
Reinforcement of TCP Error Recovery for Wireless Communication

Nihal K. G. Samaraweera and Godred Fairhurst
Electronics Research Group, Department of Engineering

University of Aberdeen, Aberdeen, AB24 3UE, UK.
nihal, gorry@erg.abdn.ac.uk

Abstract
When a wireless link forms a part of a network, the rate of
packet loss due to link noise may be considerably higher
than observed in a modern terrestrial network. This paper
studies TCP performance over a range of link environments
and highlights the advantage of recent modifications to TCP
(e.g. SACK, New-Reno) for wireless communications. It
also identifies two key issues which impact the performance
of TCP over error prone links: TCP’s reliance on timers to
recover from a failed retransmission cycle, and TCP’s
inability to separate congestion packet loss from other types
of packet loss. A solution to the first issue is identified and
analysed by simulation, and the factors affecting the second
issue are outlined.

1 Introduction
TCP [1] has been improved to provide efficient and reliable
operation over large networks which suffer potential packet
loss. The most important modification was the
introduction of congestion control and avoidance techniques
using the principle of self clocking. A back-off procedure
(Slow Start) was used, which on detection of congestion,
‘drains the pipe’ (i.e., waits until all transmitted packets
have left the network) before transmission of more data [2].
The back-off procedure achieves network stability but is
also unduly conservative. The Fast Retransmission and
Recovery algorithms [3, 4] have therefore been introduced to
drain only a half of the pipe and then recommence
transmission, assuming the reception of each duplicate
ACK is an indication of a packet leaving the network.

TCP performs poorly when these algorithms operate over a
network (or link) with a high rate of packet loss. This is
due to their inability to recover multiple packet loss
without waiting for a retransmission time out and
subsequent Slow Start. TCP performance may be improved
when multiple packets are dropped from a window of data
by using partial ACKs during the retransmission phase
(acknowledging some, but not all, packets outstanding at
the start of fast-retransmission) [4] and the SACK option
[5, 6] which has been recently defined. This paper provides
new data for the performance of the SACK option over
wireless links.

When a retransmitted TCP packet is lost (i.e.,
retransmission fails) most implementations do not have a
mechanism to recover the packet without waiting for a

retransmission time out and subsequent Slow Start. Such a
mechanism may not be important when the dominant form
of packet loss is congestion. However, a degradation in the
propagation conditions of a wireless link leads to a high Bit
Error Rate (BER) resulting in frequent (random) packet loss.
This increases the probability of retransmission packet loss
(or increases the number of retransmissions required for
successful transmission of a packet, which is a function of
the bit error rate [7]). This paper therefore proposes a
technique which detects the loss of a retransmitted packet
and retransmits it efficiently without waiting for the expiry
of the retransmission timer.

All current TCP implementations assume that a packet loss
is an indication of network congestion and take measures to
avoid further congestion in the network by reducing the
transmission rate (i.e., reducing window size). This is
based on strong evidence that congestion is the main issue
in most (terrestrial) networks. Non-congestion packet
losses due to link errors are more significant when a
wireless link forms a part of a network. The current
congestion avoidance algorithm results in very poor
performance of TCP error recovery over wireless links [8,
9]. In the case of link errors, the transmitter should,
however, persist in utilising a large proportion of the
bandwidth to make optimum use of the error-prone link.
The importance of distinguishing between these two types
of packet losses is discussed and key issues are outlined.

2 TCP Implementations
This section describes congestion control and avoidance
techniques, highlighting the current advancements which are
particularly important for wireless communications.

2.1 Tahoe TCP

The Slow Start (congestion control) and multiplicative
decrease (congestion avoidance) procedures [2] were first
implemented in Tahoe TCP. The Fast Retransmission [3,
10] algorithm was also implemented in Tahoe TCP to avoid
(inefficient) waiting for the retransmission timer to expire
following every packet loss. In this algorithm, a receiver
sends an (duplicate) ACK immediately on reception of each
out of sequence packet. The transmitter interprets reception
of 3 duplicate ACKs (sufficient to avoid spurious
retransmissions due to reordering of packets) as a congestion
packet loss and performs the Slow Start algorithm.

2.2 Reno TCP

The Reno TCP implementation introduces the Fast
Recovery algorithm [3, 10]. When the third duplicate ACK
is received, the Reno TCP transmitter sets the slow start
threshold size (ssthresh) to one half of the current
congestion window (cwnd) and retransmits the missing
packet. The cwnd is then set to ssthresh plus 3 times the
segment size (one per each duplicate ACK). cwnd is
increased by one segment on reception of each duplicate
ACK which continues to arrive after fast-retransmission.
This allows the transmitter to send new data when cwnd is
increased beyond the value of the cwnd before the fast-
retransmission. When an ACK arrives which acknowledges
all outstanding data sent before the duplicate ACKs were
received, the cwnd is set to ssthresh so that the transmitter
slows down the transmission rate and enters the linear
increase phase.

