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Abstract

We present Start-time Fair Queuing (SFQ) algorithm that is com-
putationally efficient, achieves fairness regardless of variation in a
server capacity, and has the smallest fairness measure among all
known fair scheduling algorithms. We analyze its throughput, sin-
gle server delay, and end-to-end delay guarantee for variable rate
Fluctuation Constrained (FC) and Exponentially Bounded Fluctua-
tion (EBF) servers. We show that SFQ is better suited than Weighted
Fair Queuing for integrated services networks and it is strictly better
than Self Clocked Fair Queuing. To support heterogeneousservices
and multiple protocol families in integrated services networks, we
present a hierarchical SFQ scheduler and derive its performance
bounds. Our analysis demonstrates that SFQ is suitable for inte-
grated services networks since it: (1) achieves low average as well
as maximum delay for low-throughput applications (e.g., interac-
tive audio, telnet, etc.); (2) provides fairness which is desirable
for VBR video; (3) provides fairness, regardless of variation in a
server capacity, for throughput-intensive, flow-controlled data ap-
plications; (4) enables hierarchical link sharing which is desirable
for managing heterogeneity; and (5) is computationally efficient.

1 Introduction

1.1 Motivation

Integrated services networks are required to support a variety of
applications (e.g., audio and video conferencing, multimedia in-
formation retrieval, ftp, telnet, WWW, etc.) with a wide range of
Quality of Service (QoS) requirements. Whereas continuous media
applications such as audio and video conferencing require the net-
work to provide QoS guarantees with respect to bandwidth, packet
delay, and loss; applications such as telnet and WWW require low
packet delay and loss. Throughput intensive applications like ftp,on
the other hand, require network resources to be allocated such that
the throughput is maximized. A network meets these requirements
primarily by appropriately scheduling its resources.
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To determine the characteristics of a suitable scheduling algo-
rithm, consider the requirements of some of the principal applica-
tions envisioned for integrated services networks:

� Audio applications: To maintain adequate interactivity for
such applications, scheduling algorithms must provide low
average and maximum delay.

� Video applications: Variable bit rate (VBR) video sources,
which are expected to impose significant requirements on
network resources, have unpredictable as well as highly vari-
able bit rate requirement at multiple time-scales [10, 12, 14].
These features impose two key requirements on network re-
source management:

– Due to the difficulty in predicting the bit rate require-
ment of VBR video sources, video channels may utilize
more than the reserved bandwidth. As long as the ad-
ditional bandwidth used is not at the expense of other
channels (i.e., if the channel utilizes idle bandwidth),
it should not be penalized in the future by reducing its
bandwidth allocation.

– Due to multiple time-scale variation in the bit rate re-
quirement of video sources, to achieve efficient utiliza-
tion of resources, a network will have to over-book
available bandwidth. Since such over-booking may
yield persistent congestion, a network should provide
some QoS guarantees even in the presence of conges-
tion.

Unfair scheduling algorithms, such as Virtual Clock [24],
Delay EDD [23], etc., penalize channels for the use of idle
bandwidth and do not provide any QoS guarantee in the pres-
ence of congestion [18]. Fair scheduling algorithms, on the
other hand, guarantee that, regardless of prior usage or con-
gestion, bandwidth would be allocated fairly[18]. Hence, fair
scheduling algorithms are desirable for video applications.

� Data applications: To support low-throughput, interactive
data applications (e.g., telnet), scheduling algorithms must
provide low average delay. On the other hand, to support
throughput-intensive, flow-controlled applications in hetero-
geneous, large-scale, decentralized networks, scheduling al-
gorithms must allocate bandwidth fairly [5, 15, 19]. Due to
the coexistence of VBR video sources and data sources in
integrated services networks, the bandwidth available to data
applications may vary significantly over time. Consequently,
the fairness property of the scheduling algorithm must hold
regardless of variation in server capacity.
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Hence, in summary, a suitable scheduling algorithm for inte-
grated services networks should: (1) achieve low average as well
as maximum delay for low throughput applications (e.g., interac-
tive audio, telnet, etc.); (2) provide fairness for VBR video; and
(3) provide fairness, regardless of variation in server capacity, for
throughput-intensive, flow-controlled data applications. Further-
more, since such networks will support a wide variety of services
and multiple protocol families, the scheduling algorithm should fa-
cilitate hierarchical link sharing [6, 20]. Finally, to facilitate its
implementation in high-speed networks, it should be computation-
ally efficient. A scheduling algorithm that achieves all of these
objectives is the subject of investigation in this paper.

1.2 Relation To Previous Work

Each unit of data transmission at the network level is a packet.
We refer to the sequence of packets transmitted by a source as a
flow [24]. Each packet within a flow is serviced by a sequence of
servers (or switching elements) along the path from the source to
the destination in the network. Before we describe fair scheduling
algorithms that may be employed by the servers, let us consider the
precise meaning of fair allocation of link bandwidth.

Intuitively, allocation of link bandwidth is fair if equal band-
width is allocated in every time interval to all the flows. This
concept generalizes to weighted fairness in which the bandwidth
must be allocated in proportion to the weights associated with the
flows. Formally, if rf is the weight of flow f and Wf (t1; t2)
is the aggregate service (in bits) received by it in the interval
[t1; t2], then an allocation is fair if, for all intervals [t1; t2] in which

both flows f and m are backlogged,
Wf (t1;t2)

rf
�

Wm(t1;t2)

rm
= 0.

Clearly, this is an idealized definition of fairness as it assumes
that flows can be served in infinitesimally divisible units. The
objective of fair packet scheduling algorithms is to ensure that
j

Wf (t1;t2)

rf
�

Wm(t1 ;t2)

rm
j is as close to 0 as possible. How-

ever, it has been shown in [7] that if a packet scheduling algorithm

guarantees that j
Wf (t1;t2)

rf
�

Wm(t1;t2)

rm
j� H(f;m) for all inter-

vals [t1; t2] then H(f;m) � 1
2

�
lmax
f

rf
+

lmaxm

rm

�
, where H(f;m)

is a function of the properties of flows f and m and lmax
f and

lmax
m denote the maximum lengths of packets of flow f and m,

respectively.
Several fair scheduling algorithms that achieve value ofH(f;m)

close to the lower bound have been proposed in the literature. The
earliest known fair scheduling algorithm is Weighted Fair Queu-
ing (WFQ) [5] (also referred to as Packet-by-Packet Generalized
Processor Sharing (PGPS) [18]). WFQ was designed to emulate
a hypothetical bit-by-bit weighted round robin server in which the
number of bits of a flow served in a round is proportional to the
weight of the flow. Since packets can not be serviced a bit at a time,
WFQ emulates bit-by-bit round robin by scheduling packets in the
increasing order of their departure times in the hypothetical server.
To compute this departure order, WFQ associates two tags, a start
tag and a finish tag, with every packet of a flow. Specifically, if pjf
and ljf denote the jth packet of flow f and its length, respectively,

and ifA(pjf ) denotes the arrival time of packetpjf at the server, then

start tag S(pjf ) and finish tag F (pjf ) of packet pjf are defined as:

S(pjf ) = maxfv(A(pjf )); F (p
j�1

f )g j � 1 (1)

F (pjf ) = S(pjf ) +
l
j

f

rf
j � 1 (2)

where F (p0f ) = 0 and v(t) is defined as the round number that
would be in progress at time t if the packets were being serviced in

a bit-by-bit weighted round robin manner. Formally, v(t) is defined
as:

dv(t)

dt
=

CP
j2B(t)

rj
(3)

where C is the capacity of the server and B(t) is the set of back-
logged flows at time t in the bit-by-bit round robin server. WFQ
then schedules packets in the increasing order of their finish tags.

