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Abstract

The long-term success of the World Wide Web depends on fast response time. People use the Web
to access information from remote sites, but do not like to wait long for their results. The latency
of retrieving a Web document depends on several factors such as the network bandwidth, propagation
time and the speed of the server and client computers. Although several proposals have been made for
reducing this latency, it is di�cult to push it to the point where it becomes insigni�cant.

This motivates our work, where we investigate a scheme for reducing the latency perceived by users
by predicting and prefetching �les that are likely to be requested soon, while the user is browsing
through the currently displayed page. In our scheme the server, which gets to see requests from several
clients, makes predictions while individual clients initiate prefetching. We evaluate our scheme based
on trace-driven simulations of prefetching over both high-bandwidth and low-bandwidth links. Our
results indicate that prefetching is quite bene�cial in both cases, resulting in a signi�cant reduction in
the average access time at the cost of an increase in network tra�c by a similar fraction. We expect
prefetching to be particularly pro�table over non-shared (dialup) links and high-bandwidth, high-latency
(satellite) links.

1 Introduction

People use the World Wide Web (WWW) because it gives quick and easy access to a tremendous variety of
information in remote locations. Users do not like to wait for their results; they tend to avoid or complain
about Web pages that take a long time to retrieve. That is, users care about Web latency.

Perceived latency comes from several sources. Web servers can take a long time to process a request,
especially if they are overloaded or have slow disks. Web clients can add delay if they do not quickly parse
the retrieved data and display it for the user. The retrieval time of Web documents also depends on network
latency. The Web is useful precisely because it provides remote access, and transmission of data across a
distance takes time. Some of this delay depends on bandwidth; one cannot retrieve a 1 MB �le across a 1
Mbps link in less than 8 seconds. But much of the network latency comes from propagation delay. Some of
these delays, such as client or server slowness or transmission time, can in principle be reduced by buying
faster computers or higher bandwidth links. However, other components such as propagation delay, which
is basically determined by the physical distance traversed, cannot be reduced beyond a point.

The Hypertext Transport Protocol (HTTP) version 1.0 [1], as it is currently used in the Web, is simple,
but far from optimal as far as latency is concerned. Several researchers ([6],[8],[9],[11]) have analyzed



the ine�ciencies in use of the network by HTTP, and have proposed modi�cations to reduce retrieval
latency signi�cantly. However, it is di�cult to push retrieval latency beyond the point where it becomes
insigni�cant.

This motivates the investigation of ways of hiding retrieval latency from the user rather than actually
reducing it. We describe a scheme in which clients, in collaboration with servers, prefetch Web pages that
the user is likely to access soon, while he/she is viewing the currently displayed page. Then, if the user
does request one of the prefetched pages, it will already be in the local site's cache. Thus, the retrieval

latency (also called retrieval time) would be masked from the user in such cases, yielding a lower access
time. We maintain this distinction between retrieval latency (or time) and access time through the rest of
this paper.

We use a distributed prefetching scheme with distinct roles for the clients and servers. Servers, which get
to see accesses from several clients, make predictions on which �les are likely to be accessed in the near
future. Clients initiate prefetching based on advice from servers. Clearly, the e�ectiveness of prefetching
critically depends on how good the predictions are. We use a prediction algorithm patterned after that
proposed by Gri�oen and Appleton [3] in the context of �le systems, though there are a few noteworthy
di�erences.

The results from our trace-driven simulations indicate that prefetching helps signi�cantly decrease the
average access time at the cost of an increase in network tra�c. The latency of retrieving Web data
involves a relatively large component that is independent of the amount of data transferred. This includes
network round-trip times and other overheads at the end-hosts. In such situations, it is often more e�ective
to use prefetching to reduce latency rather than to simply increase the available bandwidth.

The rest of this paper is organized as follows. In section 2, we briey discuss the basics of HTTP that are
needed to understand the rest of this paper. In that section we also briey describe the modi�cations to
HTTP proposed in [8]. In section 3, we present our scheme for predictive prefetching. The methodology
used for the simulation experiments is described in section 4, and the results are presented in 5. In section
6, we discuss some issues pertaining to prefetching. We present our conclusions in section 7.

2 HTTP Protocol Elements

The HTTP protocol is layered over a reliable bidirectional byte stream, normally TCP [10]. Each HTTP
interaction consists of a request sent from the client to the server, followed by a response sent back
from the server to the client. Requests and responses are expressed in a simple ASCII format. Most
existing implementations conform to the original version of the protocol, HTTP/1.0 [1]. The next version,
HTTP/1.1, is presently in draft form [2].