2.3 New-Reno

If two or more packets have been lost from the transmitted
data (window), the Fast Retransmission and Fast Recovery
algorithms will not be able to recover the losses without
waiting for retransmission time out. Hoe proposed a
modification to Reno TCP usually called New-Reno [4] to
overcome this problem. New-Reno introduces the concept
of a Fast Retransmission Phase, which starts on detection
of a packet loss (receiving 3 duplicate ACKs) and ends when
the receiver acknowledges reception of all data transmitted at
the start of the Fast Retransmission phase.

The transmitter assumes reception of a partial ACK during
the Fast Retransmission phase as an indication that another
packet has been lost within the window and retransmits that
packet immediately to prevent expiry of the retransmission
timer. The implementation proposed by Hoe sets the cwnd
to one segment on reception of 3 duplicate ACKs (i.e. when
entering the Fast Retransmission Phase) and
unacknowledged data are retransmitted using the Slow Start
algorithm. The transmitter is also allowed to transmit a
new data packet on receiving 2 duplicate ACKs. While the
transmitter is in the Fast Retransmission Phase, it
continues to retransmit packets using Slow Start until all
packets have been recovered (without starting a new
retransmission phase for partial ACKs). Although this
modification may cause unnecessary retransmissions, it
avoids unnecessary transmitter time outs and efficiently
recovers multiple packet loss using partial ACKs [4].

We have written a full implementation of TCP within a
simulated environment [7, 11]. Our implementation of
New-Reno is slightly different to the implementation
proposed by Hoe. A new state variable has been defined to
save the window size for retransmission (cwnd_rexmit),
allowing new data to be transmitted using the Reno
implementation. The sender starts fast retransmission and
sets the cwnd_rexmit to one segment on reception of 3

duplicate ACKs. cwnd_rexmit is increased by one segment
on reception of each subsequent new (partial) ACK, and
unacknowledged packets are retransmitted, but only if it is
allowed by the Slow Start procedure. The sender does not
start a new retransmission phase for partial ACKs until all
packets have been recovered [4]. The other variables (cwnd,
ssthresh, etc.) are updated using the Reno Fast
Retransmission and Recovery algorithms.

2.4 Selective Acknowledgment Option

The SACK option for Reno TCP has been introduced [5] to
further enhance TCP performance [6] by allowing (selective)
acknowledgment of packets held at the receiver. When the
receiver buffer holds in-sequence data packets, the receiver
sends duplicate ACKs bearing the SACK option to inform
the transmitter which packets have been correctly received
[5]. A SACK option field contains a number of SACK
blocks (the first block in the SACK option reports the most
recently received in-sequence packet). When the third
duplicate ACK is received, a SACK TCP transmitter
retransmits the packets starting with the sequence number
acknowledged by the duplicate ACKs followed by
subsequent unacknowledged packets. The New-Reno Fast
Retransmission and Recovery algorithms are used for
retransmission. These algorithms are modified to avoid
retransmitting already SACKed packets. Unnecessary
retransmissions caused by the New-Reno modification may
be reduced by this selective retransmission of lost packets.

The transmitter is also able to accurately estimate the
number of transmitted packets that have left the network [6,
12] by using the explicit information carried by selective
ACKs. Mathis proposed an implementation which stores
the forward most SACKed sequence number (i.e., the
highest sequence number acknowledged by the SACK
options) in a new variable called snd_fack [12]. The pipe
size is accurately calculated using snd_fack and another
variable called return_data which is updated when a packet is
retransmitted and when a retransmitted packet is determined
to have left the network. This provides efficient
retransmission of packets lost from the original data stream.

One potential problem arises when packets are reordered
after the initial three duplicate ACKs which initiate the
retransmission phase. The subsequent SACKs (indicating
holes in the sequence space) may result in unnecessary
retransmission [13]. One potential solution is to count the
number of SACKs which indicate each missing packet and
back-off until receiving a minimum number of SACKs
(similar to Reno duplicate ACKs). However, the receiver
may not generate sufficient SACKs for this, since the
current congestion window restricts the number of new data
packets which may be transmitted (cwnd is usually small
when the packet loss rate is high).