Observe that implementation of WFQ requires computation of
v(t), which in turn requires simulation of bit-by-bit round robin
server in real time. This simulation is computationally expensive.
Furthermore, as the following examples illustrate, since WFQ is
based on the assumption that the capacity of a server is constant, it
fails to provide fairness over servers with time varying capacity.

Example 1 Let the capacity of the server that WFQ is emulating
beC pkts/s,C > 1. Let the actual servercapacity be 1 pkt/s in [0,1)
andC pkt/s in [1,2). Consider two flows f andm both of which have
unit length packets and weights of 1 pkt/s. Let flow f send C + 1

packets at time 0. Hence, for flow f , F (pj
f
) = j ; 1 � j � C + 1.

Let flow m become backlogged at t = 1 and be backlogged during
the interval [1,2]. Since only flow f is backloged during [0,1),
using (3), we get v(1) = C . Hence, for flow m, F (p1m) = C + 1.
Since WFQ schedules packets in the increasing order of finish tags,
we get: C � 1 � Wf (1; 2) � C and Wm(1; 2) � 1. However, for
fair allocation of bandwidth, Wf (1; 2) and Wm(1; 2) should both
be C=2. SinceC can be chosen arbitrarily, this example illustrates
the unfairness that can result when the actual capacity is lower than
the capacity being assumed.

Example 2 Let the capacity of the server that WFQ is emulating
be 1 pkts/s. Let the actual server capacity be C pkt/s, C > 1, in
[0,1) and 1 pkt/s in [1,C). Consider two flows f and m both of
which have weights of 1 pkt/s. Let flow f send 3C

2
packets at time

0. Hence, for flow f , F (pjf ) = j ; 1 � j � 3C
2

. Let flow m send
C packets at time 1. Since only flow f is backloged during [0,1),
v(1) = 1. Hence, for flowm, F (pjm) = j+ 1 ; 1 � j � C . Since
WFQ schedules packets in the increasing order of finish tags, while
Wf (1; C + 1) � 1, C � 1 � Wm(1; C + 1) � C . However, for
fair allocation of bandwidth,Wf (1; C+1) andWm(1; C+1) both
should be C=2. Since, C can be chosen arbitrarily, this example
illustrates the unfairness that can result when the actual capacity
is greater than the capacity being assumed.

Thus, WFQ fails to provide fairness over variable rate servers.
As we will outline in Section 3, to be useful for hierarchical link
sharing [6, 20], a scheduling algorithm must provide fairness over
variable rate servers. Consequently, WFQ fails to meet two key
requirements (i.e., fairness over variable rate servers and support
for hierarchical link sharing) of a fair scheduling algorithm for inte-
grated services networks. Observe that it may be possible to extend
WFQ to provide fairness over variable rate servers by changing the
definition of v(t) as given in (3) to be a function of time vary-
ing server capacity C(t). However, due to the unpredictable and
multiple time-scale variation in VBR video bit rate, it may not be
possible to accurately estimateC(t). Furthermore, this would make
the computation ofv(t) even more expensive, thereby making WFQ
infeasible for high speed networks.

Fair Queuing based on Start-time (FQS), proposed in [13], com-
putes start tag and finish tag of a packet exactly as in WFQ. However,
instead of scheduling packets in the increasing order of finish tags,
it schedules packets in the increasing order of start tags. Though
FQS has advantages for processor scheduling, it is not known to
have any advantage over WFQ for scheduling packets in a net-
work. Moreover, since it utilizes v(t) as defined in (3), it has all the
disadvantages of WFQ.
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Self Clocked Fair Queuing (SCFQ), originally proposed in [4]
and later analyzed in [7], was designed to reduce the computational
complexity of fair scheduling algorithms like WFQ. SCFQ also
schedules packets in the increasing order of finish tags. However,
it achieves efficiency over WFQ by approximating v(t) with the
finish tag of the packet in service at time t. It has been shown that

the value of H(f;m) for SCFQ is (
l
max
f

rf
+

lmaxm

rm
), which is only a

factor of two away from the lower bound [7]. The main limitation
of SCFQ is that it increases the maximum delay incurred by the
packets significantly. Specifically, if Q is the set of flows served
by a server and C its capacity, then packets of flow f may incurP

n2Q^n6=f
lmaxn

C
more delay in SCFQ than in WFQ [8]. This may

be unacceptably large in many cases.
WFQ and SCFQ sort and schedule packets in the increasing

order of finish tags. Hence, per packet computational complexity
is O(logQ) where Q is the number of flows served by the server.
To reduce this per packet computational complexity, Deficit Round
Robin (DRR) was proposed in [21]. It is a derivative of weighted
round robin algorithm designed to accommodate variable length
packets of a flow. Though the per packet computational complexity
of DRR is O(1) per packet, it has the following two limitations:

1. The value ofH(f;m) for DRR is
�
1 +

lmax
f

rf
+

lmaxm

rm

�
when

minn2Q rn = 1, which can deviate arbitrarily away from
that of fair scheduling algorithms like SCFQ. For instance, if
rf = rm = 100 and lmax

f = lmax
m = 1, then H(f;m) for

DRR is 1:02, which is 50 times larger than the corresponding
0:02 value for SCFQ. Clearly, appropriate choice of weights
can make this factor as high as desired. Since absolute values
ofH(f;m) have no physical meaning, the relative values are
important.

2. The maximum delay incurred by packets serviced by a DRR
server can be arbitrarily high. To observe this, consider a
weighted round robin server with all packets of size l (DRR is
equivalent to weighted round robin server in such a scenario).
It is easily observed that a lower bound on maximum delay

of a packet of flow f is

P
n2Q^n6=f

l�rn

C
. Since weights can

be arbitrary, the lower bound can be arbitrarily high.

In summary, the design of a fair scheduling algorithm that is: (1)
computationally efficient, (2) provides fairness over variable rate
servers, (3) facilitates hierarchical link sharing, and (4) has good
delay properties is an open problem.

1.3 Research Contributions of This Paper

In this paper, we present Start-time Fair Queuing (SFQ) algorithm
that is computationally efficient and allocates bandwidth fairly re-
gardless of variation in a server rate. We show that it has a fairness

measure of (
lmax
f

rf
+

lmaxm

rm
), which is only a factor two away from

the lower bound and is at least as good as the fairness measure
of all known fair scheduling algorithms. We analyze the through-
put, single server delay, and end-to-end delay guarantee of SFQ.
To accommodate links whose capacity fluctuates over time (for ex-
ample, flow-controlled and broadcast medium links), this analysis
is carried out for servers which can be modeled as either Fluctua-
tion Constrained (FC) or Exponentially Bounded Fluctuation (EBF)
servers [17]. To the best of our knowledge, this is the first analysis
of a fair or a real-time scheduling algorithm for such servers. To
support hierarchical link sharing, we present a hierarchical SFQ
scheduler. We build upon the analysis of FC and EBF servers and
analyze the throughput, delay and end-to-end delay guarantees of
a flow when the link bandwidth is hierarchically partitioned. The

analysis is simple and conceptually elegant. We demonstrate that
the hierarchical SFQ scheduler, in addition to supporting hetero-
geneity, can be used to achieve separation of delay and throughput
allocation as well as delay shifting (i.e., reduction of delay of a set
of flows while increasing the delay of other flows).

Our analysis demonstrates that: (1) SFQ is better suited than
WFQ for integrated services networks since it efficiently achieves
fairness over variable rate servers and provides significantly smaller
average and maximum packetdelay to low-throughput applications;
(2) SFQ is strictly better than SCFQ since maximum packet delay
in SFQ is considerably smaller than in SCFQ and both have same
the fairness measure and implementation complexity; (3) SFQ is
strictly better than FQS since it has lower complexity and achieves
fairness over variable rate servers without increasing the maximum
packet delay; and (4) SFQ provides considerably better fairness
properties and smaller maximum delay than DRR.