An HTTP request includes several elements: a method such as GET, PUT, POST, etc.; a Uniform Resource
Locator (URL); a set of Hypertext Request (HTRQ) headers, with which the clients speci�es things such
as the kinds of documents it is willing to accept, authentication information, etc; and an optional data
�eld, used with certain methods such as PUT.

The server parses the request, then takes action according to the speci�ed method. It then sends a response
to the client, including a status code to indicate if the request succeeded, or if not, why not; a set of object
headers, meta-information about the \object" returned by the server, optionally including the \content-
length" of the response; and a data �eld, containing the �le requested, or the output generated by a
server-side script.



2.1 Limitations of HTTP

We now look at the way the interaction between HTTP clients and servers appears on the network, with
particular emphasis on how this a�ects latency. We mainly look at HTTP/1.0 since that is used by most
servers and clients around today.
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Figure 1: This �gure shows the packet exchanges between a client and a server for HTTP. Time runs

down the page. DAT and ACK denote data and acknowledgement packets respectively, though most data

packets also carry acknowledgements. SYN and FIN denote packets used by TCP to signal the start and

end, respectively, of a connection. To the left of the Client timeline, horizontal dotted lines show the

\mandatory" round trip times (RTTs) through the network, imposed by the combination of the HTTP and

TCP protocols.

Figure 1 depicts the packet-exchange between a client and a server at the beginning of a typical interaction,
the retrieval of an HTML document with at least one uncached inline image. We note two obvious
ine�ciencies in the protocol. First, the transfer of each HTML or image �le involves setting up and tearing
down a new TCP connection. Second, the request-response protocol between the client and the server
operates in a stop-and-go manner, with a new request being sent only after the reply to the previous one
has arrived. These result in considerable delays.

2.2 Persistent Connection HTTP (P-HTTP)

We briey discuss persistent connection HTTP (P-HTTP) proposed by Padmanabhan and Mogul [8]
(the term P-HTTP is from [6]). P-HTTP uses a single, long-lived TCP connection for multiple HTTP
transactions. The connection stays open for all the inline images of a single document, and across multiple
HTML retrievals. This helps solve the �rst problem mentioned above. The HTTP/1.1 protocol [2] also
de�nes a persistent connection mechanism to solve the same problem.

To avoid the second problem, [8] proposes two new HTTP methods (primitives), GETALL and GETLIST,
that allow pipelining requests and responses between a client and a server. GETALL is a request to fetch
the speci�ed HTML �le and all inline images that reside on the server. GETLIST is a request to fetch all



�les speci�ed in the list that the client passes to the server. It is possible to simulate GETLIST with an
asynchronous series of pipelined GETs.

Together, these modi�cations result in considerably reduced retrieval latency, in some cases less than half
the original latency.

3 Predictive Prefetching

It is clear from section 2.1 that the retrieval of a typical Web page involves several network round trips
using HTTP/1.0. P-HTTP reduces this cost considerably, but as [8] reports image-rich Web pages still
su�er from multi-second retrieval latencies. In light of this, we decided to investigate techniques that do
not actually reduce retrieval time, but still improve response time perceived by the user.

Users usually browse the Web by following hyperlinks from one Web page to another. Hyperlinks on a
page often refer to pages stored on the same server. Typically, there is a pause after each page is loaded,
while the user reads the displayed material. This time could be used by the client to prefetch �les that are
likely to be accessed soon, thereby avoiding retrieval latency if and when those �les are actually requested.
The retrieval latency has not actually been reduced; it has just been overlapped with the time the user
spends reading, thereby decreasing the access time.

In our proposal, the server computes the likelihood that a particular Web page will be accessed next
and conveys this information to the client. The client program then decides whether or not to actually
prefetch the page. This partitioning of work between the server and the client is natural. The server has
the opportunity to observe the pattern of accesses from several clients and use this information to make
intelligent predictions. On the other hand, the client is in the best position to decide if it should prefetch
�les based on whether it already has them cached or the cost (in terms of CPU time, memory, network
bandwidth, and so on) needed to prefetch data.

As an aside, we note that the server could prefetch �les from disk into memory, independent of client
requests. However, we believe that the bene�t of this would be limited because of the dominance of
network latency over disk latency, especially in a wide-area context. So in our study we only investigated
prefetching from the server to clients across the network.

