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Abstract

Application-specific safe message handlers (ASHs) are designed
to provide applications with hardware-level network performance.
ASHs are user-written code fragments that safely and efficiently ex-
ecute in the kernel in response to message arrival. ASHs can direct
message transfers (thereby eliminating copies) and send messages
(thereby reducing send-response latency). In addition, the ASH
system provides support for dynamic integrated layer processing
(thereby eliminating duplicate message traversals) and dynamic
protocol composition (thereby supporting modularity). ASHs pro-
vide this high degree of flexibility while still providing network per-
formance as good as, or (if they exploit application-specific knowl-
edge) even better than, hard-wired in-kernel implementations. A
combination of user-level microbenchmarks and end-to-end sys-
tem measurements using TCP demonstrate the benefits of the ASH
system.

1 Introduction

Applications’ complexity and ambition scale with increases in pro-
cessing power and network performance. For example, the last
few years have seen a proliferation of distributed shared memory
systems [25, 26, 28], real-time video and voice applications [45],
parallel applications [11, 34], and tightly-coupled distributed sys-
tems [2, 36, 39]. Unfortunately, although raw CPU and network-
ing hardware speeds have increased, this increase is not reaching
applications: networking software and memory subsystem perfor-
mance already limit applications and will only do so more in the
future [10, 13, 39]. This paper addresses the important problem
of delivering hardware-level network performance to applications
by introducing application-specific safe message handlers (ASHs),
which are user-written upcalls [8] that are safely and efficiently
executed in the kernel in response to a message arrival. ASHs
direct message transfers (thereby eliminating copies), incorporate
data manipulations such as checksumming and data conversions
directly into the message transfer engine (thereby eliminating du-
plicate message traversals), and send messages (thereby reducing
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send-response latency). Measurements of a prototype implemen-
tation of ASHs demonstrate substantial performance benefits over
high-performance implementations of UDP and TCP libraries with-
out ASHs.

ASHs are written by application programmers, downloadedinto
the kernel, and invoked after a message is demultiplexed (i.e., after
it has been determined for whom the message is destined). The
most important property of ASHs is that they represent bounded,
safe upcalls. ASHs are made safe by controlling their operations
and bounding their runtime. Because an ASH is a “tamed” piece
of code, it can be directly imported into the kernel of an operating
system without compromising safety. This ability gives applications
a simple mechanism with which to incorporate domain-specific
knowledge into message-handling routines. ASHs provide three
key abilities:

Direct, dynamic message vectoring An ASH dynamically
controls where messages are copied in memory, and can there-
fore eliminate intermediate copies. Because most systems do not
allow application-directed message transfers, messages are copied
into at least one intermediate buffer before being placed in their
final destination.

Message initiation ASHs can send messages. This ability al-
lows an ASH to perform low-latency message replies. The latency
of a system determines its performance and scalability; low latency
is especially important for tightly-coupled distributed systems. For
example, the single most important determinant of parallel pro-
gram scalability is the latency of communication. In the context of
a client/server system, the faster the server can process messages,
the less load it has (and, therefore, the more clients it can support)
and the faster the response time observed by clients.

Control initiation ASHs can perform general computation. This
ability allows them to perform control operations at message recep-
tion, implementing such computational actions as traditional active
messages [43] or remote lock acquisition in a distributed shared
memory system. Even recently, low-overhead control transfer had
been considered to be infeasible to implement [39].

We have also integrated support for dynamic integrated layer
processingand dynamic protocol composition into the ASH system.

Dynamic integrated layer processing (ILP) Current systems
often have many protocol layers between the application and the
network, with each layer often requiring that the entire message be
“touched” (e.g., to compute a checksum). Therefore, the negotiation
of protocol layers can require multiple costly memory traversals,
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stressing a weak link in high-performance networking: the memory
subsystems of the endpoint nodes. As argued by Clark and Ten-
nenhouse [10], an integrated approach, where these operations are
combined into a single memory traversal, can greatly improve the
latency and throughput of a system.

ASHs integrate data manipulations such as checksumming or
conversions into the data transfer engine itself. ASHs automatically
and dynamically perform integrated layering processing (ILP). De-
spite the fact that ASHs improve flexibility by using protocol lay-
ers integrated at runtime, dynamic ILP is as efficient as statically-
written hard-wired ILP implementations.

Dynamic protocol composition Protocols are the units of mod-
ularity in networking. To provide higher level functionality than is
provided by any single protocol, they are frequently composed to-
gether into protocol stacks. The ASH system provides a simple
interface to dynamically compose protocols. Using on-the-fly code
generation, these composedprotocols are integrated into an efficient
data path.

The ASH system has been implemented in an exokernel oper-
ating system [19]. Aegis, an exokernel for MIPS-based DECsta-
tions, securely exports two network devices: a 10 Mbit/s Ethernet
and a 155 Mbit/s AN2 (Digital’s ATM network). On top of the
raw network interface we have implemented several network pro-
tocols (ARP/RARP, IP, UDP, TCP, HTTP, and NFS) as user-level
libraries, which are then linked to applications. We demonstrate
that these user libraries perform well and are competitive with the
best systems reported in the literature. We use a combination of
user-level microbenchmarks and end-to-end system measurements
to demonstrate the benefits of the ASH system. For example, the
use of message initiation and control initiation in ASHs improves
raw user-level roundtrip latency of an already highly-tuned AN2
ATM network from 176 microseconds to 142 microseconds, inde-
pendent of whether the application is scheduled or not. In general,
we would expect even better performance improvements for using
ASHs in other kernels than exokernels, since Aegis has been highly
optimized for fast kernel crossings [19], reducing the benefit of
downloading code into the kernel.