We demonstrate that SFQ is suitable for integrated services net-
works since it: (1) achieves low average as well as maximum delay
for low-throughput applications (e.g., interactive audio, telnet, etc.);
(2) provides fairness which is desirable for VBR video; (3) provides
fairness, regardless of variation in server capacity, for throughput-
intensive, flow-controlled data applications; (4) enables hierarchical
link sharing which is desirable for managing heterogeneity; and (5)
is computationally efficient.

The rest of the paper is structured as follows. We present SFQ
algorithm and analyze its fairness, throughput, single server de-
lay guarantee, and end-to-end delay guarantee in Section 2. We
discuss hierarchical link sharing in Section 3 and present our im-
plementation of SFQ for an ATM network interface in Solaris 2.4
environment in Section 4. Finally, Section 5 summarizes our results.

2 Start-time Fair Queuing

In Start-time Fair Queuing (SFQ) algorithm, two tags, a start tag
and a finish tag, are associated with each packet. However, unlike
WFQ and SCFQ, packets are scheduled in the increasing order of
the start tags of the packets. Furthermore, v(t) is defined as the
start tag of the packet in service at time t. The complete algorithm
is defined as follows:

1. On arrival, a packet pjf is stamped with start tag S(pjf ),
computed as:

S(pjf ) = maxfv(A(pjf )); F (p
j�1

f )g j � 1 (4)

where F (pjf ), the finish tag of packet pjf , is defined as:

F (pjf ) = S(pjf ) +
l
j

f

rf
j � 1 (5)

where F (p0f ) = 0 and rf is the weight of flow f .

2. Initially the server virtual time is 0. During a busy period, the
server virtual time at time t, v(t), is defined to be equal to the
start tag of the packet in service at time t1. At the end of a
busy period, v(t) is set to the maximum of finish tag assigned
to any packets that have been serviced by time t2.

3. Packets are serviced in increasing order of the start tags; ties
are broken arbitrarily (some tie breaking rules may be more
desirable than others and are discussed in Section 2.3).

1Observe that server virtual time changes only when a packet �n-
ishes service.

2We set v(t) to the maximum of �nish tags of the packets at the
end of busy period only for clarity of proofs; all the start tags as well
as the server virtual time can be equivalently set to zero.
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As is evident from the definition, the computation of v(t) in SFQ is
inexpensive since it only involves examining the start tag of packet
in service. Hence, the computational complexity of SFQ is same
as SCFQ, which is O(logQ) per packet, where Q is the number of
flows at the server.

Traditionally, scheduling algorithms have been analyzed only
for servers whose service rate does not vary over time. However,
service rate of flow-controlled, broadcast medium and wireless links
may fluctuate over time. Fluctuation in service rate may also occur
due to variability in CPU capacity available for processing packets
(for example, a CPU constrained IP router may not have sufficient
CPU capacity to process packets when routing updates occur). If a
server is shared by multiple types of traffic with some traffic types
being given priority over the other, then for lower priority traffic,
the link appears as a server with fluctuating service rate. In order
to accommodate such scenarios, we analyze SFQ for servers with
bounded fluctuation in service rate.

Two server models, termed Fluctuation Constrained (FC) server
and Exponentially Bounded Fluctuation (EBF) server, that have
bounded fluctuation in service rate and are suitable for modeling
many variable rate servers have been introduced in [17]. A FC
server has two parameters; average rate C (bits/s) and burstiness
�(C) (bits). Intuitively, an FC server, in any interval during a busy
period, does at most �(C) less work than an equivalent constant
rate server. Formally,

Definition 1 A server is a Fluctuation Constrained (FC) server
with parameters (C; �(C)), if for all intervals [t1; t2] in a busy pe-
riod of the server, the work done by the server,denoted byW (t1; t2),
satisfies:

W (t1; t2) � C(t2 � t1)� �(C) (6)

EBF server is a stochastic relaxation of FC server. Intuitively,
the probability of work done by an EBF server deviating from the
average rate by more than 
, decreases exponentially with 
 3.
Formally,

Definition 2 A server is an Exponentially Bounded Fluctuation
(EBF) server with parameters (C;B;�; �(C)), if for all intervals
[t1; t2] in a busy period of the server, the work done by the server,
denoted by W (t1; t2), satisfies:

P (W (t1; t2) < C(t2 � t1)� �(C)� 
) � Be
��
 0 � 
 (7)

In what follows, we analyze the fairness of SFQ for any variable
rate server, and its throughput and delay guarantees for FC and
EBF servers. Since a (C; 0) FC server is a constant rate server, the
following analysis is also valid for constant rate servers. We present
the proofs of only few results; the rest of the proofs are presented
in [11].

2.1 Fairness Guarantee

To prove that SFQ is fair, we need to prove a bound on j
Wf (t1;t2)

rf
�

Wm(t1;t2)

rm
j for any interval in which both flows f and m are

backlogged. We achieve this objective by establishing a lower and
an upper bound on Wf (t1; t2) in Lemmas 1 and 2, respectively.

Lemma 1 If flow f is backlogged throughout the interval [t1; t2],
then in a SFQ server:

rf (v2 � v1)� l
max
f �Wf (t1; t2) (8)

where v1 = v(t1) and v2 = v(t2).

3The EBF server as presented here has an extra parameter �(C).
However, this parameter does not change the de�nition signi�cantly.

Proof: SinceWf (t1; t2) � 0, if rf (v2�v1)�lmax
f � 0, (8) holds

trivially. Hence, consider the case where rf (v2� v1)� lmax
f > 0,

i.e., v2 > v1 +
l
max
f

rf
. Let packet pkf be the first packet of flow f ,

that receives service in the open interval (v1; v2). To observe that
such a packet exists, consider the following two cases:

� Packet pnf such that S(pnf ) < v1 and F (pnf ) > v1 ex-
ists: Since flow f is backlogged in [t1; t2], we conclude
v(A(pn+1

f
)) � v1. From (4) and (5), we get:

S(pn+1
f ) = F (pnf ) (9)

Since F (pnf ) � S(pnf ) +
l
max
f

rf
and S(pnf ) < v1, we get:

S(pn+1
f ) < v1 +

lmax
f

rf
(10)

< v2 (11)

Since S(pn+1
f

) = F (pnf ) > v1, using (11), we conclude
S(pn+1

f ) 2 (v1; v2).

� Packet pnf such that S(pnf ) = v1 exists: pnf may finish ser-
vice at time t < t1 or t � t1. In either case, since flow
f is backlogged in [t1; t2], v(A(pn+1

f )) � v1. Hence,

S(pn+1
f ) = F (pnf ). Since F (pnf ) � S(pnf ) +

lmax
f

rf
and

S(pnf ) = v1, we get:

S(pn+1
f ) � v1 +

lmax
f

rf
(12)

< v2 (13)

Since S(pn+1
f ) = F (pnf ) > v1, using (13), we conclude

S(pn+1
f ) 2 (v1; v2).