Our implementation addresses this problem by using the
new state variable (cwnd_rexmit) which is updated using the

slow start algorithm to control the retransmission of lost
packets; new data are still transmitted using the variable
cwnd (updated by the fast retransmission and recovery
algorithms, as explained in section 2.3). For example, after
retransmission of the first lost packet the 2nd and 3rd lost
packets are postponed until an ACK is received. This
procedure therefore allows reordered packets to be delayed by
approximately one round trip time, and reduces the level of
unnecessary retransmissions. Furthermore, since the
number of packets in transit is constrained by the cwnd,
there is only a small possibility of new packets arriving at
the receiver after a round trip delay (except packets both
delayed and reordered by the network).

This procedure does not compromise the benefit from using
the SACK option, since (a) the transmitter is allowed to
transmit new data using the fast retransmission procedure
(cwnd variable and SACKed information are used for
transmission of new data), and (b) cwnd_rexmit will grow
exponentially if the retransmissions are successful.
However, this procedure is conservative since the sender is
allowed to retransmit only a single packet during the first
round trip delay even when the sender determines that more
than one packet has left the network. This conservative
approach follows that in fast retransmission and recovery.
However, SACK may also provide indication of later
packets leaving the network (e.g. using the snd_fack
variable), which may permit retransmission of further
segments, if the sender is allowed by the current calculated
pipe size and the congestion window. Implementation of
this refinement must also consider the possibility of a
missing packet still been in transit on a higher delay
network path, in which case the retransmission may
potentially add to any network congestion.

3 Retransmission Packet Loss Detection
Conventional implementations of TCP do not provide
efficient retransmission of lost retransmitted packets.
Congestion losses normally occur in bursts [14], but
retransmission loss is not a major concern because the
retransmitted packets are usually successfully received
(mainly due to the transmission rate being reduced
following a congestion loss). The probability of loss over
a wireless link depends only on the packet size and the link
BER. Therefore retransmission loss is just as probable as
original loss and needs to be considered. We introduce the
Retransmission Packet Loss Detection algorithm which
identifies loss of retransmitted packets and recovers them
efficiently without the need for transmitter time outs. The
new algorithm works by correlating the time order of the
transmitted packets and received acknowledgments. When a
packet has been successfully retransmitted (i.e., the receiver
acknowledges the packet), this algorithm will not be
invoked. However, if the receiver does not acknowledge the
packet and instead acknowledges (SACK) a subsequently

transmitted packet, the transmitter considers that this is a
good indication of loss of the retransmitted packet. The
algorithm therefore relies on the presence of the SACK
option.

This mechanism is implemented by modifying the Reno
algorithms. During the Fast Retransmission phase, the
transmitter records the first sequence number of a
retransmitted packet and the transmission time. The
transmitter also records the first sequence number of each
subsequent packet, the corresponding transmission time, and
marks it as either a retransmission or new data.

On reception of an ACK which covers a recorded sequence
number, the corresponding records are cleared. The
transmitter detects loss by receiving 3 duplicate ACKs.
This prevents any mis-ordering of packets triggering the
algorithm (a similar procedure is used in the Fast
Retransmission algorithm).

On reception of 3 duplicate selective ACKs which cover one
of the records (tagged as new data), the transmitter compares
the transmission time of this record with the transmission
time of the other records (which were tagged as retransmitted
packets) to check whether the selectively acknowledged
packet was transmitted after any retransmitted packets (i.e.,
the algorithm considers not just the packet at the low
window edge, but any SACKed packet). If this happens,
the transmitter deduces that the retransmitted packets were
lost and retransmits them using the New-Reno Fast
Retransmission and Recovery algorithms. The time stamp
entries are updated on retransmission, allowing further
retransmission losses to be detected if this retransmission
should also fail.

RPLD may therefore efficiently recover from even high
rates of packet loss without reliance on time out
retransmission (performance data is presented in section 5).
If the retransmission timer does expire, the transmitter also
clears all recorded entries to avoid the ambiguity which may
arise due to time-out retransmission. The RPLD algorithm
may also be implemented using a list of packets sorted in
the transmission order instead of time stamps.

The separation of the retransmission processes using the
cwnd_rexmit variable allows the RPLD algorithm to
achieve conservative behaviour. On the start of the
retransmission phase, the transmitter is allowed to
retransmit only a small number of segments (one in the
protocol described). cwnd_rexmit will not grow during the
retransmission phase if this retransmitted packet has not
been ACKed. Since the cwnd is also reduced by the Fast
Retransmission and Fast Recovery procedures, on detection
of each packet loss, the rate of retransmission of
retransmitted packets is constrained to one packet per round
trip time. For severe congestion, this limitation causes the
retransmission timer to expire and slow start. This
extension does not alter the congestion avoidance procedure

of the fast retransmission algorithm and will be shown to
improve TCP error recovery performance for wireless links.