3.1 Architecture of the System with Prefetching

We now describe the architecture of the system with prefetching, as depicted in �gure 2. On the server side,
there are two types of user-level processes. One is the set of HTTP daemon processes, httpd, with support
for persistent connections and some other features described below. One httpd process gets spawned to
service requests from each client. Since persistent connections are supported, there is one process per
client rather than one per client request. The other process is the prediction daemon, predictd, which
makes prefetching-related predictions. There is only one predictd per server, not a new one for each client
request or for each client. Furthermore, predictd only communicates with httpd, not directly with the
clients. This design is based on that of the NCSA server, which invokes processes rather than threads to
service client requests.

On receiving a request from a client, httpd passes on the identity of the client and the names of the
�les requested to predictd. Since we are only concerned with �le accesses, predictd only looks at client
requests that use the GET method or its variants (such as GETALL or GETLIST in P-HTTP). Predictd
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Figure 2: This �gure depicts the architecture of the system with prefetching. On the server side, the set of
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server and some other factors. The bidirectional arrows denote local communication between entities at

the server and at the client.

uses the prediction algorithm described in section 3.2 to determine �les that are candidates for prefetching
based on the likelihood of their being accessed soon, and conveys this information to the client. This
information can be piggy-backed on the reply sent by httpd to the client, in a special �eld.

The client side consists of a browser, such as Mosaic, and a prefetch engine. The prefetch engine uses the
prediction information sent by the server in its reply to decide whether or not to prefetch �les. It could
also make its decision based on a variety of other factors, such as the contents of the local cache (which
might already contain the �le), the current system load, the browser's current mode of operation (such as
image loading turned o�), and so on.

Once the prefetch engine has decided to prefetch a �le, it sends a request to the server. In this request
it also indicates that it is prefetching data, and not fetching data that the user has explicitly requested.
This information can be used by the server in a variety of ways. Predictd could decide not to do any
further prefetching-related computation based on this request since this is itself a prefetch request. Also,
if multiple requests are being scheduled in any way, this request could be assigned a lower priority than
explicit fetch requests.

3.2 Prediction Algorithm

Our prediction algorithm is based on that described by Gri�oen and Appleton [3]. However, there are
a few noteworthy di�erences. First, while their scheme was designed for use by the operating system to
prefetch �les from disk into the �le system cache, our model is a distributed one with user-level processes
at the server and client hosts managing prefetching across the network, into the client's cache. Thus, our
scheme does not require any kernel modi�cations.

Second, the scheme described in [3] does not try to maintain a distinction between accesses by di�erent
processes (the clients in the context of a �le system). Thus, independent accesses (by di�erent processes),
that occur close together in time, could incorrectly be considered as related. As we explain below, our
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scheme avoids this problem of false correlations.

The prediction algorithm constructs a dependency graph that depicts the pattern of accesses to di�erent
�les stored at the server. The graph has a node for every �le that has ever been accessed. There is an arc
from node A to B if and only if at some point in time B was accessed within w accesses after A, where w
is the lookahead window size. The weight on the arc is the ratio of the number of accesses to B within a
window after A to the number of accesses to A itself. This weight is not actually the probability that the
B will be requested immediately after A. So the weights on arcs emanating from a particular node need
not add up to 1. Figure 3 depicts a portion of a hypothetical dependency graph.

The dependency graph is dynamically updated as the server receives new requests. This is done by the
prediction daemon, predictd, which receives information about requests from each httpd process running
on the server machine. It maintains a ring bu�er of size equal to the window size w for each client that
is currently connected to this server (assuming that persistent connections are used). When it receives a
new request from one of the httpd processes, it inserts the ID of the �le accessed into the corresponding
ring bu�er. Only the entries within the same ring bu�er are considered related, so only the corresponding
arcs in the dependency graph are updated. This logically separates out accesses by di�erent clients and
thereby avoids the problem of false correlations. However, in some cases, such as clients located behind
a proxy cache, predictd will not be able to distinguish between accesses from di�erent clients. One way
of getting around this problem is to use mechanisms (such as those proposed in [5]) to pass session-state
identi�cation between clients and servers even when there is a proxy between them.