The remainder of the paper is structured as follows. Section 2
discusses design issues and Section 3 implementation issues for
ASHs. Section 4 describes the experimental environment for eval-
uating the benefits of ASHs. Section 5 reports on how ASHs can be
used and illustrates their benefits. Section 6 relates ASHs to other
work. In Section 7 we draw our conclusions.

2 Application-speci�c safe handlers

Once a message is demultiplexed to a particular application, the
message must be delivered to it. There are a variety of actions
that can be required in a networking system: message vectoring
(e.g., copying a message into its intended slot in a matrix), message
manipulations (e.g., checksums), message initiation (e.g., message
reply), and control initiation (e.g., computation). An application-
specific safe message handler (ASH) can perform all of these oper-
ations.

ASHs are user-written routines that are downloaded into the
kernel to efficiently handle messages. From the kernel’s point of
view, an ASH is simply code, invoked upon message arrival, that
either consumes the message it is given or returns it to the kernel to
be handled normally. From a programmer’s perspective, an ASH is
a routine written in a high-level languageand potentially augmented
with pipes for dynamic ILP, or it is a series of routines representing
protocol layers which will be composed together.

Operationally, ASH construction and integration has three steps.
First, client routines are written using a combination of specialized

“library” functions and any high-level language that adheres to C-
style calling conventions and runtime requirements. Second, these
routines are downloaded into the operating system in the form of
machine code, and given to the ASH system. The ASH system
post-processesthis object code, ensuring that the user handler is safe
through a combination of static and runtime checks, then hands an
identifier back to the user. Third, the ASH is associated with a user-
specified demultiplexor. When the demultiplexor accepts a packet
for an application, the ASH will be invoked. The ASH can then
control where to copy the message to, integrate data manipulations
into this copy, and/or send messages.

Many of the benefits of ASHs can be obtained with a relatively
small amount of support software. ASHs can be completely static,
in which case they cannot take advantage of dynamic ILP. This
advantage can be gained with the addition of pipes. The further
addition of protocol composition greatly eases the task of writing
ASHs, allowing protocol fragments to be dynamically and mod-
ularly built and composed, at the cost of requiring a fair amount
of support software. This paper explores the use of ASHs in all
three cases: for applications which do not require much data ma-
nipulation, tiny, extremely fast hand-written static ASHs are most
appropriate; ASHs using dynamic ILP, on the other hand, are more
useful for latency-critical applications which perform a lot of data
manipulation. For applications that dynamically compose proto-
cols, ASHs with protocol composition may be used. We describe
each of the types of ASHs in turn.

2.1 Static ASHs

Static as well as non-static ASHs are generally written in a stylized
form consisting of three parts. The initial part consists of protocol
and application code that examines the incoming message to de-
termine if the ASH can be run and where the data carried by the
incoming message should be placed. The second part is the data
manipulation part; the data is manipulated as it is copied from the
message buffer (or left in place, if desired). If there are several
actions to be taken here, such as a checksum and a copy, integrated
layer processing as described below can occur at this point. The
third and final part again consists of protocol and application code,
of two types: abort and commit. Which of these is run depends on
the initial code and possibly the result of the data manipulation step.
If something goes wrong (for example a checksum fails), the abort
code is called to fix up any state that has been updated. If the first
two parts completed successfully, on the other hand, the commit
code is called. The commit code performs any operations indi-
cated by the incoming message, including, if appropriate, initiating
a message or performing computation.

Static ASHs are responsible for hand-orchestrating any data
manipulations they require.

2.2 ASHs with dynamic ILP

Simple static ASHs can be extended to use the dynamic ILP support
provided by the ASH system. In addition to simple data copying,
many systems perform multiple traversals of message data as ev-
ery layer of the networking software performs its operations (e.g.,
checksumming, encryption, conversion). At an operational level,
these multiple data manipulations are as bad as multiple copies.
To remove this overhead, Clark and Tennenhouse [10] propose in-
tegrated layer processing (ILP), where the manipulations of each
layer are compressed into a single operation. To the best of our
knowledge, all systems based on ILP are static, in that all integration
must be hard coded into the networking system. This organization
has a direct impact on efficiency: since untrusted software cannot
augment these operations, any integration that was not anticipated
by the network architects is penalized. Given the richness of possi-
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// Initialize a pipelist for two pipes
pl = pipel(2);

// Create checksum pipe
checksum pipe id = mk cksum pipe(pl, &pipe cksum);
// Create byteswap pipe
byteswap pipe id = mk byteswap pipe(pl);

// Compile the two pipes,
// returning a handle to the integrated function
ilp = compile pl(pl, PIPE WRITE);

Figure 1: Compose and compile checksum and byteswap pipes.

ble operations, such mismatches happen quite easily. Furthermore,
many systems compose protocols at runtime [5, 23, 24, 41, 42],
making static ILP infeasible. There are additional disadvantages
to static ILP: static code size is quite large, since it grows with the
number of possible layers instead of actually used layers, and aug-
menting the system with new protocols is a heavyweight operation
that requires, at least, that the system be recompiled to incorporate
new operations.

ILP can be dynamically provided through the use of pipes,which
were first proposed by Abbott and Peterson [1] for use in static
composition. A pipe is a computation written to act on streaming
data, taking several bytes of data as input and producing several
bytes of output while performing only a tiny computation (such
as a byte swap, or an accumulation for a checksum). Our ASH
pipe compiler can integrate several pipes into a tightly integrated
message transfer engine which is encoded in a specialized data
copying loop.