Since either of the two cases always holds, we conclude that packet
pkf such that S(pkf ) 2 (v1; v2) exists. Furthermore, from (10) and
(12), we get:

S(pkf ) � v1 +
lmax
f

rf
(14)

Let pk+mf be the last packet to receive service in the virtual time
interval (v1; v2). Hence,

F (pk+mf ) � v2 (15)

From (14) and (15), we conclude:

F (pk+mf )� S(pkf ) � (v2 � v1)�
lmax
f

rf
(16)

But since flow f is backlogged in the interval (v1; v2), from (4) and
(5) we know:

F (pk+mf ) = S(pkf ) +

n=mX
n=0

lk+nf

rf
(17)

F (pk+mf )� S(p
k
f ) =

n=mX
n=0

lk+nf

rf
(18)

Hence, from (18) and ( 16), we get:
n=mX
n=0

lk+nf

rf
� (v2 � v1)�

lmax
f

rf
(19)

n=mX
n=0

lk+nf � rf (v2 � v1)� lmax
f (20)
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Since S(pk+mf
) < v2, packet pk+mf is guaranteed to have been

transmitted by t2. Hence, Wf (t1; t2) �
P

n=m

n=0
lk+nf , and the

lemma follows.

Lemma 2 In a SFQ server, during any interval [t1; t2]:

Wf (t1; t2) � rf (v2 � v1) + l
max
f (21)

where v1 = v(t1) and v2 = v(t2).

Proof: From the definition of SFQ, the set of flow f packets served
in the interval [v1; v2] have service tag at least v1 and at most v2.
Hence, the set can be partitioned into two sets:

� Set D consisting of packets that have service tag at least v1
and finish time at most v2. Formally,

D = fkjv1 � S(pkf ) � v2 ^ F (p
k
f ) � v2g (22)

From (4) and (5), we conclude:X
k2D

l
k
f � rf (v2 � v1) (23)

� Set E consisting of packets that have service tag at most v2
and finish time greater than v2. Formally,

E = fkjv1 � S(pkf ) � v2 ^ F (p
k
f ) > v2g (24)

Clearly, at most one packet can belong to this set. Hence,X
k2E

l
k
f � l

max
f (25)

From (23) and (25) we conclude that (21) holds.
Since unfairness between two flows in any interval is maximum

when one flow receives maximum possible service and the other
minimum service, Theorem 1 follows directly from Lemmas 1 and
2.

Theorem 1 For any interval [t1; t2] in which flows f and m are
backlogged during the entire interval, the difference in the service
received by two flows at a SFQ server is given as:

j
Wf (t1; t2)

rf
�
Wm(t1; t2)

rm
j�

lmax
f

rf
+
lmax
m

rm
(26)

Theorem 1 demonstrates that fairness measure of SFQ is at
most a factor of 2 away from an optimal fair packet scheduling
algorithm. Furthermore, it demonstrates that SFQ has the smallest
fairness measure among all the known scheduling algorithms [22].

Observe that to establish Theorem 1, we did not make any
assumptions about the service rate of the server. Hence, Theo-
rem 1 holds regardless of the characteristics of the server. This
demonstrates that SFQ achieves fair allocation of bandwidth over
variable rate servers, and thus meets a fundamental requirement of
fair scheduling algorithms for integrated services networks. This is
an important advantage over WFQ that does not allocate bandwidth
fairly over variable rate servers.

To experimentally evaluate the relative performance of SFQ and
WFQ, we simulated 3 flows with the same destination traversing a
single switch using REAL network simulator (see Figure 1). Source
1 transmitted a MPEG compressed VBR video sequence with av-
erage rate 1.21 Mb/s using 50 bytes packets 4. Sources 2 and 3

4The video sequence was derived by digitizing and compressing
television serial Frasier.

1

2

3

2.5 Mb/sSwitch

Destination

Figure 1 : The network topology used for the simulations
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Figure 2 : Comparison of the number of packets received by
sources 2 and 3 in WFQ and SFQ

were TCP Reno sources and used 200 bytes packets. The link ca-
pacity between the switch and the destination was 2.5 Mb/s. The
scheduling algorithm at the switch gave higher priority to source
1 packets and scheduled source 2 and 3 packets using either WFQ
or SFQ. Consequently, the output link at the switch appeared as a
variable rate server to sources 2 and 3. The WFQ implementation
used the link capacity to compute the finish tags. Source 3 was
made active 500 ms after sources 1 and 2, and the network was
simulated for one second. Figure 2 plots the sequence number of
packets of sources 2 and 3 received by the destination when WFQ
and SFQ were used. As the figure demonstrates, source 2 received
unfair advantage over source 3 when WFQ was used. Specifically,
when WFQ was used, during the 500ms interval after source 3 be-
came active, whereas the destination received only 48 packets from
source 3, it received 331 packets from source 2. On the other hand,
when SFQ was used, it received 189 packets and 190 packets from
sources 2 and 3, respectively. Furthermore, during the first 435 ms
after source 3 was started, the number of source 3 packets received
by the destination in WFQ and SFQ was 2 and 145, respectively.
This experimentally validates the superiority of SFQ over WFQ for
achieving fair allocation of bandwidth over variable rate servers.

2.2 Throughput Guarantee

In the previous sections, we have not assigned any interpretation
to the weight of a flow. To establish the throughput and delay
guarantee of a flow, we will henceforth interpret rf as the rate
assigned to flow f . Theorems 2 and 3 establish the throughput
guaranteed to a flow by a SFQ FC and EBF server, respectively,
when appropriate admission control procedures are used.

Theorem 2 If Q is the set of flows served by a SFQ FC server
with parameters (C; �(C)), and

P
n2Q

rn � C , then for all inter-
vals [t1; t2] in which flow f is backlogged throughout the interval,
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Wf (t1; t2) is given as:

Wf (t1; t2) � rf (t2 � t1)� rf

P
n2Q

lmax
n

C
� rf

�(C)

C
� l

max
f

(27)

Proof: Let v(t1) = v1 and let cW (v1; v2) denote the aggregate
length of packets served by the server in the virtual time interval
[v1; v2]. Then, from Lemma 2 we conclude:

cW (v1; v2) �
X
n2Q

rn(v2 � v1) +
X
n2Q

l
max
n (28)

Since
P

n2Q
rn � C ,

cW (v1; v2) � C(v2 � v1) +
X
n2Q

l
max
n (29)

Define v2 as:

v2 = v1 + t2 � t1 �

P
n2Q

lmax
n

C
�
�(C)

C
(30)

Then from (29), we conclude:

cW (v1; v2) � C(v1 + t2 � t1 �

P
n2Q

lmax
n

C
(31)

�
�(C)

C
� v1) +

X
n2Q

l
max
n

� C(t2 � t1)� �(C) (32)

Let bt2 be such that v(bt2) = v2. Also, let T (w) be the time taken by
server to serve packets with aggregate length w in its busy period.
Then,

bt2 � t1 + T (cW (v1; v2)) (33)

� t1 + T (C(t2 � t1)� �(C)) (34)

From the definition of Fluctuation Constrained server, we get:

T (w) �
w

C
+
�(C)

C
(35)

From (34) and (35) we get:

bt2 � t1 +
C(t2 � t1)� �(C)

C
+
�(C)

C
(36)

� t2 (37)

From Lemma 1 we know that:

Wf (t1; bt2) � rf (v2 � v1)� l
max
f (38)

Since bt2 � t2, using (30) we get:

Wf (t1; t2) � rf (t2 � t1)� rf

P
n2Q

lmax
n

C
� rf

�(C)

C
� l

max
f

(39)

Theorem 3 If Q is the set of flows served by a SFQ EBF server
with parameters (C;B;�; �(C)), and

P
n2Q

rn � C , then for
all intervals [t1; t2] in which flow f is backlogged throughout the
interval, Wf (t1; t2) is given as:

P (Wf(t1; t2) < rf (t2 � t1)� rf

P
n2Q

lmax
n

C
� rf

�(C)

C

�rf



C
� l

max
f ) � Be

��
 0 � 
 (40)

The throughput guarantees of other fair scheduling algorithms
have not been established. However, it can be shown that for
constant rate servers, when similar admission control procedure is
used, the throughput guarantee of neither WFQ nor SCFQ is better
than that of SFQ.

