER DEFAULT 365566,
FRM : BOOLEAN DEFAULT TRUE;

IF (FRM = FALSE) THEN
IF (switch-macr < ER) THEN

ER = switch-macr;

The algorithm is encoded using the previous techniques into resource management (RM)
cells and replaces the RM cell format, defined in [38; 39], which only stores the parameters
required for the “hard wired” algorithm.

This active ER algorithm provides a user-driven congestion control implementation. It
is no longer reliant on any specific frame types, or predefined ER algorithms.

7. SUMMARY

Many researchers have investigated and concluded that active networks provide a flexible
platform for the deployment of user-driven services which are related to the network.

Most of the frameworks that have been studied look at how active programs are used
and the applications where active programs can be applied. Despite this, there has been
little research into how active programs are represented. The ANEP [6] has gone as far as
defining an active program header, however the encoding scheme is left up to the active
network developers. Smart Packets [12] from BBN is concerned with howsprocketpro-
grams can be encoded within IPv4 and IPv6 PDUs. Switchware [13; 14] uses a different
byte code representation to encode its CaML program. GaTech and MIT have built models
which utilise variations on the IP option fields to specify, encode and transport their ac-
tive programs. It is noted that GaTech and MIT use Java in their current models. For this
reason, an independent active program representation is required.

In this paper, we have presented an active framework whereby the program is encoded
using ASN.1. As mentioned previously, ASN.1 can be used to represent a PDU with an
arbitrary encoding scheme. Thus, the program representation in ASN.1 provides anatural
extension to the PDU header; providing a more coherent solution.

Choosing ASN.1 as the transfer syntax removes the restriction on the encoding scheme
that is used. Unlike other proposed active network architectures, active programs are not
restricted to a single encoding scheme. The proposed active infrastructure is independent
of hardware and provides security as well as a coherent encapsulation; thus the PDU header
and data are not disjoint.

Tennenhouse [3] believes that security, mobility and efficiency are the key to an active
network. The ASN.1 specification provides code security as the proposed language is small
and instructions cannot be changed on the fly i.e. the program is restricted to changing the
data segment and packet header. ASN.1 provides access security as encoding rules can be
changed at different hops making the active program less vulnerable to access violations.

Using this framework does not impede the mobility of implemented active network ar-
chitectures. The framework described in this document currently applies to the capsule
approach. It logically follows that our framework can be extended to the programmable
switch (discrete) approach by including instructions which “force” an active program to
stay at a node. It thus follows that an extra data type (e.g.PACKET) would be required to
interpret the field.

The proposed framework maintains efficiency. If the capsule approach is used, the pro-
grams should remain small and have the same computational complexity. The efficiency
of the programmable switch will depend on the algorithms deployed.

An open question which remains as a result of this research is the encoding size of active
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programs. This is important as active network elements must remain efficient. Although
the examples presented here use BER, other TLV encoding schemes can be used which
may be more efficient. We would point out that the size of the encoding is merely a
function of the encoding scheme. TLV based encoding schemes can produce encodings
of similar size to NBO when generality clauses are relaxed [48]. Packed Encoding Rules
(PER) [49; 30] is an example of TLV based encoding which representations that are of
similar size to NBO.

All of the architectures presented in Section 2 exhibit both language and encoding
scheme dependencies. The philosophy behind active networks was that any host can de-
ploy user driven services into the network elements. Ubiquitous active networking cannot
be achieved if a number of different architectures and languages are used. One of the prime
motivations for our model is that these dependencies are removed. In our model, a variety
of active network architectures can be implemented inany language and then be mapped
onto a common PDU specification. Many active network implementations already send
compiled programs (stored as a byte code) to be executed at the active network element.
The variety of data structures that exist in ASN.1 provides a high degree of flexibility
meaning that any language can be represented in ASN.1. Bytecodes and executables can
be represented as anOCTET STRING. The router only needs to interpret the ASN.1 byte
code for execution. In the case of a program represented as anOCTET STRING, the byte
code is extracted and copied to the relevant virtual machine for execution. An active net-
work architecture only needs to be translated into our ASN.1 value definition for an active
network element to interpret it. The active network framework we propose can support all
of the currently proposed active network architectures.

8. CONCLUSION

We believe that we have described a useful framework for specifying, building, deploying
and executing active programs using the capsule approach. The architecture provides se-
curity, mobility and efficiency for active programs while at the same time being language
and encoding scheme independent.

The proposed architecture will support other active architectures. Existing architectures
are translated into an ASN.1 value definition which is translated into a (generated) byte
code supported by the active network elements. These elements interpret the byte code;
they require no understanding of the active network architecture which generated the code.
Thus, by deploying the ASN.1 byte code into routers, interoperability issues between ac-
tive network models, architectures, languages and encoding schemes can be avoided. Our
framework means that researchers will be able to free themselves from the distractions of
programming language preferences and encoding scheme complexities. Researchers can
now focus on important active network issues such as comparing different active network
architectures for speed, flexibility and functionality. It is envisaged that this work will en-
courage researchers to embrace the challenge of finding problems which are clearly better
solved (or uniquely solved) using the active network paradigm.

In conclusion, we note that ASN.1 was originally conceived as an abstraction for repre-
senting programs and data types in PDUs. This fitsexactlywith the philosophy behind the
active network paradigm.
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