To allow modular coupling, each pipe has an input and output
gauge associated with it (e.g., 8 bits, 32 bits, etc.). This allows pipes
to be coupled in a distributed fashion; the ASH system performs
conversions between the required sizes. For example, a checksum
function may take in and generate 16-bit words, while an encryp-
tion pipe may require 32-bit words. To allow a 16-bit checksum
pipe’s output to be streamed through a 32-bit encryption pipe, it is
aggregated into a single register.

Figure 1 presents an example composition of the checksum
pipe of Figure 2 with a pipe to swap bytes from big to little endian.
There are two important points in this figure. First, the composition
is completely dynamic: any pipe can be composed with any other at
runtime. Second, it is modular: the ASH system converts between
gauge sizes and prevents name conflicts by binding the context
inside the pipe itself, which can be handled as an inviolable object.

The pipes for ASHs are written in VCODE [17], which is a low-
level extension language designed to be simple to implement and
efficient both in terms of the cost of code generation and in terms
of the computational performance of its generated code.

The VCODE interface is that of an extended RISC machine:
instructions are low-level register-to-register operations. A sample
pipe to compute the Internet checksum [6] is provided in Figure 2.
Each pipe is allocated in the context of a pipe list (pl in the figure)
and given a pipe identifier that is used to name it. Additionally,
pipes are associated with a number of attributes controlling the
input and output size (a pipe’s “gauge”),whether the pipe is allowed
to transform its input, and whether the pipe is commutative (i.e.,
whether it can perform operations on message data out of order).
These attributes govern how a given pipe is composed with other
pipes (e.g., whether it can be reordered, and the expected input and
output sizes) and how it can be used.

Since pipe operations are written in terms of portable assem-
bly language instructions, pipes are charged with allocating those

registers they need and are given control over register class. The
two register classes are temporary and persistent. Temporary reg-
isters are scratch registers that are not saved across pipe invoca-
tions. Persistent registers are saved across pipe invocations; they
are used, for example, as accumulators during checksum computa-
tions (pipe cksum in Figure 2). The values of persistent registers
can be imported and exported from the main protocol code. Export
is used to initialize a register before use, and import to obtain a
register’s value (e.g., to determine if a checksum succeeded). The
special register p inputr is reserved to indicate the pipe’s input.

Current compilers do not optimize networking idioms well.
This is mainly due to the fact that there is no clear idiomatic way of
expressing common networking operations such as checksumming,
byteswapping, memory copies, and unaligned memory accesses
from within even a low-level language such as C. To remedy this
situation, we have extended the VCODE system (to which the pipe
language is compiled to) to include common networking operations.
Importantly, the VCODE system is low-level enough that further
extensions can be done by clients of the ASH system with little
performance impact.

Figure 2 exploits the extension added for computing the Internet
checksum. On machines such as the SPARC and the Intel x86, this
pipe is compiled by VCODE to use the provided add-with-carry
instructions to efficiently compute the checksum a word at a time.
In the given example, the pipe consumes a 32-bit word of data
(using the p input32 instruction), adds its value to the running
checksum total along with any overflow (using the p cksum32
instruction), and then outputs it. The ASH that calls this function is
responsible for setting up the initial state of the accumulator register,
then later reading it in, and folding it to 16 bits.

2.3 ASHs with dynamic protocol composition

In addition to dynamic ILP, ASH programmers can also use the
dynamic protocol composition extensions provided by the ASH
system. Whereas dynamic ILP provides modularity in terms of
pipes (only one checksum routine has to be written, and can be
composed with any other routine), dynamic protocol composition
provides modularity in terms of layers (only one IP routine has to
be written, and can be composed with UDP or TCP).

ASHs written in this style consist of a collection of routines for
sending and receiving messages that are dynamically organized into
a stack. The layers in the stack are either protocol layer routines
(e.g., UDP) or application specific layers (e.g., a WWW server).
Each layer is written in C, heavily augmented with library primitives
for message manipulation. Although each layer sees a message as
a stream, receiving part of a message as input and producing one
as output, the layers are each structured similarly to static ASHs.
A layer has an initial body that is run when a message is being
constructed or consumed and a final body that is run after all bodies
on a given path have executed. The main data processing occurs
in between the initial and final parts and uses pipes for all data
manipulations.

Each layer is provided with a set of messageprimitives to initiate
and consume messages, add headers to and strip headers off of
messages, and reserve header space for information not known
until an entire message is processed. For example, a UDP receive
layer would typically take in a whole UDP message, consume the
header, and produce the body of the message as output passed up to
the next layer. Because layers consume parts of messages, not all
of the data makes it up to the top of the stack, and different ILP data
manipulation loops are generated for different parts of the message.

The receive part of each layer is comprised of three procedures:
a body procedure that does the initial processing and invokes data
manipulation operations, and two handlers for the final body—abort
(called if a lower level aborts) and commit (called if all lower levels
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// Specify a pipe to compute the Internet checksum and return its identifier. This specification is subsequently converted
// by our system into safe machine code. This code assumes that messages are always a multiple of four bytes long.
int mk cksum pipe(struct pipel �pl, reg t �r) f

reg t reg;
int pipe id;

// This checksum works with 32 bits and is both commutative and non�modifying (i.e., it does not alter its input).
pipe lambda(pl, &pipe id, P GAUGE32, P COMMUTATIVE j P NO MOD);

reg = p getreg(pl, pipe id, P VAR); // Allocate an accumulate register (preserved across pipe applications)

p input32(p inputr); // Get 32 bits of input from the pipe
p cksum32(reg, p inputr); // Add input value to checksum accumulator
p output32(p inputr); // Pass 32 bits of output to next pipe

pipe end();
�r = reg;
return pipe id;

g

Figure 2: Simple checksum pipe example.