4 Behaviour of the TCP Extensions
The extensions have been implemented in a TCP/IP
simulator (which contains a full implementation of TCP
and a model for the wireless link) [7, 11, 15]. The
implementation was based on RFC 793 [1], RFC1122 [16]
and Tahoe TCP. The TCP/IP algorithms were initially
taken from [17] and implemented using Simula [18] and
have since been validated [19]. The Reno [20], New-Reno
[4] and SACK [5] modifications were also implemented.
The New-Reno modification with Reno was adopted as the
reference implementation of Reno TCP for the remaining
discussion.

TCP Source
A

TCP Source
B

TCP Source
C

TCP Sink
A

TCP Sink
B

TCP Sink
C

64 kbps, 280 ms

10 Mbps, 2 ms

Router A Router B

10 Mbps, 2 ms

Figure 1: LAN interconnection using a satellite link.

The first set of results compares TCP performance using
each extension to highlight the importance of the SACK
option and the proposed extensions when TCP operates over
a network with an error prone link (Graph A of figure 2).
The network shown in figure 1 is used for the simulation.
Two local area networks (10 Mbps) were connected using a
64kbps (satellite) link with a propagation delay of 280ms.
The data link queues are configured to hold 100 packets (i.e.

no congestion losses). Packet losses were caused by
simulating a random white noise source on the 64 kbps
link, and the error rate of the link was 3x10-5 (a reasonably
high BER typical of a wireless link).

The first sequence number of each transmitted packet has
been recorded with the transmission time. The results
demonstrate a clear improvement of TCP performance when
using the SACK option over the simulated link and are
further improved by adding the RPLD extension. The TCP
throughput is plotted in graph B for a range of window sizes
(simulation for 120 secs, corresponding to transfer of a
512Kbyte file).

Reno TCP was not able to utilise the available window size
(buffer space) due to triggering of the congestion avoidance
algorithms. SACK TCP gained a higher throughout,
making use of the explicit information carried by the SACK
option and uses the available window, correctly estimating
the pipe size. RPLD TCP further improved TCP
performance for wireless links, by avoiding unnecessary
retransmission and subsequent Slow Starts. The following
sections continue this analysis by zooming into a part of
the graph A shown in figure 2.

4.1 Reno TCP Vs SACK TCP

Figure 3 compares the performance using Reno against
Reno with the SACK option by observing the first 22
seconds of the connection. Similar analysis which
demonstrates the advantage of using SACK over a network
with only congestion packet loss can be found elsewhere [6,
12].

0

20

40

60

80

100

120

140

Se
qu

en
ce

 N
um

be
r [

K
 B

yt
es

]

10 15 20 25 30 35 40 45 50
Time[sec]

Reno

SACK

RPLD

10

15

20

25

30

T
C

P
T

hr
ou

gh
pu

t [
kb

ps
]

0 8 16 24 32 40 48 56 64
Window Size [K Bytes]

Reno

SACK

RPLD

Graph A Graph B
Figure 2: Performance improvement using SACK and RPLD extensions compared to Reno TCP .

0

5

10

15

20

25

30

35

40

Se
qu

en
ce

 N
um

be
r [

K
 B

yt
es

]

11 12 13 14 15 16 17 18 19 20 21 22
Time [sec]

RenoSACK

Figure 3: Operation of SACK TCP and Reno TCP (with New-Reno extensions). A simulated 64kbps satellite link (280ms

propagation delay) with BER of 3x10-5.

These results demonstrate two main advantages of the
SACK option over an error prone link. Both Reno TCP
and SACK TCP transmit packets in a similar pattern and
achieve the same throughput until the point where the
transmitter receives 3 duplicate ACKs for packet 5644. In
both implementations, this triggers a fast-retransmission of
the packet. However, Reno TCP only acknowledges
(cumulatively) in-sequence packets. By the time the Reno
transmitter receives 3 duplicate acknowledgments, it has
already sent a full window of data (constrained by the
congestion window). In contrast, SACK TCP sends
selective ACKs for each individual correctly received packet
and therefore the SACK transmitter was able to calculate the
pipe size accurately and resume the transmission of new data
after the fast retransmission event.

