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Abstract

Due to the explosive growth of electronic businesses carried on the Internet, non-

repudiation services turn out to be increasingly important. Non-repudiation services

protect the transacting parties against any false denial that a particular event or

action has taken place, in which evidence will be generated, collected and maintained

to enable the settlement of disputes. Several fair non-repudiation protocols have been

proposed, which support non-repudiation of origin and non-repudiation of receipt

while neither the originator nor the recipient can gain an advantage by quitting

prematurely or otherwise misbehaving during a transaction. However, a critical

issue on how to maintain the validity of non-repudiation evidence e�ciently during

and after a transaction was not considered. This paper uses the idea of evidence

chaining to address such a problem.
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1 Introduction

Due to the explosive growth of electronic businesses on the Internet, non-repudiation
services turn out to be increasingly important. Non-repudiation services protect the
transacting parties against any false denial that a particular event or action has taken
place, in which evidence will be generated, collected and maintained to enable the set-
tlement of disputes [20].

Typical disputes that may arise in a simple transaction such as transferring a message
M (e.g. electronic cash or electronic contracts) from Alice to Bob could be

� Alice claims that she has sent M to Bob while Bob denies having received it;

� Bob claims that he received M from Alice while Alice denies sending it.

The basic non-repudiation services that address the above disputes are
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� Non-repudiation of Origin (NRO) provides the recipient of a message with evidence
of origin of the message which will protect against any attempt by the originator
to falsely deny having sent the message.

� Non-repudiation of Receipt (NRR) provides the originator of a message with ev-
idence of receipt of the message which will protect against any attempt by the
recipient to falsely deny having received the message.

One of the critical issues on non-repudiation protocol design is the e�cient approach
for maintaining the validity of non-repudiation evidence during and after a transaction.
Several fair non-repudiation protocols (e.g. [2, 4, 7, 19]) have been proposed, which sup-
port non-repudiation of origin and non-repudiation of receipt while neither the originator
nor the recipient can gain an advantage by quitting prematurely or otherwise misbehav-
ing during a transaction. However, the above issue has not been considered, which will
a�ect the e�ciency of non-repudiation protocols. Non-repudiation evidence is usually
generated by means of digital signature [9, 14, 20]. As signature keys may be com-
promised and the validity of signatures may become questionable, additional security
mechanisms need to be imposed on digital signatures [22].

A conventional approach for maintaining the validity of digital signatures requires
that either the evidence sender or the evidence receiver interacts with an on-line trusted
time-stamping authority to get each newly generated digital signature time-stamped
[1, 5, 17] so that there is extra evidence to prove whether the signature was generated
before the corresponding public key certi�cate was revoked and thus is deemed valid.
However, such an approach is not cost-e�ective in ordinary on-line transactions.

This paper proposes the idea of evidence chaining to maintain the validity of non-
repudiation evidence e�ciently during and after a transaction. We use the fair non-
repudiation protocol presented in [19] as an example to show how the problem will be
tackled.

The rest of the paper is organised as follows. In the next section, we brie
y describe
the fair non-repudiation protocol presented in [19]. In Section 3, we discuss the existing
approaches to maintaining the validity of non-repudiation evidence. In Section 4, we
propose an e�cient scheme for implementation, analyse the validity of chained evidence
and demonstrate the settlement of disputes. Section 5 concludes the paper.

In this paper, we use the following basic notation to represent messages and protocols.

� X;Y : concatenation of two messages X and Y .

� H(X): a one-way hash function of message X.

� eK(X) and dK(X): encryption and decryption of message X with key K.

� VA and SA: the public and private key of principal A.

� sK(X): digital signature of message X with the private key K. The algorithm
is assumed to be a `signature with appendix', and the message is not recoverable
from the signature.

� A! B : X: principal A dispatches message X addressed to principal B.



� A $ B : X: principal A fetches message X from principal B using \ftp get"

operation [13] or by some analogous means (e.g. using a Web browser).