Predictd bases its predictions on the dependency graph. When A is accessed, it would make sense to
prefetch B if the arc from A to B has a large weight (which implies that there is a good chance of B
being accessed soon afterwards). In general, predictd would declare B as a candidate for prefetching if
the arc from A to B has a weight higher than the prefetch threshold, p. It is possible to set this threshold
di�erently for each client and also vary it dynamically.



3.3 Some Issues

We have implemented the prediction daemon, and have made the necessary changes to httpd for it to com-
municate information on accesses to predictd through a UNIX pipe. In case of a GETALL or GETLIST
request, the modi�ed httpd conveys this fact to predictd so that the latter is aware that all the �les
corresponding to the GETALL or GETLIST have already been sent to the client and hence need not be
considered as candidates for being prefetched at this time. We have not yet implemented the client-server
communications interface and the client-side support for prefetching.

There is the issue of how the lookahead window is managed when there are multiple accesses to the
same �le within a window. As an example, consider a window size of 10 and the sequence of accesses
ABB � � �AC � � �AD � � �ABB, where � � � denotes gaps much larger than the window size. If we counted the
multiple occurrences of B within a window, then the weight of the arc from A to B would be 4=4 = 1.
However, this does not reect the dependency between accesses to A and B correctly because, in fact, B
does not follow A within a window 50% of the time. Caching at the clients should eliminate such multiple
accesses, but they happen sometimes, for instance, when the data pointed to by a URL (B in this case) is
updated frequently. We ignored such multiple accesses to the same �le within a window while computing
the weights on arcs.

Dependencies between accesses to di�erent �les may vary with time. For instance, certain pages at a Web
site might be very popular for a few days, so it would make sense to prefetch them whenever a client
accesses the \home page" for that site. As the popularity of these pages wanes, prefetching them would be
less bene�cial. The weights on arcs in the dependency graph should be adjusted accordingly using some
form of aging. Furthermore, nodes in the dependency graph of �les that have not been accessed for a long
time could be pruned to limit the size of the graph. In our implementation, we have ignored these issues.

Finally, we note that some items are inherently non-prefetchable (such as the result of �lling out a form).
Other items might have an \intermediate" prefetchability; for example, a "live" camera shot might be
worth prefetching 1 second before the actual reference, but not 10 minutes early. Ideally, the prediction
algorithm and the prefetching scheme should take these into account.

4 Experimental Methodology

We evaluate the usefulness of our prefetching scheme using simulations. We use the access logs of Digital
Equipment Corporation's main Web server (http://www.digital.com) to drive the simulations. This
is a regular httpd server from NCSA, so there are no GETALL or GETLIST accesses. In each run,
the simulator uses the �rst 50000 access log entries to prime its dependency graph, without simulating
prefetching. It uses the next 150000 entries to simulate the working of a real system with prefetching
predictions and updates to the dependency graph. It also simulates a 100 MB LRU cache at each client.
In our simulations, a clients always prefetch �les that the server advises it to, except when the the �le is
already in the client's cache.

The following parameters are varied in the experiments:

1. The prefetch threshold, p, which is varied from 0.0 through 1.1 in steps of 0.1. The value 1.1
corresponds to no prefetching, since the weight on an arc in the dependency graph cannot exceed
1.0.



2. The lookahead window size, w, which takes on values between 2 and 10. A window size of 2 corre-
sponds to the minimal, one-step lookahead.

3. The maximum number of URLs that predictd can advise a client to prefetch at any one time, i
(standing for the amount of prediction \information"). This is assigned integer values from 1 through
3, and is also set to in�nity, which corresponds to there being no limit.

The following performance metrics are computed in each simulation run:

1. The average access time per �le, computed assuming a zero retrieval time on a hit in the client cache,
and a retrieval time based on the models described in sections 4.1 and 4.2 on a miss.

2. The fractional increase in network tra�c, computed as the ratio of the increase in the total number of
data bytes transferred from the server to the client with prefetching, to the total without prefetching.

4.1 Network model

We need a way of estimating the time for retrieving �les across the network in order to evaluate the bene�ts
of prefetching. For this purpose, we construct a simple model of the network.

The data-pipe between the client and the server is modeled using a linear regression. Retrieving a �le
of size s bytes is assumed to incur a startup cost, b0, and a per-byte cost, b1, yielding a total time of
b0 + s � b1. The startup cost includes the round-trip times for setting up a new connection, the time for
sending the HTTP request, etc. The per-byte cost reects the share of the network bandwidth available
for communication between a client and a server. From the set of data points, f(x; y)g, the parameters of

the linear regression can be computed as b1 =
n
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the same network model for all clients.