The retransmitted packet (packet 5644) has been lost during
the transmission (when using both Reno TCP and SACK
TCP). Until this packet has been received, the receiver
continues to acknowledge data up to 5644 bytes. This
causes the retransmission timer subsequently to expire and
the transmitter to retransmit the same packet at 15.05
seconds. The Reno transmitter then demonstrates a classic
Slow Start by transmitting one packet followed by two
packets, and then by four packets. However, a SACK TCP
transmitter selectively retransmits only the packets lost
during the transmission (i.e., only those which are not
selectively acknowledged) and then resumes transmission of
new data. The other fast-retransmissions of the SACK TCP
transmitter at 18.69 sec (packet 24076), 19.32 sec (packet
26124), and 20.36 sec (packet 27660) were successful.

The Reno TCP transmitter also performs a fast-
retransmission at 18.86 (packet 17420) after transmission of
a packet with first sequence number 20492. It also

retransmits two packets (packets 19468 and 19980) at 19.5
seconds using Slow Start. Although the first-
retransmission is caused by a partial ACK, the second
retransmitted packet is unnecessary caused by the Slow Start
procedure used for New-Reno retransmissions. If the SACK
option had been used, this unnecessary retransmission could
have been avoided.

4.2 SACK TCP Vs RPLD TCP

The Retransmitted Packet Loss Detection (RPLD)
algorithm avoids unnecessary expiry of the retransmission
timer and subsequent Slow Start due to a loss of a
retransmitted packet. After a packet is retransmitted, the
RPLD transmitter checks whether the subsequently
transmitted packets have been selectively acknowledged on
reception of each duplicate ACK. Figure 4 compares
performance using SACK TCP and SACK TCP with
RPLD by observing the first 18 seconds of the connection.

The SACK TCP and RPLD TCP implementations transmit
packets in a similar way until the RPLD TCP transmitter
receives three duplicate ACKs for packet 10252 (which is
the first new data packet after the fast retransmission of
packet 5644). The transmitter then deduces the previously
retransmitted packet has been lost during transmission
(because a later packet was SACKed by the receiver). The
RPLD transmitter therefore fast-retransmits packet 5644
again at 14.32 seconds. In comparison, the SACK
transmitter only recovers this packet loss after expiration of
the retransmission timer at 15.05 seconds which results in a
rapid slow down of the transmission rate at appreciable
BER.

0

5

10

15

20

25

Se
qu

en
ce

 N
um

be
r [

K
 B

yt
es

]

11 11.5 12 12.5 13 13.5 14 14.5 15 15.5 16 16.5 17 17.5 18
Time [sec]

SACK

RPLD

Figure 4: Operation of SACK TCP and SACK TCP with RPLD extension. A simulated 64kbps satellite link (280ms

propagation delay) with BER of 3x10-5.

At 16.53 seconds, the loss of the retransmitted packet
13836 was again detected by the RPLD TCP transmitter.
Similar transmitter time outs for the SACK transmitter can
be noted at 31 and 41 seconds (as shown in the figure 2).
This expiration of retransmission timer followed by Slow
Start is inefficient when TCP is used over wireless links
which may exhibit a high BER (e.g., satellite links) and is
even more significant when the link has a high propagation
delay. It may also be very inefficient if the retransmission
time out estimation is too high.

5 End-to-End Performance
The benefit from implementing the new extensions is
dependent on the network environment (such as the network
congestion condition and propagation conditions of a
wireless link when such a link forms part of the network).
The end to end throughput measurements using different
combinations of these modifications are, therefore, presented
for two scenarios one with little congestion in the network
and one for a congested network.

5.1 End-to-End Performance With Low
Congestion

The first scenario (figure 5) shows the performance with
little (or no) network congestion, that is where random loss
is more significant than congestion loss (error bars show
the 95% confidence intervals of a series of measurements).
The network configuration described in section 4 (figure 1)
was used with a single TCP session. The data link queues
are configured to hold 30 packets. When packet losses are
present in the network, the SACK extension provides
higher throughput than Reno due to its efficient
retransmission strategy and the ability to accurately estimate
the pipe size. The advantage of the SACK option

diminishes when the packet loss rate increases due to the
link errors (e.g., when BER exceeds 3x10-6), since the
congestion control algorithms dominate the operation of
error recovery.

10

15

20

25

30

35

40

45

50

55

T
C

P
 T

hr
ou

gh
pu

t
[k

bp
s]

1E-07 1E-06 1E-05 BER

SACK+RPLD+Reno+Loss Indication

Reno

SACK+Reno

SACK+RPLD+Reno

Figure 5: TCP performance for different extensions over a
network of interconnecting LANs using a Satellite link.
The potential benefit from differentiating link/congestion
loss when using RPLD is also shown
(SACK+RPLD+Reno+Loss Indication).