2 A Fair Non-repudiation Protocol

A fair non-repudiation protocol was proposed in [19], where the originator A and the
recipientB communicate directly with light-weighted involvement of a trusted third party
TTP. The main idea of this protocol is to split the de�nition of a message M into two
parts, a commitment C and a key K. The commitment is sent from the originator A to
the recipient B and then the key is lodged with the TTP. Both A and B have to retrieve
the con�rmed key from the TTP as part of the non-repudiation evidence required in the
settlement of a dispute. We assume that even in case of network failures, both parties
will eventually be able to retrieve the key from the TTP. The notation in the protocol
description is as follows.

� M : message sent from A to B.

� K: message key de�ned by A.

� C = eK(M): commitment (ciphertext) for message M .

� L = H(M;K): a unique label linking C and K.

� fEOO; fEOR; fSUB; fCON : 
ags indicating the intended purpose of a (signed) mes-
sage.

� EOO = sSA(fEOO; B; L;C): evidence of origin of C.

� EOR = sSB(fEOR; A; L;C): evidence of receipt of C.

� sub K = sSA(fSUB; B; L;K): evidence of submission of K.

� con K = sSTTP (fCON ; A;B;L;K): evidence of con�rmation of K issued by TTP.

The protocol is as follows:

1: A! B : fEOO; B; L;C;EOO

2: B ! A : fEOR; A; L;EOR

3: A! TTP : fSUB; B; L;K; sub K

4: B $ TTP : fCON ; A;B;L;K; con K

5: A$ TTP : fCON ; A;B;L;K; con K

In the above protocol, B can abort the protocol run without disputes before sending
out EOR to A at Step 2; A can abort the protocol run without disputes before submitting
sub K and K to the TTP at Step 3. After receiving sub K and K from A, the TTP will
generate con K and store the tuple

(fCON ; A;B;L;K; con K)

in a directory which is accessible (read only) to the public. The second component in the
tuple, identifying the key supplier, corresponds to the entity associated with the public
veri�cation key VA. The link between A and B;L;K is authenticated by A's signature.
The key supplier will be regarded as the originator of this protocol run. Intruders cannot



mount a denial-of-service attack by sending bogus keys to the TTP as this will not
generate entries for A in the directory. As we assume that the communication channels
are not permanently broken, the con�rmed key will always be available to A and B.
Thus, at the end of a protocol run, the originator A will hold non-repudiation evidence
EOR and con K which can be used to prove that B received message M ; meanwhile, the
recipient B will obtain message M = dK(C) and hold non-repudiation evidence EOO

and con K which can be used to prove that message M originated from A.

This protocol has three features which make it attractive in electronic businesses
carried on the Internet.

� The protocol does not depend on the reliability of a communication channel or on
the communicating parties playing fair. It only needs a weak assumption that the
communication channels are not permanently broken.

� At no point of the protocol run does either participant have an advantage. No
party can repudiate the message transfer once the message has been transferred;
no party can obtain su�cient evidence to prove the origin and receipt of a message
if the message is not transferred.

� The trusted third party's involvement is light-weighted. The TTP only needs to
notarize message keys by request and provide directory services.

3 Approaches for Maintaining the Validity of Evidence

The protocol in Section 2 presents an elegant solution to fair non-repudiation. However,
one issue related to the e�cient implementation was not taken into consideration. In
the protocol, non-repudiation evidence is generated by means of digital signature. In
practice, a signature key may be compromised and a signature could be forged by using
a compromised key. Therefore, the compromised key needs to be revoked [11, 14, 15]
so that all signatures generated after the corresponding public key certi�cate has been
revoked will be regarded as invalid. The remaining question is how to prove that a
signature was generated before the corresponding public key certi�cate had been revoked
and thus is deemed valid.

A simple approach for maintaining the validity of digital signatures relies on the
existence of an on-line time-stamping authority as well as the certi�cate revocation in-
frastructure. For example, a user U 's signature on a message X should be sent to a
trusted time-stamping authority TS to certify that the signature was generated at the
time of Tg.