succeed). The body procedure can consume the message or, if
necessary, defer processing until the message is certified by the low
levels. The body procedure can fail, synchronously returning an
error code to the level that invoked it via deliver; this level is
then responsible for handling the failure (potentially by returning
an error in turn to the level that invoked it). After the message
is processed, either abort or commit is invoked. During the body
processing phase, the ASH system tracks which handlers to call
by recording the protocol layers invoked. Every time a layer is
activated its handlers are (logically) enqueued on a list. When the
final phase is initiated, these handlers are called, in FIFO order. A
commit handler is called unless: (1) a lower-level protocol failed,
or (2) a lower-level commit handler failed, in which case the abort
is propagated upwards (by invoking the abort handlers of bodies
affected by the failure). Higher level protocol body failures are
synchronously propagated down; a level receiving notification of
a failure above can choose to abort (propagating the failure down
further) or buffer the data for later and succeed (stopping the chain
of failure propagation). The send part of a layer (if any) is similarly
structured to the receive path, only without an abort handler.

Figure 3 shows the main body for a very simple ASH that
implements naive remote writes [39]. The ASH extracts the mes-
sage destination address and length from the message (using the
consume library call). It then copies the payload to the destina-
tion address, also using the consume call. The message is not
passed up further. Note that this layer could be the lowest layer
of a protocol stack, or could sit higher, on top of a UDP layer, for
example. This naive handler, appropriate for use only on highly
reliable networks, treats aborts as catastrophes.

A server discussed in Section 5 uses integrated ASHs for sending
and receiving. The receive ASH integrates 3 layers: (1) processing
the AAL5 trailer; (2) the computations of IP and TCP checksums;
and (3) an application-specific operation that checks whether the
data requested is in the server cache. These three operations are
independently written as three separate layers and then dynamically
composed. When a message arrives, it is demultiplexed, the inte-
grated ASH is run, and if the data is in the cache, it is directly sent
back to the client by the ASH. The send path is also specified as a se-
ries of layers. This organization allows simple application-specific
operations to be easily and safely integrated in the messaging sys-
tem, allowing for high performance and a high degree of flexibility.

3 Implementation

This section describes how we implemented the ASH system. We
discuss the support required from the operating system to run ASHs,
describe the strategies to deal with ASHs that abort, and outline the
methods for making ASHs safe. We conclude this section with
implementation caveats.

3.1 The operating system model

The most important task we require from the operating system is to
provide address translation. The primary reason for this requirement
is that virtual memory greatly eases the task of writing ASHs. For
example, it allows the handlers to execute in the addressing context
of their associated application, and thus directly manipulate user-
level data structures. If address translations were embedded within
the handler, such manipulations would be more difficult.

On the MIPS architecture which we have developed the ASH
system, supporting address translation is fairly simple: before ini-
tiating an ASH, the context identifier and pointer to the page table
of its associated application must be installed. As described below,
when an ASH references a non-resident page, or an illegal memory
address, it is aborted.

For efficiency reasons, we can allow addresses to be pre-bound
when the ASHs are imported into the kernel. Pre-binding address
translations removes the possibility of virtual memory exceptions,
but complicates the programming model. Additionally, to ensure
correctness, the operating system must track what pages can be
accessed from the ASH: if any of these pages are deallocated or
have their protection changed, then the corresponding memory op-
erations must be retranslated or the ASH must be disabled. We do
not explore this methodology in this paper.

Secondary functions that the operating system should provide
(but are orthogonal to our discussion) include memory allocation,
page-protection modification, and creation of virtual memory map-
pings. To increase the likelihood that memory will be resident when
messages arrive, there should be a mechanism by which applica-
tions can provide hints to the operating system as to which pages
should remain in main memory. Applications may also want to be
able to influence the scheduling policies.

Note that we do not assume that the operating system can field
ASH-induced exceptions, that ASHs necessarily have access to
floating point hardware, or that hardware timing mechanisms are
available. As discussed in Section 3.3, we have designed safety
provisions to remove the necessity for these functions.
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// Simplified ASH to copy packets from the network buffer to their given destination address.
void simple remote write handler(void �ash data, int nbytes) f

int len; char �dst;
if (!consume(&dst, sizeof(char �), NULL PIPE)) // Load destination address (first word)

return ASH ABORT; // Short message
if (!consume(&len, sizeof(int), NULL PIPE)) // Load length (second word)

return ASH ABORT; // Short message
if (nbytes < len+sizeof(int)+sizeof(char �)) // Incomplete packet

return ASH ABORT;
if (!consume(dst, len, NULL PIPE)) // Copy len bytes from (message buffer + 8) to (dst).

return ASH ABORT; // Short or corrupt packet
return ASH SUCCESS; // Success.

g

Figure 3: Example ASH.

3.2 The abort protocol

When an ASH cannot complete execution it must abort. There
are many possible causes of an abort. First, external events (e.g.,
a device interrupt). Second, malicious or buggy ASH operations
(e.g., divide by zero or excessive execution). Third, an ASH abort
request (e.g., an ASH may need to acquire a lock before continuing
execution). Finally, an ASH action (e.g., a page-fault can require
that the handler be suspended until that page is resident in main
memory).

The current system only handles voluntary ASH aborts. The
ASH itself is responsible for allocating all the resources it will need
before making any permanent changes, as well as fixing up any
changes that it has made if it decides to abort at some point.