The addition of the RPLD extension has little impact at
moderate to low BER. When the propagation conditions
further degrade (e.g., BER higher than 10-5), retransmission
packet loss becomes significant and the RPLD extension
therefore significantly improves TCP performance
(“SACK+RPLD+Reno” of figure 5). TCP performance has

been degraded when the packet loss rate increases due to link
errors, since the congestion control algorithms dominate the
operation of error recovery.

5.2 End-to-End Performance With Congestion

A wide area network (figure 6) was also simulated to
compare different extensions when the network is subjected
to both congestion loss and link errors.

TCP Source
A

TCP Source
B

TCP Source
C

TCP Sink
A

TCP Sink
B

TCP Sink
C

1Mbps, 100 ms

10 Mbps, 2 ms

Router A Router B 10 M bps,
 10 ms

10 Mbps, 20 ms

10 Mbps, 2 ms

10 Mbps,
10 ms

10 Mbps, 20 ms

Figure 6: Network interconnecting LANs using a wireless
WAN.

Three TCP sessions (sources at host A, B and C) share the
1Mbps link, with the router queue configured to hold 30
packets. The TCP window size was again 64kbytes and
MSS was 512 bytes. A noise source was introduced to
both directions of the 1Mbps link. The aggregated
throughput of the three sessions is shown in figure 7 (error
bars show the 95% confidence interval).

0

50
100
150

200
250

300
350
400
450

500
550

600
650

T
C

P
T

hr
ou

gh
pu

t [
kb

ps
]

3E-06 5E-06 1E-05 2E-05 3E-05
Bit Error Rate

Reno

SACK+Reno

SACK+RPLD+Reno

Figure 7: TCP performance of different extensions over a
network interconnecting LANs using a wireless WAN.

The results demonstrate that SACK (and RPLD) improves
TCP performance for wireless links even when congestion
is present (“SACK+RPLD+Reno” of figure 7). Futher
improvement in performance requires accurate differentiation
between link packet loss and network congestion.

6 Discussion
When a wireless link forms a part of a network, link packet
losses (due to noise) are often more significant than
congestion losses. However, existing implementations of
TCP assume that a packet loss is an indication of network
congestion and take measures to avoid further congestion by
reducing the transmission rate (i.e. reducing window size).
This results in a very low utilisation of the link when there
is an appreciable rate of losses due to link errors (figure 5
and 6). This issue is very significant for wireless links,
particularly those with a long propagation delay (e.g.
satellite links). Some authors have even suggested
removing congestion control for such links [21], however
such action is potentially very dangerous.

TCP performance over networks subjected to both link and
congestion loss can be improved by enhancing the wireless
link or extending TCP to accommodate the needs of the
wireless link.

Implementation of Forward Error Correction (FEC) and
Automatic Repeat Request (ARQ) techniques at the link
level (or below), which may transparently enhance the link
quality by hiding the effect of loss in the wireless link [7,
9]. Such techniques allow existing TCP protocols
(optimised to recover congestion packet loss) to efficiently
operate over the entire network. A transport layer gateway
at the interface to the wireless link may provide a similar
service [9, 22, 23].

Alternatively, TCP (in the Internet hosts) may be extended
allowing it to determine the type of packet loss and respond
accordingly. Most suggested extensions adopt one of two
approaches [24]:

(i) Explicit indication of the type of packet loss sent by the
network routers

(ii) Extension of TCP to infer the presence of link loss
(implicit indication)

6.1 Explicit Indication

Explicit schemes are designed to exploit the additional
information available locally at the equipment directly
connected to the wireless link [8, 9, 25]. Such equipment
is aware of any local congestion and may be able to identify
packet lost due to link errors. This information however
needs to be passed to the sender to modify TCP behaviour.

One example is the protocol suggested by Durst [8] in
which the router connected to the wireless link maintains a
weighted moving average of the number of corrupted
packets received over the link. When this number exceeds a
threshold, the router generates “corruption-experienced”
ICMP messages to each destination. Each TCP receiver
then informs the corresponding sender that corruption has
been experienced by sending a new TCP option. The sender
may then choose to inhibit congestion measures until it

receives an ACK without the corruption-experienced TCP
option. A similar technique has been described in [9].

It is possible that most wireless links (from time to time)
suffer congestion loss as well as link errors. To utilise
explicit corruption indications, the sender must also verify
the lack of network congestion along the intended
retransmission path. Explicit congestion notification (e.g.
RED [25], DECbit [26]) may ease this detection of
congestion.