1: U ! TS : sSU(X)
2: TS! U : Tg; sSTS(sSU (X); Tg)

Thus, even if U 's corresponding public key certi�cate is revoked for any reason after Tg,
U 's signature on X will be regarded as valid (provided that the time-stamping service is
reliable [8]).

If this approach is applied to the protocol in Section 2, 4 extra messages have to
be exchanged with TS to get 2 digital signatures (EOO and EOR) time-stamped in a
protocol run - a heavy burden to both A and B as well as TS.



An e�cient approach to securing digital signatures as non-repudiation evidence was
proposed in [22], in which two di�erent types of signature keys are de�ned.

� Revocable signature keys { the corresponding veri�cation key certi�cates are issued
by a certi�cation authority (CA), and can be revoked as usual.

� Irrevocable signature keys { the corresponding veri�cation key certi�cates are issued
by users themselves and time-stamped by a time-stamping authority (TS). Such
certi�cates cannot be revoked before their expiry.

The revocable signature key is used as a long-term master key to issue irrevocable ver-
i�cation key certi�cates while the irrevocable signature key is used as a temporary key
to sign electronic documents. The digital signatures generated in such a way will re-
main valid until the corresponding irrevocable veri�cation key certi�cates expire, thus
can be exempted from being time-stamped by a time-stamping authority during on-line
transactions.

The second approach can signi�cantly improve the e�ciency of mass on-line trans-
actions. However, it does not help much for a single run of the protocol in Section 2
since both A and B still have to contact TS to get their own temporary irrevocable ver-
i�cation key certi�cates time-stamped before they can use the corresponding irrevocable
signature keys to generate valid signatures.

The purpose of this paper is to provide an e�cient approach to maintain the validity of
non-repudiation evidence generated by the originator and the recipient without incurring
extra messages in the implementation of a fair non-repudiation protocol.

4 An E�cient Scheme for Implementation

From the discussion in Section 3 we found that existing approaches for maintaining
the validity of evidence in a fair non-repudiation protocol will result in more or less
extra messages to be exchanged between evidence sender/receiver and a time-stamping
authority. Obviously, this is less e�cient for implementation. The idea of evidence
chaining can be used to address such a problem [18].

The evidence chaining mechanism works by linking one piece of evidence to another
to form a chain of evidence such that by validating the latest piece of chained evidence,
the rest pieces of evidence that are linked together in the chain are also validated. The
concept of chaining is not new, which can be found in one-time password authentication
[10], time-stamping service [8], and micropayment scheme [12] etc. But the idea of
postponing the validation of chained evidence until the end of a protocol run in order
to minimize the interaction between the originator/recipient and a trusted third party
is novel. Here we use the protocol described in Section 2 as an example to demonstrate
how the mechanism works.

4.1 The Updated Protocol

With reference to the fair non-repudiation protocol in Section 2, the most critical step of
the entire protocol is the submission of message keyK to the TTP. This is because as long



as K is not published in the TTP's read-only directory, the protocol is not considered as
a successful completion (with fairness property maintained). Since the outcome of the
protocol relies completely on the submission of message key K, we delay the validation
of all evidence created before the key submission until the time when the TTP receives a
request for key publication in the read-only directory. The updated protocol is as follows.

EOO = sSA(fEOO; B; L;C)
EOR = sSB(fEOR; A; L;C;EOO)
sub K = sSA(fSUB; B; L;K;EOR; CertB)
con K = sSTTP (fCON ; A;B;L;K;EOR; T )

1: A! B : fEOO; B; L;C;EOO

2: B ! A : fEOR; A; L;EOR

3: A! TTP : fSUB; B; L; eVTTP (K);EOR; CertB ; sub K
4: B $ TTP : fCON ; A;B;L;K; T; con K

5: A$ TTP : fCON ; A;B;L;K; T; con K

In the above protocol, CertB is B's public key certi�cate that is used to generate
EOR. T is the time that the message key is con�rmed by the TTP and ready for collection
from the TTP's read-only directory. The time stamp T plays two important roles in the
protocol.