Observe that throughput guarantees derived in Theorems 2 and
3 for SFQ have a recursive structure. Specifically, the through-
put guaranteed to a flow by an FC or an EBF SFQ server is also
fluctuation constrained or has exponentially bounded fluctuation,
respectively. We will exploit this recursive structure to analyze
performance bounds when a link bandwidth is hierarchically parti-
tioned.

2.3 Delay Guarantee

SFQ algorithm, as defined so far, only allocates constant rate to the
packets of a flow. However, due to the multiple time-scale variation
of VBR video, to achieve efficient utilization of network resources,
a server may be required to allocate variable rate to packets of
a video flow. To support variable rate allocation, we generalize
SFQ by extending the definition of service tags. Let rjf be the

rate assigned to packet pjf . Then finish tag of packet pjf , F (pjf ) is
defined as:

F (pjf ) = S(pjf ) +
l
j

f

r
j

f

j � 1 (41)

Start tag of a packet and the system virtual time are defined as
before. We now prove the delay guarantee of the generalized SFQ
algorithm.

Clearly, a server can provide a bound on delay only if its ca-
pacity is not exceeded. However, when variable rate is allocated to
the packets of a flow, the intuitive meaning of capacity not being
exceeded needs to be defined precisely. To do so, let rate function
for flow f at virtual time v, denoted by Rf (v), be defined as the
rate assigned to the packet that has start tag less than v and finish
tag greater than v. Formally,

Rf (v) =

�
rjf if 9j 3

�
S(pjf ) � v < F (pjf )

�
0 otherwise

Let Q be the set of flows served by the server. Then a FC or EBF
server with average rate C , is defined to have exceeded its capacity
at virtual time v if

P
n2Q

Rn(v) > C . If the capacity of a SFQ
server is not exceeded, then it guarantees a deadline to a packet
based on its expected arrival time. Expected arrival time of packet
pjf that has been assigned rate rjf , denoted by EAT (pjf ; r

j

f ), is
defined as:

maxfA(pjf ); EAT (p
j�1

f ; r
j�1

f ) +
l
j�1

f

r
j�1

f

g j � 1 (42)

where EAT (p0f ; r
0
f ) = �1. A deadline guarantee based on ex-

pected arrival time has been referred to as delay guarantee [8, 16].
Theorems 4 and 5 establish the delay guarantee of SFQ for FC and
EBF servers, respectively.

Theorem 4 IfQ is the set of flows served by a SFQ FC server with
parameters (C; �(C)) and

P
n2Q

Rn(v) � C for all v, then the

departure time of packet pjf at the server, denoted byLSFQ(p
j

f ), is
given by:

LSFQ(p
j

f ) � EAT (pjf ; r
j

f )+
X

n2Q^n6=f

lmax
n

C
+
lj
f

C
+
�(C)

C
(43)
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Proof: Let set H be defined as follows:

H = fmjm > 0 ^ S(p
m
f ) = v(A(p

m
f ))g (44)

Let k � j be largest integer in H . Also, let v1 = v(A(pkf ))

and v2 = S(p
j

f
). Observe that as the server virtual time is set

to the maximum finish tag assigned to any packet at the end of a
busy period, packet pkf and pj

f
are served in the same busy period

of a server. From the definition of SFQ, the set of flow f packets
served in the interval [v1; v2] have start tag at least v1 and at most
v2. Hence, the set can be partitioned into two sets:

� This set consists of packets that have start tag at least v1 and
finish tag at most v2. Formally the set of packets of flow n,
denoted by Dn, in this set is:

Dn = fmjv1 � S(pmn ) � v2 ^ F (p
m
n ) � v2g (45)

Then, from the definition ofRn(v) andF (pmn ; r
m
f ), we know

that the cumulative length of such flow n packets served by
the server in the virtual time interval [v1; v2], denoted by
APn(v1; v2), is given as:

APn(v1; v2) �

Z v2

v1

Rn(v)dv (46)

Hence, aggregate length of packets in this set,P
n2Q

APn(v1; v2),is given as:

X
n2Q

APn(v1; v2) �

X
n2Q

Z v2

v1

Rn(v)dv (47)

�

Z v2

v1

X
n2Q

Rn(v)dv (48)

�

Z v2

v1

Cdv (49)

� C(v2 � v1) (50)

But since v2 = S(pjf ; r
j

f ), from the definition of k, v2�v1 =Pn=j�k�1

n=0

l
k+n

f

r
k+n

f

. Hence,

X
n2Q

APn(v1; v2) � C

n=j�k�1X
n=0

lk+nf

rk+nf

(51)

� This set consists of packets that have start tag at most v2 and
finish tag greater than v2. Formally, the set of packets of flow
n, denoted by En, in this set is

En = fmjv1 � S(pmn ) � v2 ^ F (p
m
n ) > v2g (52)

Clearly, at most one packet of flow n can belong to this set.
Furthermore, Ef = fjg. Hence, the maximum aggregate
length of packets in this set is:X

n2Q^n6=f

l
max
n + l

j

f (53)

Hence, the aggregate length of packets served by the server in
the interval [v1; v2], denoted bycW (v1; v2), is:

cW (v1; v2) � C

n=j�k�1X
n=0

lk+nf

rk+nf

+
X

n2Q^n6=f

l
max
n + l

j

f (54)

LetT (w) be the time taken by server to serve packets with aggregate
length w in a busy period. From the definition of Fluctuation
Constrained server, we get:

T (w) �
w

C
+
�(C)

C
(55)

Since packetpj
f

departs at system virtual time v2 and all the packets
served in the virtual time interval [v1; v2] are served in the same
busy period of the server, we get:

A(pkf ) + T (cW (v1; v2)) � LSFQ(p
j

f
) (56)

A(pkf) +
Pn=j�k�1

n=0

l
k+n

f

r
k+n

f

+
P

n2Q^n6=f

lmaxn

C

+
l
j

f

C
+ �(C)

C
� LSFQ(p

j

f
) (57)

From (42) we get

EAT (pjf ; r
j

f )+
X

n2Q^n6=f

lmax
n

C
+
l
j

f

C
+
�(C)

C
� LSFQ(p

j

f ) (58)

Theorem 5 If Q is the set of flows served by a SFQ EBF server
with parameters (C;B;�; �(C)) and

P
n2Q

Rn(v) � C for all

v, then the departure time of packet pjf at the server, denoted by

LSFQ(p
j

f ), is given by:

P ( LSFQ(p
j

f ) � EAT (pjf ; r
j

f ) +
X

n2Q^n6=f

lmax
n

C

+
l
j

f

C
+
�(C)

C
+




C
) � 1� Be

��
 0 � 
 (59)

The delay guarantee derived in Theorems 4 and 55 is indepen-
dent of a tie breaking rule that a SFQ server may use when more
than one packet have the same start tag. Though a tie breaking rule
does not effect the delay guarantee, it can be used by a server to
achieve different objectives. For example, a tie-breaking rule may
give higher priority to interactive, low-throughput applications to
reduce the average delay.

Theorems 4 and 5 can be used to determine delay guarantee
even when a server has flows with different priorities and services
them in the priority order (such a scenario may occur in an inte-
grated services network with different traffic types). To illustrate,
consider a server that services flows with two priorities and uses
SFQ to schedule the packets of lower priority flows. If the band-
width requirement of flows that are given higher priority can be
characterized by a leaky bucket with average rate � and burstiness
� (such a characterization may be enforced by shaping the higher
priority flows through a leaky bucket), then the residual bandwidth
available to the lower priority flows can be modeled as fluctuation
constrained with parameters (C � �; �). Hence, Theorem 4 can be
used to determine the delay guarantee of the lower priority flows.
Similarly, if the aggregate arrival process of the high priority flows
can be modeled as poisson process, then the residual bandwidth
can be modeled as EBF server [17] and Theorem 5 can be used to
determine the delay guarantee.