6.2 Implicit Indication

Instead of relying upon modification to the network, the
sender may attempt to infer the type of packet loss from the
arrival of received ACK and/or data packets. Implicit
indications have the advantage of not requiring additional
network and processing overhead at intermediate routers, and
therefore off-the-shelf equipment may be used. The
drawback is that the detailed status of the wireless link is
not visible to the sender or the receiver, which must be
inferred by other means.

One approach is to measure the variation in the round trip
delay from a measured (minimum) reference delay. A
change (increase) in delay may indicate congestion in the
network [27, 28]. Paxson [14] observed that a congestion
condition usually persists for an appreciable time (higher
than the RTT), and it is therefore possible for a sender to
detect queuing fluctuations and imply the presence of
congestion (the variation in the one way packet transit delay
measurement may more accurately estimate the queuing
delay [14]).

However, it is very difficult to accurately infer the type of
loss by only using round trip delay variation because:

(i) A sender may never experience a low delay due to
persistent congestion in the network. This may result
in an artificially high reference delay measurement
wrongly indicating a lack of congestion.

(ii) The packets belonging to a session are not necessary
routed along the same path which introduces delay
variation [14].

(iii) Some routers employ active queue management (rather
than drop-tail routing) which complicates congestion
detection. For example, a Random Early Detection
(RED) router [29] may discard packets due to persistent
congestion, even though the instantaneous queue size is
small (low delay), and the delay for a router with
Weighted Fair Queuing (WFQ) [30] may depend on the
session bandwidth allocation.

6.3 Challenges to Implementation

The development of a robust algorithm to differentiate the
type of packet scheme is likely to result in significant
performance gain for TCP over wireless links. Any

implementation using implicit or explicit indication needs
to adopt a conservative approach which applies congestion
avoidance if any congestion may be present in the network,
but may relax this when the network is know not to be
congested.

Since TCP congestion avoidance algorithms restrict the
transmission of new data after retransmission of a packet
(i.e., window closes), a non-congestion packet loss
indication technique would also improve performance of the
suggested RPLD algorithm enabling it to achieve high
throughput when the BER is higher than 3x10-6 (see
suggested benefit with loss indication in figure 5).

The challenge is to design a technique which reliably
identifies link loss (where rapid retransmission benefits the
session), while also providing minimal chance of confusing
this with congestion (where conservative retransmission is
required for network stability). A failure to respond to
congestion will inevitably exacerbate any network
congestion [24].

7 Conclusions and Future Work
The SACK option and New-Reno modifications have been
studied in detail and were found to significantly improve
TCP performance especially over wireless links (e.g.,
satellite links). The explicit information provided by the
SACK option allows the sender to more efficiently transmit
packets which are lost by either congestion or random (link)
errors.

The SACK option also provides additional information
which allows the transmitter to detect a loss of a
retransmitted packet when using the suggested RPLD
extension. RPLD requires only modification to the sender,
and allows efficient recovery of lost retransmitted packets
without reliance on the operation of TCP timers. This
extension provides improved performance for a network
which experiences a high rate of packet loss (e.g., a BER
higher than 10-6).

The benefit from using SACK (and RPLD) for an
appreciable random (link) error rate (>10-6) is limited by an
interaction between the error recovery procedures and the
congestion avoidance algorithms. An implicit or explicit
random loss indication method may significantly improve
performance, however it is fundamentally difficult for a
TCP sender to reliably discriminate random (link) loss from
occasional congestion loss. The development of an accurate
algorithm to infer type of packet loss is a topic of current
research.

8 References
1. J. Postel, 'Transmission Control Protocol', Information

Sciences Institute, University of Southern California,
RFC 793, September 1981.

2. V. Jacobson, 'Congestion Avoidance and Control',
SIGCOMM '88, ACM, USA, 314-329 (1988).

3. W. R. Stevens, 'TCP Slow Start, Congestion
Avoidance, Fast Retransmission, and Fast Recovery
Algorithms', IETF, RFC 2001, January 1997.

4. J. C. Hoe, 'Improving the Start-up Behavior of a
Congestion Control Scheme for TCP', SIGCOMM
'96, ACM, California, USA, 270-280 (1996).

5. M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow,
'TCP Selective Acknowledgment Options', IETF, RFC
2018, October 1996.

6. K. Fall and S. Floyd, 'Simulation-based Comparisons
of Tahoe, Reno, and SACK TCP', ACM Computer
Communication Review, 26(3), 5-21 (1996).

7. N. Samaraweera and G. Fairhurst, 'Robust Data Link
Protocols for Connection-less Service over Satellite
Links', Int J. Satellite Communications, 14(5), 427-
437 (1996).