We plan to provide the ability to suspend and later restart an
ASH (still in the kernel). This ability requires that all of an ASH’s
state be saved, including its live registers and the message that it
was processing. This may require transparent message relocation.
Since all message accesses will be stylized in our eventual system,
relocation of the message should be a straightforward operation.

3.3 Safe execution

For safety, the ASH system must guard against excessive execution
time, exceptions, and wild memory references and jumps in ASHs.
There are various ways to guarantee safety, depending the hardware
platform being used. For example, the implementation of static
ASHs for the Intel x86 uses hardware support for segmentation
and privilege rings to guard ASHs; in this implementation almost
no software checks are needed.1 The MIPS implementation, in
contrast, must use software techniques. We describe these software
techniques here in detail.

The ASH system for the MIPS bounds execution time using
a framework inspired by Deutsch [12]. Exceptions are prevented
using runtime and static checks (as is done in existing packet-
filters [31, 47]). Wild memory references are prevented using a
combination of address-space fire-walls and sandboxing [44]. Wild
jumps are prevented using language support. We examine each
technique in further detail below.

Bounding execution time Because we want to allow four-
kilobyte messages to be copied, decrypted, and checksummed, the
instruction budget of the ASHs we describe in this paper is rather
large (tens of thousands of instructions). This large instruction
count allows us to achieve implementation simplicity by overesti-
mating the effects of straight-line code. As a result, our current

1David Mazières from MIT designed and implemented the x86 version.

estimations of execution time are overly pessimistic, but simple to
implement:

� The base cost of an ASH and its pipes is computed by simply
counting its total number of instructions.

� For every data transfer, we multiply the number of iterations
it performs by the base cost of its associated pipe(s).

� The summation of the static base ASH cost and the dynamic
cost of its data transfer operations is the total cost of the
ASH. (Note that the cost of the pipe is a constant, and so this
multiplication can be strength-reduced).

� At runtime, the total cost is computed and then charged to
the ASH; if the ASH exceeds its budget during execution, it
is aborted.

The total number of cycles consumed can be used in process
scheduling or in deciding whether to defer ASH invocation.
On machines with appropriate hardware, cycle counters can
be used to accurately count handler execution times.

We are currently extending this framework to be less pessimistic in
its execution time estimation.

Preventing exceptions Exceptions are prevented either through
runtime or download-time checks. Runtime checks are used to pre-
vent divide-by-zero errors; unaligned exceptions are prevented by
forcing pointers to be aligned to the requirements of the base ma-
chine. Arithmetic overflow exceptions are prevented by converting
all signed arithmetic instructions to unsigned ones (which do not
raise overflow exceptions). At download time, we prevent the usage
of floating-point instructions and protect against wild jumps (we do
not allow indirect jumps). Many of these checks could be removed
in a more sophisticated implementation that had operating system
support for handler exceptions. With such support, we could opti-
mistically assume exceptions would not happen: if any did occur,
the kernel would then catch them and abort the ASH.

Address translation exceptions are handled by the operating
system. In the case of a TLB refill, the operating system replaces
the required mapping and resumes execution. In the case of accesses
to non-resident pages or illegal addresses, the ASH is aborted.

Controlling memory references Addressing protection is im-
plemented through a combination of hardware and software tech-
niques. Wild writes to user-level addresses are prevented using the
memory-mapping hardware. As discussed above, when an ASH is
initiated, its context identifier and page table pointer are installed.
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On the MIPS architecture, code executing in kernel mode can
read and write physical memory directly. To prevent this, we force
all non-message loads and stores to have user-level addresses,using
the code inspection (sandboxing) techniques of Wahbe et al. [44].
Similarly, we mask the lower bits of memory operations to pre-
vent unaligned exceptions. Loads of kernel-level message data are
performed only through specialized function calls: in this way the
sandboxer knows no memory operations to kernel-level data (i.e.,
the received message buffer) should occur.

Making sandboxed data copies efficient is difficult. The ASH
system therefore requires that messages are accessed through spe-
cialized function calls, preventing user pointers into the message.
These calls allow access checks to be aggregated at initiation time.
Experiments show that these checks add little to the base cost of
data transfer operations.

3.4 Dynamic code generation

Dynamic code generation is the generation of executable code at
runtime. We exploit dynamic code generation techniques to effi-
ciently implement dynamic ILP and dynamic protocol composition.
The details of the implementation are more fully described in [20].

3.5 Implementation caveats

The current system as measured in the rest of the paper has three
limitations. First, we treat ASH aborts in a very simplistic manner:
we do not save any state that the ASH was using, other than associ-
ating the ASH with the message that it was working on. However,
in many cases this is sufficient, since ASHs can be re-initiated. Sec-
ond we do not yet provide safe execution for the implementation of
the ASH system as described; we have a simple sandboxer for an
earlier implementation but it is incompatible with this implementa-
tion. This affects our performance numbers positively. However,
by now sandboxing is well understood and has proven to result in
little performance overhead. In addition, a sandboxer for ASHs is
more simple and therefore more efficient than a general sandboxer,
since ASHs have a restricted instruction set and have restricted ac-
cess to other parts of the system. Besides these restrictions, all of
the operations we discuss are supported: dynamic compilation of
ASHs, dynamic integration using pipes for data transfer, initiation
of messages and message vectoring, and downloading code into the
kernel.

4 Experimental environment

This section reports on the base performance of our system without
ASHs. The next section reports on the benefits of using ASHs. Like
other systems [15, 16, 29, 36, 40], all the protocols are implemented
in user space. The main point to take from the results in this section
is that our implementation without ASHs performs well and is
competitive with the best systems reported in the literature. We
will discuss in turn the testbed, the raw performance of the network
system, and the performance of our user-level implementations of
UDP and TCP.