5The proof methods of Theorem 4 and 5 can be used to derive
delay guarantee of FC and EBF SCFQ servers.
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Theorem 4 demonstrates that maximum delay of a packet in
SFQ is significantly smaller than in SCFQ. Specifically, a tight
bound on the departure time of a packet at a constant rate server
employing SCFQ, given in [9], is:

LSCFQ(p
j

f
) � EAT (p

j

f
; r
j

f
) +

X
n2Q^n6=f

lmax
n

C
+

l
j

f

r
j

f

(60)

Since �(C) = 0 for a constant rate server, the difference in maxi-
mum delay that a packet may incur at servers employing SCFQ and
SFQ is:

l
j

f

rjf
�
l
j

f

C
(61)

Clearly, maximum delay in SFQ is much smaller than in SCFQ.
To illustrate numerically, when rjf =64Kb/s, ljf = 200 bytes and
C=100Mb/s, the difference is 24.4ms. If there are K servers on
the path of a flow, this difference increases by a factor of K . For
instance, the difference increases to 122ms for K = 5. Similarly,
the difference increases linearly with the packet size.

Theorem 4 demonstrates that SFQ does not couple bandwidth
and delay allocation. This enables it to provide lower maximum
delay to low-throughput applications as compared to WFQ that
inversely couples delay and bandwidth allocation. To observe this,
consider the difference in the maximum delay experienced by packet
pj
f

, denoted by �(pj
f
), in WFQ and SFQ. Since WFQ guarantees

that packet pjf will be transmitted by EAT (pjf ; r
j

f ) +
l
j

f

r
j

f

+ lmax
C

where lmax is the maximum packet length at the server, we get:

�(pjf ) =
ljf

r
j

f

+
lmax

C
�

X
n2Q^n6=f

lmax
n

C
�
ljf

C
(62)

To gain a qualitative understanding of �(pjf ), let ljf = lmax =

lmax
n = l and rjf = rf . Then,

�(pjf ) =
l

rf
�
(j Q j �1)l

C
(63)

Hence,�(pjf ) � 0 if:

1

j Q j �1
�

rf

C
(64)

This shows that maximum delay of packets of a flow in SFQ is
smaller than in WFQ if the fraction of the link bandwidth used by
the flow is at most 1

jQj�1
, which is expected to be true for low-

throughput applications. This is also illustrated by Figure 3, which
plots the reduction in delay in SFQ for different number of flows
and flow rates, assuming 200 bytes packet and link capacity of
100Mb/s. As the figure shows, the reduction is higher for lower
throughput flows. To compare the delay performance of WFQ and
SFQ, consider a network link that is servicing 70 flows (possibly
video flows) with rate 1Mb/s and 200 flows (possibly audio flows)
with rate 64Kb/s. In such a scenario, whereas the maximum delay
of the packets of flow with rate 64 Kb/s reduces by 20.39ms in
SFQ, the maximum delay of 1Mb/s flows increases by 2.48 ms.
Hence, SFQ reduces the maximum delay of low throughput flows
significantly without an appreciable increase in the delay of high
throughput flows.

SFQ not only reduces the maximum delay as compared to WFQ,
but is also expected to lower the average delay of low-throughput
applications. This is because whereas SFQ schedules packets in
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the increasing order of start tags, and thereby schedules packets at
the earliest possible instant; WFQ schedules packets in increasing
order of finish tag, and thus delays a packet as long as possible.
To validate this hypothesis, we simulated a switch that was shared
by high and low throughput flows carrying poisson traffic. The
link capacity was 1Mb/s and the packet size was 200 bytes. Seven
high-throughput flows with average rate 100Kb/s shared the switch
with varying number of low-throughput flows with average rate
32Kb/s. The number of low-throughput flows was varied from
2 to 10 and the switch was simulated for 1000 seconds. Figure
4 compares the average packet delay of low-throughput flows in
WFQ and SFQ at varying levels of link utilization. As the figure
illustrates, the average delay of low-throughput flows is significantly
higher in WFQ than in SFQ. In fact, at 80.81% link utilization,
the average delay is 53% higher in WFQ than in SFQ. Hence,
SFQ provides lower maximum as well as average delay to low-
throughput applications as compared to WFQ.

As is evident from the definition of the expected arrival time,
two key properties of the delay guarantee of SFQ for a flow are:
(1) it is independent of the behavior of other sources at the server,
and thereby isolates the flow; and (2) it is independent of a traffic
characterization. Whereas the isolation property enables a server
to provide stronger guarantees to the flow and is highly desirable
when sources may be malicious [2, 5, 16, 19], independence of delay
guarantee from traffic characterization enables a server to provide
various QoS guarantees to flows conforming to any specification
[9]. To enable a network of servers to provide similar guarantees,
in what follows, we derive end-to-end delay guarantee.
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2.4 End-to-End Delay Guarantee

The objective is to determine the deadline guarantee of a network
of servers based on the expected arrival time of a packet at the first
server on the path of a flow [9]. To do so, let the ith server along the
path of a flow be denoted as server i. Also, let there be K servers
on the path of a flow and let each of the server guarantee a deadline
to a packet based on its expected arrival time. Then, the network
guarantees a deadline to a packet based on its expected arrival time
at theKth server. Observe that the expected arrival time of a packet
at serverK is dependenton departure time of packet at serverK�1,
which, in turn, is dependenton expected arrival time of the packet at
serverK�1. Using this argument recursively, a network of servers
can guarantee a deadline to a packet based on the expected arrival
time of the packet at the first server. This method has been used in
[9] to derive end-to-end delay guarantee of a network of servers that
employ algorithms in the class of Guaranteed Rate (GR) scheduling
algorithms. However, the end-to-end delay guarantee presented in
[9] assumes that each of the server provides a deterministic bound
on the departure time of a packet. Consequently, even though SFQ
belongs to GR, the guarantee is not applicable to a network which
may have some SFQ EBF servers. To analyze such networks, we
generalize the method presented in [9].

Observe that SFQ delay guarantee for both FC and EBF servers
can be rewritten as:

P
�
LSFQ(p

j

f ) � EAT (pjf ; r
j

f ) + �
j

f + 

�
� 1�Be

��
 (65)

where 
 � 0. Substituting �jf =
P

n2Q^n6=f

lmaxn

C
+

l
j

f

C
+ �(C)

C
,

B = 0 and � = 1, yields the delay guarantee for FC server.

Substituting �jf =
P

n2Q^n6=f

lmaxn

C
+

l
j

f

C
+ �(C)

C
and � = �C , on

the other hand,yields the delay guarantee for EBF server. Hence,we
will use (65) to derive the end-to-end delay guarantee. Furthermore,
to facilitate interoperability with other scheduling algorithms, we
will only require each server on the path of a flow to guarantee a
deadline which is similar to (65). We first relate the expected arrival
time of a packet at adjacent servers in Theorem 6 and then use it to
derive end-to-end delay guarantee in Corollary 1.

Let � i;i+1 be an upper bound on the propagation delay between
servers i and i + 1. Also, let all the variables of server i be
identified by superscript i, i.e., �jf and r

j

f are identified as �j;if
and rj;if , respectively. Henceforth in this section, we will refer to a
single flow f , and, hence drop the subscript f from all the variables.

Theorem 6 If scheduling algorithm at server i guarantees that:

P
�
L
i(pj) � EAT

i(pj; rj;i) + �
j;i + 


�
� 1�B

i
e
��i
 (66)

whereLi(pj) is the time at which packet pj departs server i, then:

P ( EAT
i+1(pj ;brj;i) � EAT

i(pj;brj;i)
+ max

n2[1::j]
f�

n;i
g+ �

i;i+1
+ 
) � 1�B

i
e
��i


where brj;i � minfrj;i; rj;i+1
g and 
 � 0.