In order to obtain data points for constructing the model, we instrumented a Web browser to record the
retrieval time for �les. We ran the browser on a host connected to an ethernet segment at UC Berkeley,
and made 230 random retrievals of various sizes from Digital Equipment Corporation's main Web server,
in Palo Alto, California (not far from Berkeley). Figure 4 shows the data-points and the line corresponding
to a linear regression model with parameters b0 = 1:13 seconds and b1 = 5:36 � 10�5 seconds per byte
(equivalent to a bandwidth of 149 Kbps). Our network model does not attempt to model the progress of
transport (TCP) connections in detail (e.g. slow start, congestion control, etc.). From the �gure, we see
that this simple model �ts the data quite well.

We extrapolate the above model to the case where the client host is connected via a 28.8 Kbps modem line
rather than an ethernet. Based on the larger latency of the modem link and the increased transmission
time for HTTP requests over this link, we estimate the startup cost b0 to be about 1:5 seconds. Assuming
the 28:8 Kbps modem line to be the bottleneck link, the per-byte cost is about 2:7�10�4 seconds per byte.

4.2 Retrieval Model

File retrievals, both demand-fetches (in response to explicit user requests) as well as prefetches, share
the bandwidth of the client-server data-pipe. Demand-fetches are given priority over prefetches; on-going
prefetches, if any, are suspended when a new user request is issued, and resumed only after all such fetches
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Figure 4: A scatter plot of the time taken by a client at UC Berkeley to fetch �les (Web pages, inline images,

etc.) of di�erent sizes from Digital's Web server, and the line corresponding to the linear regression model.

have completed. In practice, the client could use separate TCP connections for the demand-fetches and the
prefetches. When required, the client could throttle the prefetch connection by shrinking the TCP receiver
window. However, the algorithms employed by TCP will still allow the server to send min(congestion

window, receiver window) bytes of data before the connection is fully throttled.

We consider two di�erent models of �le retrieval over the data-pipe between a client and a server. The
�rst is the no-overlap model which assumes that �le retrievals happen sequentially (except for prefetches
which can be suspended in the middle and resumed later). The second is the overlap model which allows
a client to issue new retrieval requests before earlier ones have completed. The �xed startup latency of
a �le retrieval, which largely arises due to network round-trip delays, could be overlapped with on-going
transfers. This models the e�ect of multiple parallel connections used by Netscape Navigator [7] or
pipelined requests described in [8].

Finally, for simplicity we ignore the interaction between data transfers to di�erent clients. While this
could introduce inaccuracies, we believe that this is a plausible assumption for the following reason. Our
measurements of the network connectivity between UC Berkeley and Digital were done in the presence
of competing tra�c to other clients (and, in general, other Internet tra�c). Consequently, the model we
developed reects the share of the total network bandwidth that is available for the data-pipe between UC
Berkeley and Digital. If there is a fair distribution of network resources, it might be reasonable to assume
each client-server data-path is guaranteed this share of the network bandwidth.

5 Results

In this section, we discuss the results obtained from simulation experiments. Most of the discussion
focuses on results obtained using the network model for the connectivity between UC Berkeley and Digital.
However, we also present some results for prefetching across a slower, modem-speed link. Unless otherwise
mentioned, the upper bound on the number of URLs that the server can advise the client to prefetch, i, is
set to 3. In the discussion below, we justify this choice.

Figure 5 shows the variation of average �le access time with the prefetch threshold and the lookahead
window size. This is shown both for the overlap and the no-overlap network models. Increasing the
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prefetch threshold results in less aggressive prefetching and, consequently, a larger average �le access time.
The access time is maximum when the prefetch threshold is larger than 1, resulting in no prefetching.
Increasing the lookahead window size decreases the average access time. This is because a larger window
is better able to capture dependencies between accesses to di�erent �les, including those not accessed
consecutively.

The bene�t of reduced access time due to prefetching comes at the cost of an increase in the amount of
data transferred from the server to the clients, which we quantify in terms of the fractional increase in
network tra�c. As shown in �gure 6, an increase in the prefetch threshold decreases this quantity whereas
an increase in the lookahead window size increases it.

Assuming a no-overlap network model instead of an overlap one results in an increase in the estimated
�le access times. However, the relative improvement in access times is quite similar for the two models.
Furthermore, the amount of network tra�c is not a�ected by the choice of one model versus the other. In
the remainder of this section, we focus on the overlap model, which is likely to be closer to reality than
the no-overlap model.