� The time of message transfer is notarised when the con�rmed message key is ready
for collection from the TTP's read-only directory at T ;

� The chained evidence EOR and EOO are validated when CertB is checked valid
at T .

As B can invalidate EOR by revoking CertB before the TTP generates con K, the
message key K should be protected against eavesdropping (e.g. encrypted using the
TTP's public encryption key VTTP ) when submitted by A.

The major improvement to the original protocol is that non-repudiation evidence
EOO, EOR and con K are linked one by one and validated when the TTP generates
con K. The chained evidence will remain valid as long as the TTP's signature is valid.
Hence, A and B need not contact the time-stamping authority to get EOO and EOR

time-stamped during and after a protocol run.

4.2 Validity of Chained Evidence

If the above protocol run is complete, message M will be transferred fairly from A to
B and both parties will hold the evidence regarding the message transfer. The formal
analysis of the original protocol has been carried out in [16, 21] with di�erent approaches.
Here we examine the generation of chained evidence in the updated protocol which is a
new feature added into the original protocol for the e�cient implementation. We assume
that each party either holds the public key certi�cates of other parties, or is able to
retrieve them from a X.509 directory service [6].

After receiving EOO = sSA(fEOO; B; L;C) from A at Step 1, B will use A's public
key certi�cate CertA to verify A's signature EOO. If successful, B will generate EOR

which includes EOO, then send EOR to A. Here B need not check the validity of CertA.



It will be up to A whether or not to send chained EOO and EOR to the TTP for
validation at Step 3. Once EOO is validated, A cannot deny it.

After receiving EOR = sSB(fEOR; A; L;C;EOO) from B at Step 2, A will use B's
public key certi�cate CertB to verify B's signature EOR. If successful, A will generate
sub K which includes EOR and CertB, then send sub K to the TTP. Here A need not
check the validity of CertB. If B generates EOR with invalid CertB, the TTP will not
con�rm sub K thus B cannot obtain M .

After receiving sub K = sSA(fSUB; B; L;K;EOR; CertB) from A at Step 3, the TTP
will perform the following checks:

� checking the validity of CertA;

� using CertA to verify A's signature sub K;

� checking the validity of CertB which is included in sub K.

Only if all of the above checks are successful, will the TTP generate

con K = sSTTP (fCON ; A;B;L;K;EOR; T )

Here the TTP need not use CertB to check EOR. Actually, the TTP is unable to check
EOR since A does not supply the contents of EOR. A is responsible for providing matched
EOR and CertB in sub K so that A will not leave itself in a disadvantageous position.

Claim 1. Suppose the TTP is trusted to generate valid evidence con K, and evidence

con K, EOR, EOO are chained in the above way, then EOR and EOO are valid as well.

Proof: Suppose CertA and CertB are valid public key certi�cates of A and B respec-
tively at T . Suppose EOR is checked invalid by the use of CertB. We examine the
following possibilities.

� A generated sub K by including mismatched EOR and CertB. However, this is
not in favour of A because B can get K and thus M = dK(C) after the TTP

con�rms A's key submission but A will not have valid evidence to prove that B
received M . Hence, A should always submit matched EOR and CertB to the TTP
for con�rmation.

� EOR was generated after CertB had been revoked. However, the TTP will check
the validity of CertB before generating con K. Hence EOR which is con�rmed in
con K should be generated before CertB is revoked.

Thus, EOR which is chained to con K should be valid if con K is valid.

Similarly, suppose EOO is checked invalid by the use of CertA. We examine the
following possibilities.

� B generated EOR by including a bogus EOO. However, this is not in favour of
B because B will not have valid evidence to prove that M is from A. Hence, B
should always include correct EOO in EOR.