Corollary 1 If scheduling algorithm at each server on the path of
a flow satisfies (66), and there areK serverson the path of the flow,
then:

P ( L
K(pj) � EAT

1(pj;brj) + n=KX
n=1

max
m2[1::j]

f�
m;n

g

+

n=K�1X
n=1

�n;n+1 + 
) � 1� (

n=KX
n=1

Bn)e

�
 1P
n=K

n=1

1
�n

whereLK(pj) is the time at which packet pj leaves serverK , andbrj = minn2[1::K] brj;n .

As Corollary 1 illustrates, the end-to-end guarantee, like the
single server guarantee, is based on the expected arrival time of
a packet and hence is independent of the behavior of other flows
and any particular flow characterization. Moreover, as illustrated
in [9], it can be used to determine various QoS parameters like
upper bound on end-to-end delay, packet loss probability and buffer
requirement for any traffic specification. Hence, such a guarantee
is highly desirable.

To derive Corollary 1, we have only required the scheduling
algorithm at each server to satisfy (66). Hence, any scheduling
algorithm that satisfies (66) (for example, Virtual Clock, WFQ, and
SCFQ) can interoperate to provide end-to-end guarantee. Further-
more, Corollary 1 can be used for an internetwork of FC and EBF
servers. Finally, the proof method of Theorem 6 and Corollary 1
can be used to derive end-to-end delay guarantee even when packet
may be fragmented and reassembled in the network. Hence, SFQ
can provide guarantees in heterogeneous internetworking environ-
ments.

2.5 Discussion

SFQ borrows the notion of “self-clocking”, i.e., computing system
virtual time based on a tag of a packet in service, from SCFQ to
achieve efficiency. However, it provides significantly lower delay
than SCFQ while achieving the same fairness measure. Hence,
using fairness, throughput, delay, and computational complexity as
performance metrics, we conclude that SFQ is strictly better than
SCFQ.

SFQ is similar in spirit to FQS which also schedules packets in
the increasing order of start tags. However, as FQS uses v(t) as
defined in (3), it is computationally expensive and fails to allocate
bandwidth fairly over variable rate servers. Furthermore, as Theo-
rem 1 shows, its fairness measure is no smaller than that of SFQ.
Finally, since in FQS, allQflows can becomeactive simultaneously,
and consequentlyQ packets can have the same start tag, the bound
on the departure time of a packet in FQS cannot be smaller than in
SFQ. Hence, SFQ has many advantages but no disadvantages over
FQS.

A key advantage of SFQ over WFQ, in addition to lower im-
plementation complexity, is that it achieves fairness over variable
rate servers while WFQ does not. Moreover, it provides consid-
erably lower maximum and average delay to low-throughput ap-
plications than WFQ. Since low-throughput applications like audio
and telnet are more delay sensitive than high-throughput applica-
tions like video and ftp, this feature is highly desirable. In case
delay guarantee of WFQ is required, SFQ can be combined with
non work-conserving Virtual Clock to derive Fair airport scheduling
algorithm that provides the delay guarantee of WFQ and efficiently
achieves fairness even over variable rate servers [11]. Thus, since
SFQ addresses the drawbacks of WFQ while achieving its delay
guarantee if desired, it is better suited than WFQ for integrated
services networks.

Finally, since SFQ provides a bound on maximum delay that
does not depend on the weights of other flows and has a bounded
deviation from an optimal fair scheduling algorithm, it has better
fairness and delay properties than DRR.

To summarize, we have shown that SFQ: (1) achieves low av-
erage as well as maximum delay for low-throughput applications;
(2) provides fairness, regardless of variation in a server rate; (3) has
a fairness measure that is at least as good as that of all the known
fair scheduling algorithms; and (4) is computationally efficient. In
the next section, we show that it enables hierarchical link sharing,
and thus meets all the requirements of a scheduling algorithm for
integrated services networks.
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3 Hierarchical Link Sharing

Hierarchical link sharing is an ideal mechanism for managing het-
erogeneity in integrated services networks [6, 20]. It can be used
by a network to support services that provide heterogeneous QoS
as well as multiple protocol families that support different traffic
types and/or congestion control mechanisms. For example, a net-
work can support hard and soft real-time, as well as best effort
services by partitioning the link bandwidth between them as per
the expected requirements of each of the service. To support high
and low reliability soft real-time services, the bandwidth of soft
real-time service may be further partitioned. Similarly, the band-
width of the best effort services may be further partitioned between
throughput intensive and interactive services.

A key advantage of hierarchical link sharing is that it provides
isolation between different services while enabling similar services
to share resources. Hence, incompatible congestion control algo-
rithms can coexist while compatible algorithms reap the advantages
of sharing. For example, while high and low reliability soft real-
time services get the benefits of sharing, the hard real-time service is
isolated from the overbooking that may occur in soft real-time ser-
vices, and the congestion control algorithm that may be used by the
best effort services. Hierarchical link sharing also facilitates use of
different resource allocation methods for different services. This is
desirable as hard real-time services may use a scheduling algorithm
that performs well when there is no overbooking; soft real-time
services may prefer to use a scheduling algorithm that provides
QoS guarantees and/or minimizes deadline violations in presence
of overbooking [1]; and best effort services may use a fair scheduler
for throughput intensive flow-controlled data applications.

The requirements of hierarchical link sharing is specified by
a tree, referred to as link-sharing structure, in which each node,
other than possibly leaf nodes, denotes an aggregation of flows [6].
Each node in the tree is referred to as a class and has a weight
associated with it. The objective of a mechanism implementing
hierarchical link sharing is to distribute the bandwidth allocated to
a class among its subclasses fairly, i.e., in proportion to the weights
[20]. This objective can be achieved by a hierarchical scheduler
that considers each class, other than the leaf classes, as a virtual
server and uses a fair scheduler to schedule the virtual servers.
However, as the following example illustrates, the scheduler used
must allocate bandwidth fairly even over variable rate servers.

Example 3 Consider a link sharing structure in which classes A
and B are subclasses of the root class. Let classes C and D be
subclasses of class A and let each class have weight 1. Initially,
let there be no packets in class B. Hence, class A gets the full
link bandwidth. When class B also becomes active, the bandwidth
available to class A (and hence to subclasses C and D) reduces to
50% of the link bandwidth. Consequently, to fairly partition the
bandwidth of class A between subclasses C and D, the scheduler
must be able to allocate bandwidth fairly over variable rate servers.

SFQ is the only scheduling algorithm that has been demonstrated
to allocate bandwidth fairly even over variable rate servers. In what
follows, we present a hierarchical SFQ scheduler for link sharing.

Hierarchical SFQ scheduler is simple. It uses SFQ to schedule
each class; treating each subclass as a flow. The scheduling of
packets occurs recursively: the scheduler for root class schedules
the subclasses; the scheduler of subclasses in turn schedule their
subclasses. Since SFQ fairly allocates bandwidth regardless of the
server behavior, this simple recursive hierarchical scheduling en-
sures that bandwidth allocated to a class is fairly allocated between
the subclasses and thereby achieves the objective of hierarchical
link sharing. Moreover, in contrast to link sharing mechanism in
[6], it provides bounds on various performance measures:

� Throughput Guarantee: Consider a class f that is a sub-
class of the root class. Let the link be FC server with param-
eters (C; �(C)) and let the set of the subclasses of the root
class be denoted by Q. Then, if class f has been assigned
rate rf , from Theorem 2 we conclude that the virtual server
corresponding to f is a FC server with parameters:�

rf ; rf

P
n2Q

lmax
n

C
+ rf

�(C)

C
+ lmax

f

�
(67)

Similarly, using Theorem 3, we conclude that if the link is
an EBF server, then the virtual server corresponding to f is
a EBF server. Hence, if the link is an FC or EBF server,
then the virtual servers corresponding to the subclasses of
the root class are FC or EBF servers, respectively. Using the
argument recursively, we conclude that if the link is a FC or
EBF server, then each of the virtual server in the hierarchical
structure is a FC or EBF server, respectively. Consequently,
Theorems 2 and 3 can be used to determine the throughput
guarantee of the flows.