It is clear that a balance needs to be struck between the improved access time and the increase in tra�c.
The inverse relationship between these quantities is clear from �gure 7. We also note that, in general, a
larger lookahead window size results in a smaller access time for a given increase in tra�c. For instance, in
�gure 7, a window size of 4 results in better performance than the other values shown. The performance
improvement derived from increasing the window size beyond 4 is limited, so we use this setting for all the
other experiments.

As discussed in section 4, retrieving a �le from a Web server involves a signi�cant startup cost, which is
largely independent of the network bandwidth. So just increasing the bandwidth will not reduce the access
time beyond a point. Figure 8 illustrates this graphically for the UC Berkeley{Digital network model. The
horizontal, dotted lines show the simulated mean access times for non-prefetching systems with available
bandwidths of 100%, 120%, and 200% of that used when simulating the prefetching system. The solid curve
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corresponds to prefetching with a lookahead window size of 4. It is clear from the �gure that prefetching
can result in lower access times compared to just increasing the available bandwidth. For instance, the
�gure shows that prefetching can reduce the average access time to about 0.8 seconds with a 25% increase
in network tra�c. In contrast, even a doubling of the bandwidth only reduces the access time to about 1
second, in the absence of prefetching.

To investigate the bene�t of prefetching when the bandwidth is low, we consider the case where a 28.8
Kbps modem link is the bottleneck on the path between the client and the server. Figure 9 is the analogue
of �gure 8 for this case. Since the bandwidth is low, the contribution of data transmission time to the total
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Figure 9:
The average �le access time with and without prefetching, both with UC Berkeley{Digital network model

(�gure 8) and a 28.8 Kbps modem link (�gure 9). The solid curve in each �gure corresponds to the case of

prefetching with a lookahead window size of 4. The horizontal, dotted lines correspond to non-prefetching

systems with available bandwidths of 100%, 120%, and 200% of that used when simulating the prefetching

system.

�le retrieval time is signi�cant. This explains why an increase in bandwidth reduces the average �le access
time more drastically than before. However, prefetching is still quite bene�cial { when the prefetching
threshold is set to a point that requires a 20% increase in network tra�c, the resulting access time is lower
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Figure 10: The average �le access time versus the

prefetch threshold, p, for di�erent values of i.
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Figure 11: The fractional increase in network traf-

�c versus prefetch threshold, for di�erent values of

i.

than the non-prefetching system would obtain with a 20% increase in available bandwidth.

In the discussion so far, we have set the parameter i, which determines the amount of prefetching-related
information that the server can piggyback on replies to clients, to a constant value, 3. We now provide
justi�cation for this choice. Figures 10 and 11, respectively, show the average �le access time and the
increase in network tra�c for various values of i. The ideal case is when i is set to in�nity, implying that
there is no limit on the amount of prediction information that the server can convey to the clients. From
the �gures, we see that when i is set to 3, both the tra�c and the access time curves are close to those
for i equal to in�nity, especially when the prefetch threshold is larger than about 0.3. This indicates that
setting i to a relatively small value (and, consequently, having the server send only a small amount of
prefetching information to the clients) is su�cient for good performance.
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Figure 12: A scatter plot of access time versus �le

size without prefetching.
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Figure 13: A scatter plot of access time versus �le

size with the prefetch threshold set to 0.4 and the

lookahead window size set to 4.

Finally, we consider the e�ect of prefetching on the variability of �le access times. From a user's perspective,
it might be desirable to reduce this variability while also decreasing the average access time. Figures 12
and 13 show scatter plots of �le access time versus �le size without prefetching and with prefetching,



respectively. Both the plots show a distinctive line corresponding to the linear model used for estimating
�le retrieval times. In the absence of prefetching, most of the data points either lie on this line or above it
(due to queuing delays). There are also many points with zero access times corresponding to cache hits.
When prefetching is done, there are numerous points that lie below the line corresponding to the linear
model, because prefetching masks a part or the whole of the retrieval time. The prefetching system also
yields more points with an access time of zero. These trends are evident from the distribution of access
times shown in Table 1.

We quantify the variability in �le access times in terms of the standard deviation of errors, s2e [4]. Given a
collection of n data-points, f(x; y)g, a simple linear regression with parameters b0 and b1 can be constructed
(as described in section 4.1). The sum of squared errors, SSE, is then de�ned to be

P
y2�b0

P
y�b1

P
xy.