4.1 Testbed

We have implemented a system for ASHs in an exokernel operating
system [19]. Although our implementation is for an exokernel,
ASHs are largely independent of the specific operating system and
operating system architecture. They should apply equally well to
monolithic and microkernel systems. Similarly, they apply equally
well to in-kernel (e.g., TCP/Vegas), server (e.g., Mach network
server), or user-level (e.g., U-Net) implementations of networking.

Aegis, an exokernelfor MIPS-based DECstations, provides pro-
tected access to two network devices: a 10 Mbit/s Ethernet and a

Network Latency
in-kernel AN2 112
user-level AN2 176
Ethernet 279

Table 1: Raw latency (in microseconds per round trip) for user-level
and in-kernel applications on AN2 and Ethernet.

155 Mbit/s AN2 (Digital’s ATM network). The Ethernet device is
securely exported by a packet filter engine [31]. The Aegis imple-
mentation of the packet filter engine, DPF [18], uses dynamic code
generation. DPF exploits dynamic code generation in two ways: by
using it to eliminate interpretation overhead by compiling packet
filters to executable code when they are installed into the kernel,
and by using filter constants to aggressivelyoptimize this executable
code. DPF is an order of magnitude faster than the highest perfor-
mance packet filter engines (MPF [47] and PATHFINDER [3]) in
the literature.

Similarly to other systems [15, 34, 36], the AN2 device is se-
curely exported by using the ATM connection identifier to demulti-
plex packets. Processes bind to a virtual circuit identifier, providing
a section of their memory for messages to be DMA’ed to. The ker-
nel and user share a virtualized notification ring per virtual circuit;
by examining this ring an application can determine that a message
arrived and where the message was placed. The application is al-
lowed to use those message buffers directly, as long as it eventually
returns or replaces them. The buffers are guaranteed never to be
swapped out in our current implementation.

The measurements in this paper are taken on a pair of 40-
Mhz DECstation 5000/240s, which are rated at 42.9 MIPS and
27.3 SPECint92. The 240 has direct-mapped write-through 64KB
caches for instructions and data. Memory and I/O devices are
accessed over a 25-Mhz TURBOchannel bus. The two DECstation
240s are connected with an AN2 switch.

While collecting the numbers reported in this paper, we had
a fair number of problems with cache conflicts (similar to prob-
lems reported by others [32]), because the DECstations have direct-
mapped caches. We took two steps in order to minimize the effect
these conflicts had on our experiments: first, after examining the
results from linking object files in many different orders, we picked
a best-case timing to report, and second, for any set of related exper-
iments, such as the user-level UDP family, we included the identical
amount of code statically; only the dynamic path through the code
changed. We feel that this methodology provided a fair compar-
ison between the different experiments. If anything, it should be
disadvantageous towards the ASH measurements, as they should
be less likely to suffer from cache conflicts in a real system than
the user-level measurements because the code involved is tightly
clustered together.

4.2 Raw performance of base system

The raw performance of our base system, i.e., without the use of
ASHs, is competitive with other highly optimized systems employ-
ing similar hardware.

Table 1 shows the roundtrip latency achieved using the Ethernet
and AN2 interfaces to send and receive from user space a 4-byte
message between two DECstation 5000/240s. For this configura-
tion, the Ethernet number (279 microseconds) is close to the limits
measured for user-level low-latency communication in [38]; an ex-
act comparison is complicated since the limits were measured on
DECstation 5000/200s.

For the AN2 interface, the table also compares the user-level
version to the best in-kernel version we were able to write. Since the
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Figure 4: Throughput for a user-level application on the AN2.

hardware overhead for a round trip is approximately 96 microsec-
onds [34], the kernel software is adding only 16 microseconds of
overhead. The user-level number, which includes the time to sched-
ule the application, cross the kernel-user boundary multiple times,
and use the full system call interface we designedfor the board, adds
another 64 microseconds, which brings the total software overhead
to 80 microseconds, or about 3,200 cycles.

Figure 4 is a graph of the bandwidth obtainable in our system
by sending a large train of packets of different sizes from user
level. The maximum achievable per-link bandwidth is about 16.8
MBytes/second (134 Mbits/second) [34]. At a 4-Kbyte packet size,
we reach 16.11 MBytes/second.

These raw numbers are competitive with other high-performance
implementations that also export the network to user space. Scales
et al. [34] measure about twice as much software overhead (7,600
cycles or 34 microseconds) for a null packet send using their
pvm send and pvm receive interface using the same ATM
board, with a substantially faster machine (a 225-MHz DEC 3000
Model 700 AlphaStation rated at 157 SPECint92). Our absolute
numbers are higher than U-Net (176 vs 66 microseconds), since
our experiments are taken on slower machines (40-Mhz vs. 66-
Mhz), the AN2 hardware latency is higher than the Fore latency (96
microseconds vs. 42 microseconds), and we have not attempted
to rewrite the AN2 firmware to achieve low latency, as was done
for U-Net [36]. Direct comparisons with other high-performance
systems such as Osiris [15] and Afterburner [16] are difficult since
they run on different networks and have special purpose network
cards, but our implementation appears to be competitive.