� Delay Guarantee: Since each of the virtual server is either
FC or EBF server, Theorems 4 and 5 can be used to determine
the single server delay guarantee of the flows.

� End-to-End Delay Guarantee: Since the single server
delay guarantee when a flow is hierarchically scheduledsatis-
fies (66), Corollary 1 can be used to determine the end-to-end
delay guarantee.

The elegance of the above analysis is in its simplicity. This
simplicity demonstrates the generality of the analysis of SFQ servers
presented in Section 26.

Hierarchical SFQ scheduler not only achieves the objectives of
hierarchical link sharing, but can also be used to achieve several
other objectives. For example it can be used to achieve:

� Separation of delay and throughput allocation: Observe that
SFQ does not allocate delay and throughput separately. How-
ever, it may be desirable to do so for some flows. This can
be achieved by aggregating the flows for which separation of
delay and throughput is desirable into one class and then us-
ing a scheduling algorithm that achieves such a separation for
that class. Though conceptually simple, since the throughput
of a class fluctuates over time, the algorithm used must be
able to achieve the separation over variable rate servers. In
Theorem 7, we show that Delay EDD can achieve this over
a FC server. Since the throughput of a class is fluctuation
constrained, Delay EDD can be used to achieve the objective.

We first define Delay EDD and then prove its delay guarantee
for a FC server. On arrival of packet pjf of flow f , Delay

EDD assigns it a deadline, denoted by D(pjf ), and schedules

packets in increasing order of deadline. D(pjf ) is defined as:

D(pjf ) = EAT (pjf ; rf ) + df (68)

where df is the deadline of flow f packets, rf = r
j

f , and

lf = l
j

f .

6We would like to warn the reader of a potential pitfall. It is
possible that some may reach the conclusion that this analysis would
hold even if the throughput of a server was modeled by a Service
Burstiness server which is similar to a FC server [3]. However, even
though the throughput guaranteed to a 
ow by a Virtual Clock server
conforms to Service Burstiness, it can be shown that Virtual Clock
when used for hierarchical link sharing provides no guarantees.
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Theorem 7 If Q is the set of flows serviced by the server
and

8t > 0 :
X
n2Q

maxf0;

�
(t� dn)rn

ln

�
ln

C
g � t (69)

and the server is a (C; �(C)) Fluctuation Constrained Delay
EDD server, then the time at which the transmission of packet
p
j

f
is completed, denoted by LEDD(p

j

f
), is:

LEDD(p
j

f
) � D(pj

f
) +

lmax

C
+
�(C)

C
(70)

Due to high computational complexity, it may not be feasible
to employ (69) as the schedulability test. Hence, conditions
stronger than (69) which have lower computational complex-
ity have been developed in [25]. The theorem holds under
the stronger conditions as well.

� Delay shifting: This involves the reduction of the maximum
delay of certain flows at the expense of increasing the delay
of others. To illustrate, let the server be a FC server with
parameters (C; �(C)) and let the set of flows served by it be
denoted by Q. For ease of exposition, let the packet length
of each flow be l. Hence, using Theorem 4, for packet pjf :

LSFQ(p
j

f ) � EAT (pjf ; rf ) +
(jQj � 1)l

C
+
�(C)

C
+

l

C
(71)

Now, let the set Q be partitioned into K setsQ1; :::;QK and
let them be hierarchically scheduled. Let flow f belong to
partition Qi and the rate assigned to partition Qn be denoted
by Cn . To determine delay guarantee of flow f when it is
hierarchically scheduled, observe from (67) that the virtual
server corresponding to partition Qi is a FC server with pa-
rameters (Ci;

Ci(�(C)+Kl)

C
+ l). Hence, the departure time

of packet pjf of flow f , denoted by dLSFQ(pjf ), is given as:

dLSFQ(pjf ) � EAT (pjf ; rf ) +
(jQij+ 1)l

Ci

+
�(C) +Kl

C
(72)

From (71) and (72), we conclude that the bound on the de-
parture time would be smaller when the flow is hierarchically
scheduled if:

(jQij+ 1)l

Ci
+
�(C) +Kl

C
�
jQjl

C
�
�(C)

C
< 0 (73)

)
jQij+ 1

jQj �K
<

Ci

C
(74)

Hence, by ensuring that (74) is satisfied for the partitions
which require lower delay, delay shifting can be achieved.

4 Implementation

We have implemented SFQ scheduler for a FORE Systems ATM
network interface in Solaris 2.4 as a streams module and driver
(see Figure 5). The driver is used to maintain a hierarchical link
sharing structure, created via ioctl() calls, for a network interface.
The module, on the other hand, is used to schedule packets. We
have modified the FORE API for opening a connection to include
the weight of a connection and its class as parameters.

To experimentally validate the implementation of the scheduler,
we initiated three connections with weights 1, 2, and 3. Each of
the connection terminated after transmitting 500,000, 4KB packets.
Figure 5 shows the throughput received by each connection. As
it demonstrates, when all the three connections were active, they
received throughput in the ratio 1:2:3. When the connection with
weight 3 terminated, the throughput of the other two connections
increased but still remained in the ratio 1:2. Finally, when only
one connection remained, it received the full link bandwidth. The
throughput of the interface in this experiment was 48Mb/s which
was the same without the SFQ scheduler (i.e., the scheduler did not
impose any overhead). Observe from Figure 5 that SFQ scheduler
achieved fair allocation even though the realizable bandwidth of
the interface varied over time. This demonstrates the feasibility of
employing SFQ for scheduling network interface in operating sys-
tems where the processingcapacity available for a network interface
varies over time.

5 Concluding Remarks

In this paper, we presented Start-time Fair Queuing (SFQ) algo-
rithm that is computationally efficient, achieves fairness regardless
of variation in a server capacity, and has the smallest fairness mea-
sure among all known fair scheduling algorithms. We analyzed
its throughput, single server delay, and end-to-end delay guarantee
for variable rate Fluctuation Constrained (FC) and Exponentially
Bounded Fluctuation (EBF) servers. This is the first analysis of
any fair or real-time scheduling algorithm for such servers. Our
analysis demonstrated that SFQ is better suited than WFQ for in-
tegrated services networks and it is strictly better than SCFQ and
FQS. To support heterogeneous services and multiple protocol fam-
ilies in integrated services networks, we presented a hierarchical
SFQ scheduler. We derived performance bounds for flows that are
hierarchically scheduled using a conceptually simple and elegant
method. Finally, we presented an implementation of SFQ sched-
uler and demonstrated that it achieves fair allocation of bandwidth.

In summary, we demonstrated that SFQ: (1) achieves low av-
erage as well as maximum delay for low throughput applications
(e.g., interactive audio, telnet, etc.); (2) provides fairness which is
desirable for VBR video; (3) provides fairness, regardless of vari-
ation in server capacity, for throughput-intensive, flow-controlled
data applications; (4) enables hierarchical link sharing which is
desirable for managing heterogeneity; and (5) is computationally
efficient. Thus, SFQ meets the requirements of a suitable schedul-
ing algorithm for integrated services networks.
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