The standard deviation of errors, s2e , is computed as
q

SSE
n�2 . This is a measure of the deviation of the data-

points from line corresponding to the linear regression. Table 1 shows the regression parameters and the
standard deviation of errors corresponding to �gures 12 and 13.

Distribution of access times Linear regression parameters
Zero Small Large b0 (sec) b1 (sec/byte) s2e (sec)

Without prefetching 20% 0% 80% 0:95 4:27� 10�5 1.52

With prefetching 42% 6% 52% 0:53 3:90� 10�5 1.60

Table 1: The three columns to the left show the distribution of �le access times in terms of three categories:

zero (cache hit); non-zero but still smaller than that implied by the linear network model; and larger than

that implied by the linear model. The three columns to the right show the parameters of the linear regression:

the �xed cost (b0); the per-byte cost (b1); and the standard deviation of errors (s2e). Note that this linear

regression is only computed for the purpose of quantifying the variation in �les access times. It is not used

to model access times.

The standard deviation of errors with prefetching is 1.6 seconds, which is only slightly higher than that
without prefetching (1.52 seconds). Thus prefetching can reduce the average �le access time signi�cantly
without increasing the variability by much.

6 Discussion

Our results indicate that predictive prefetching of Web data can lead a signi�cant reduction in perceived
latency, but at the cost of an increase in the network tra�c. Here we discuss some other issues related to
prefetching.

As explained in section 3, prefetching-related predictions are made by servers which can observe the
pattern of accesses from several clients. For this purpose, a server needs to maintain a dependency graph
that reects these patterns. On each client access, the server consults this data structure to make its
predictions. If it is necessary to minimize the additional load imposed on the server, the construction of
the dependency graph can be scheduled for o�-peak hours (such as late at night). Since it is reasonable
to expect client access patterns to remain stable at least for the duration of a day, we believe that such
scheduling will not adversely impact the e�ectiveness of prefetching.

For clients that access the Web via proxy caches, prefetching can happen in two ways: between Web servers
and the proxy cache, and between the proxy cache and the clients. In the latter case, the proxy cache makes



the prefetching-related predictions and conveys them to the clients. One advantage that proxy caches have
relative to Web servers is that they can observe client access patterns across servers.

We consider two situations where the presence of a proxy cache is advantageous from the point of view
of prefetching. The �rst is the case where each client is connected directly to the proxy via a non-shared
link, such as a modem or ISDN line. In such a situation, it would be optimal for all the idle time on the
link to be �lled up with prefetch tra�c. However, a mechanism is needed to rapidly throttle the prefetch
tra�c when needed, to avoid a�ecting the ow of other tra�c across the link.

The second case is where each client receives data via a high-bandwidth, high-latency link, such as a
satellite downlink with a bandwidth of several Mbps and a latency hundreds of milliseconds. The reverse
connection may be via a slow, telephone line. In such a scenario, the availability of spare bandwidth on
the downlink and the large startup latency of fetching data on demand make prefetching an attractive
proposition. By placing a proxy cache near the satellite ground station, throughputs close to the downlink
bandwidth can be achieved between the cache and the client without increasing the load on any other part
of the network.

7 Conclusions

We have presented a prefetching scheme for the World Wide Web aimed at reducing the latency perceived
by users. In this scheme, the servers tell the clients which �les are likely to be requested next by the
user, and the clients decide whether or not to prefetch the �les based on local considerations (such as the
contents of the local cache).

Our simulation results show that a substantial reduction in latency perceived by a client (quanti�ed in
terms of the average time to access a �le) can be achieved at the cost of a similar increase in the network
tra�c. Since the retrieval time of a �le includes a substantial startup latency, prefetching is often more
e�ective in reducing the access time than just increasing the bandwidth.

We conclude that prefetching might be worthwhile, especially when increasing bandwidth demands do
not signi�cantly degrade service for other users nor increase the cost for service. Two scenarios in which
prefetching might be especially useful involve clients connected to a proxy cache via a non-shared modem
or ISDN line, or via a high-bandwidth and high-latency satellite downlink.

To support prefetching, the HTTP protocol could be enhanced to allow servers to piggyback prefetching
hints on replies to clients. Also, it would help scheduling at a server if prefetches could be distinguished
from demand-fetches, for instance to give them a lower priority.
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