� EOO was generated with A's revoked key certi�cate Cert0A. However, it is up to
A whether or not to send such EOO (which is chained to EOR) to the TTP for
validation at Step 3. If A requests the TTP to validate such EOO, A cannot deny
the validity of EOO since only A has the right to make such a request. Of course,
the TTP will authenticate A's request, i.e. check the validity of sub K, before
validating EOO.

Thus, EOO which is chained to EOR should be valid if con K and EOR are valid. 2

4.3 Settlement of Disputes

The goal of our protocol is to enable the settlement of disputes over the origin and receipt
of a messageM . When disputes arise, a judge will be invoked who evaluates the evidence
held by the participants and determines the origin or receipt of the message.

Claim 2. If the originator A or the recipient B can provide M , C, K, L, T , CertA,

CertB, EOO, EOR, con K to the judge, and the following checks are successful, then B

cannot deny the receipt of M , and A cannot deny the origin of M .

1. The judge checks the TTP's signature con K = sSTTP (fCON ; A;B;L;K;EOR; T ),
and the validity of CertB at T ;

2. The judge uses CertB to check B's signature EOR = sSB(fEOR; A; L;C;EOO);

3. The judge uses CertA to check A's signature EOO = sSA(fEOO; B; L;C);

4. The judge checks L = H(M;K);

5. The judge checks M = dK(C).

Proof: We examine what the judge will believe after verifying each item listed above.
If the �rst check is positive, the judge believes that

(1.a) A submitted message key K with label L to the TTP for publication;

(1.b) K is available to B from the TTP;

(1.c) A requested for validating chained evidence EOR and EOO, and CertB is B's valid
public key certi�cate to be used to check EOR.

If the second check is positive, the judge believes that

(2.a) EOR is valid evidence chained to con K;

(2.b) B received C with label L from A and is committed to retrieving the message key
from the TTP.

If the third check is positive, the judge believes that

(3.a) EOO is valid evidence chained to EOR;

(3.b) A sent C as its commitment for the message with label L to B.

If the fourth check is positive, the judge believes that

(4.a) Label L is correctly constructed and random;



(4.b) Message key K in con K and commitment C in EOR and EOO are uniquely linked
by L.

If the �nal check is positive, the judge believes that

(5.a) M is the message represented by C and K in transmission.

Thus, with beliefs 4.a, 4.b, 5.a, the judge can conclude that the integrity of messages
is satis�ed. With beliefs 1.c, 2.a, 3.a, the judge can conclude that con K, EOR and EOO

are valid evidence. With beliefs 1.a and 3.b, the judge can conclude that A sent M to
B. With beliefs 1.b and 2.b, the judge can conclude that B received M from A. 2

A framework for handling disputes in payment systems was proposed in [3]. The
above veri�cation rules may be used to construct a reference engine to facilitate automatic
dispute resolution under the framework.

5 Conclusion

Non-repudiation is one of the essential security services in electronic businesses on the
Internet. There are two critical issues in non-repudiation services.

� How to achieve the fairness between two transacting parties?

� How to maintain the validity of non-repudiation evidence?

Several fair non-repudiation protocols have been proposed, and some approaches for
maintaining the validity of non-repudiation evidence exist. However, it is still less e�-
cient for implementation by applying existing approaches to a single run of those non-
repudiation protocols. This paper proposed a new approach to improve the e�ciency of
a single run of fair non-repudiation protocols. We used the fair non-repudiation protocol
presented in [19] as an example to show how the above problem can be addressed with
negligible increase of workload.

A prototype of the updated fair non-repudiation protocol has been implemented.
The experiment result shows that a protocol run takes about 5 seconds on a DEC Alpha
Server 4100 under normal circumstances. This speed for a fair business transaction
providing both non-repudiation of origin and non-repudiation of receipt is feasible. The
result also shows that the protocol is able to function under temporary network failure
conditions, which is very important in real applications on the Internet.
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