8. R. C. Durst, G. J. Miller, and E. J. Travis, 'TCP
Extensions for Space Communications', MOBICOMM
96, ACM, USA, 15-26 (1996).

9. H. Balakrishnan, V. N. Padmanabhan, S. Seshan, and
R. H. Katz, 'A Comparison of Mechanisms for
Improving TCP Performance over Wireless Links',
SIGCOMM '96, ACM, California, USA, 14 (1996).

10. V. Jacobson, 'Modified TCP Congestion Avoidance
Algorithm', End-to-End mail, April 1990.

11. N. Samaraweera and G. Fairhurst, 'Explicit Loss
Indication and Accurate RTO Estimation for TCP Error
Recovery using Satellite Links', IEE Proceedings -
Communications, 144(1), 47-53 (1997).

12. M. Mathis and J. Mahdavi, 'Forward Acknowledgment:
Refinng TCP Congestion Control', SIGCOMM '96,
ACM, California, USA, 281-291 (1996).

13. S. Floyd, 'Private communications', 1997.
14. V. Paxson, 'End-to-End Internet Packet Dynamics',

SIGCOMM 97, ACM, France, 139-152 (1997).
15. G. Fairhurst, 'A Simulation of a Satellite Link

Employing a Protocol Based on X.25', Fourth UK
Teletraffic Symposium, IEE, Bristol, UK, (1987).

16. R. Braden, 'Requirements for Internet Hosts -
Communication Layers', IETF, RFC 1122, October
1989.

17. D. E. Comer and D. L. Stevens, Internetworking with
TCP/IP: Design, Implementation, and Internals, Vol:2,
Prentice Hall, Englewood Cliffs, USA, 1991.

18. R. J. Pooley, An Introduction to Programming with
Simula, Blackwell Scientific Publications, 1987.

19. N. Samaraweera, 'Robust Connection-less Service over
a Packet Satellite Link', University of Aberdeen,
Aberdeen, UK, PhD Thesis, 1995

20. W. R. Stevens, TCP/IP Illustrated: The protocols,
Vol:1, Addison Wesley, New York, 1994.

21. A. Pirovano and G. Maral, 'Congestion Avoidance in
TCP/IP Applied to LAN Interconnection over Satellite
Links', Final Workshop of COST 226 Integrated
Space/Terrestrial Networks, EC, Budapest, Hungary,
79-87 (1995).

22. A. V. Bakre and B. R. Badrinath, 'Implementation and
Performance Evaluation of Indirect TCP', IEEE
Transactions of Computers, 64(3), 260-278 (1997).

23. J. A. Cobb and P. Agrawal, 'Congestion or
Corruption? A Strategy for Efficient Wireless TCP
sessions', IEEE Symposium on Computers and
Communications, IEEE, USA, 262-268 (1995).

24. C. Partridge and T. Shepard, 'TCP/IP Performance over
Satellite Links', IEEE Network, 11(5), 44-49 (1997).

25. S. Floyd, 'TCP and Explicit Congestion Notification',
ACM Computer Communication Review, 24(5), 10-
23 (1994).

26. K. K. Ramakrishnan and R. Jain, 'A Binary Feedback
Scheme For Congestion Avoidance In Computer
Networks With A Connectionless Network Layer',
SIGCOMM 88, ACM, USA, 303-313 (1988).

27. R. Jain, 'A Delay-Based Approach for Congestion
Avoidance in Interconnected Heterogeneous Computer
Networks', ACM Computer Communication Review,
19(5), 56-71 (1989).

28. L. Brakmo S. and L. Perterson L., 'TCP Vegas: End to
End Congestion Avoidance on a Global Internet', IEEE
Journal on Selected Areas in Communication, 13(8),
1465-1480 (1995).

29. S. Floyd and V. Jacobson, 'Random Early Detection
Gateways for Congestion Avoidance', IEEE/ACM
Transactions on Networking, 1(4), 397-413 (1993).

30. A. K. Parekh and R. G. Gallager, 'A Generalized
Processor Sharing Approach to Flow Control in
Intergrated Services Networks: The Multiple Node
Case', IEEE/ACM Transactions on Networking, 2(2),
137-150 (1994).

Acknowledgments
The authors wish to thank the European Space Agency
(ESA) and Defence Research and Evaluation Agency (DERA
Defford) in the UK for their use of the satellite network
which provided insight into the behaviour of applications
using TCP/IP over a satellite Internet. This work greatly
benefited from constructive comments from Sally Floyd and
the CCR reviewer.