4.3 Internet protocols

On top of the raw interface we have implemented several network
protocols (ARP/RARP, IP, UDP, TCP, HTTP, and NFS) as user-
level libraries, which are then linked to applications. The general
structure is similar to other implementations of user-level proto-
cols [16, 36]. The UDP implementation is a straightforward im-
plementation of the UDP protocol as specified in RFC768. Sim-
ilarly, the TCP implementation is a library-based implementation
of RFC793. We stress that the TCP implementation is not fully
TCP compliant (it lacks support for fluent internetworking such as

Implementation Latency Throughput
AN2; in place, no checksum 203 11.61
AN2; in place, with checksum 226 7.42
AN2; no checksum 207 8.84
AN2; with checksum 228 6.67
Ethernet; with checksum 309 1.03

Table 2: Latency and throughput for UDP over AN2 and Ethernet.
The latency is measured in microseconds, and the throughput in
megabytes per second.

fast retransmit, fast recovery, and good buffering strategies). Nev-
ertheless, both the UDP and TCP implementations communicate
correctly and efficiently with other UDP and TCP implementations
in other operating systems.

Tables 2 and 3 show the latency and throughput for different
implementations of UDP and TCP over the AN2 and the Ether-
net. On the AN2, the TCP implementation uses the virtual circuit
identifier and the ports in the protocol header to demultiplex the
message to the destined protocol control block; the UDP imple-
mentation currently uses only the virtual circuit index. As observed
by many others, user-level protocols provide opportunities for op-
timization not necessarily available nor convenient for traditional
in-kernel protocols. These tables demonstrate the benefits achiev-
able through the use of these optimizations. The AN2 in place, no
checksum measurements demonstrate the best performance we have
achieved for UDP and TCP implemented as user-level protocols. In
this case, there are no additional copies from the network interface
to application data structures and the implementation relies on the
CRC computed by the AN2 board for checksumming. To simulate
the lack of additional copies, the code throws away the application
data in the in place versions (this true zero-copy can actually be
achieved; with our user-level AN2 interface the application can be
informed where the data has landed, and can use the data directly out
of that buffer, as long as it replaces the buffer with some other one).
For the non-in place versions of our measurements, the application
and the protocol library are separated by a traditional read and write
interface, resulting in an additional copy between the network and
application data structures. For internetworks, the no checksum
implementations are clearly inadequate because they does not offer
an end-to-end checksum. We thus also present measurements with
end-to-end checksumming. In the with checksum measurement, the
protocol library copies the data from the network to the applica-
tion data structures and also computes the Internet checksum. This
last implementation is closest to what one might expect from an
hard-coded in-kernel implementation.

Table 2 shows the latency and throughput for different imple-
mentations of UDP over AN2 and Ethernet. Latency is measured
by ping-ponging 4 bytes. Throughput is measured by sending a
train of 6 maximum-segment-size packets (1,500 bytes for Ethernet
and 3,072 bytes for AN2) and waiting for a small acknowledgment.
Using larger train sizes increases the throughput.

On the Ethernet, both UDP latency and throughput are modulo
process speed differences about the same as the fastest implemen-
tation reported in the literature [38]. Using the AN2 interface, UDP
latencies are about 31 microseconds higher than the raw user-level
latencies. This difference is because the UDP library allocates send
buffers, and initializes IP and UDP fields. Our implementation
seems to have lower overhead than U-Net [36]; the U-Net imple-
mentation adds 73 microseconds on a 66-Mhz processor while our
implementation adds 52 microsecondson a 40-Mhz processor (even
though, unlike their numbers, our checksum and memory copy are
not integrated for this measurement). The bandwidth is mostly a
function of the train size used in the experiment. With a large
enough train the UDP experiment achieves nearly the full network
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Implementation Latency Throughput
AN2; in place, no checksum 333 6.08
AN2; in place, with checksum 364 4.44
AN2; no checksum 333 5.46
AN2; with checksum 364 4.10
Ethernet; with checksum 412 1.04

Table 3: Latency and throughput for TCP over AN2 and Ethernet.
The latency is measured in microseconds, and the throughput in
megabytes per second.

bandwidth.
Table 3 shows the latency and throughput for different imple-

mentations of TCP over AN2 and Ethernet. Latency is measured
by ping-ponging 4 bytes across a TCP connection. Throughput is
measured by writing 10 MBytes in 8-Kbyte chunks over the TCP
connection. For the AN2 the maximum segment size is 3,072 bytes
and for the Ethernet the maximum segment size is 1,500 bytes.
For both networks the window size was fixed at 8 Kbytes. Larger
window size increases the throughput. Except during connection
set up and tear down, all segments were processed by the header-
prediction code.

The difference between UDP and TCP latency is mostly ac-
counted for by the fact that the write call (i.e., sending) is syn-
chronous (i.e., write waits for an acknowledgment before returning);
as a result the data that is piggybacked on the acknowledgment has
to be buffered until the client calls read (which leads to an additional
copy in our current implementation). In addition, the overhead of
returning out of the write call and starting the read call cannot be
hidden. Finally, there is some amount of non-optimized protocol
processing (checking the validity of the segment received and run-
ning header-prediction code). The sources of overhead, together
accounting for about 130 microseconds, seem also to account for
most of the difference in latency with U-Net, which adds a total
of 20 microseconds (on a 66-Mhz machine) over their UDP imple-
mentation.

In summary, the base performance of our system for UDP and
TCP is in the same ballpark or is better than most high-performance
user-level and in-kernel implementations [15, 16, 21, 29, 40].

5 Using application-speci�c handlers

In this section, we examine how application-specific safe handlers
can be exploited to achieve good throughput, data transfer latency
and control transfer latency. Many of our experiments are influenced
by Clark and Tennenhouse [10].

We use a combination of user-level microbenchmarks and end-
to-end system measurements. The microbenchmarks gauge the
individual effects of, for example, avoiding copies, while the system
measurements give insight into the end-to-end performance effects.
The user-level microbenchmarks measure throughput in megabytes
per second for operations performed on 4096 bytes of data. We
assume that the message and its application-space destination are
not cached when the message arrives, and so perform cache flushes
at every iteration. The network send and receive buffers are modeled
as a simple buffers in memory.

The end-to-end measurements are taken on the system de-
scribed in the previous section. Because TCP is important, well-
documented, and widely-used, we try to illustrate the benefits of
ASHs using TCP. Also, as pointed out by Braun et al. [7], it is
important to evaluate ILP in a complete protocol environment. For
most of our experiments we used dynamic ILP but not protocol
composition in order to separate out the cost of dynamically com-
posing ASHs. The end-to-end measurements of the server,however,

single copy double copy double copy
(uncached)

20 14 11

Table 4: Throughput for copies of 4096 bytes of data: single copy,
two consecutive copies (data in cache), two consecutive copies with
intervening cache flush. Throughput is measured in megabytes per
second.

include the cost for dynamically composing ASHs.
ASHs can be used for a number of purposes. Some require that

the ASH is executed in the kernel; for others, ASHs can be run in
user space. In the experiments we attempt to separate out the addi-
tional benefits of downloading and running an ASH in the kernel.
It should be noted that the results of our experiments greatly under-
estimate the benefits of running ASHs in any other kernel, because
kernel crossings in Aegis have been highly optimized: Aegis ker-
nel’s crossings are five times better than the best reported numbers
in the literature and are an order of magnitude better than a run-of-
the-mill UNIX system like Ultrix [19]. For example, the advantage
of running an ASH in the Aegis exokernel versus running an ASH
in user space is 34 microseconds; in a system like Ultrix this differ-
ence would be more like 130 microseconds (the approximate cost
of an exception plus the system call back into the kernel).

5.1 High throughput

High data transfer rates are required by bulk data transfer operations.
Unfortunately, while network throughput and CPU performance
have improved significantly in the last decade, workstation memory
subsystems have not. As a result, the crucial bottleneck in bulk data
transfer occurs during the movement of data from the network buffer
to its final destination in application space [10, 13]. To address this
bottleneck, applications must be able to direct message placement,
and to exploit ILP during copying. We examine each below.

5.1.1 Avoiding message copies

Message copies cripple networking performance [1, 10, 39]. How-
ever, most network systems make little provision for application-
directed data transfer. This results in needless data copies as in-
coming messages are copied from network buffers to intermediate
buffers (e.g., BSD’s mbufs [27]) and then copied to their eventual
destination. To solve this problem, we allow an ASH to control
where messages are placed in memory, eliminating all intermediate
copies. Our general computational model provides two additional
benefits. First, these data transfers do not have to be “dumb” data
copies: ASHs can employ a rich “scatter-gather” style, and use
dynamic, runtime information to determine where messages should
be placed, rather than having to pre-bind message placement. Sec-
ond, in the context of a highly active gigabit per second network,
tardy data transfer can consume significant portions of memory for
buffering: the quick invocation of ASHs allows the kernel buffering
constraints to be much less.

Copying messages multiple times dramatically reduces the max-
imum throughput. We can see this by measuring the time to:
(1) copy data a single time, (2) copy data two times, where the
data is in the cache for the second copy, and (3) copy data twice,
where the data is not in the cache for the second copy. Table 4
demonstrates that a second copy degrades throughput by a factor
of 1.4 for cached data, and by a factor of two for uncached, as
expected. We can observe this effect even in our UDP and TCP im-
plementations: the throughput for the no checksum version of UDP
increases by a factor of 1.2–1.3 when the copy from the network
buffers into to the application’s data structures is eliminated.

8



copy & copy & checksum
Method checksum & byteswap
Separate 11 5.8
Separate / uncached 10 5.1
C integrated 16 8.3
ASH (DILP) 17 8.2

Table 5: Cost of integrated and non-integrated memory operations.
Throughput is measured in megabytes per second.

The ASH system’s data transfer mechanism enables applications
to exploit the capabilities of the network interface in avoiding data
transfer. For interfaces such as the Ethernet, the network buffers
available to the device to receive into are limited, and therefore a
message must not stay in them very long. In this case, at least
one copy is always necessary. Through the use of an ASH, the
application can ensure that the copy is to its own data structures,
and that no further copies are needed. The AN2 network interface
card, on the other hand, can DMA messages into any location in
physical memory. An application which does not need to move
message data into its own data structures, but which can instead
use it wherever it has landed, can take advantage of this feature.
Applications which require the data be copied, on the other hand,
can use ASHs to do so; furthermore, through the use of dynamic
ILP, they can ensure that the copy is integrated with whatever other
data manipulation may be required.

5.1.2 Integrated layer processing

The performance advantage of ILP-based composition is shown
in Table 5, which measures the benefit of integrating checksum-
ming and byteswapping routines into the memory transfer opera-
tion. This experiment compares two data manipulation strategies
for two operations: copy with checksum, and copy with checksum
and byteswap. The first strategy is non-integrated processing, or
separate, representing the case where data arrives and is copied, then
checksummed, then possibly byteswapped. We show two varieties
of this experiment. The uncached case represents what happens if
much time occurs in between the various data manipulation oper-
ations, and the message gets flushed from the cache. The second
data manipulation strategy explored is integrated processing. The C
integrated case represents hand-integrated loops written in C. The
final case is dynamic ILP, using just the checksum pipe of Figure 2
for copy & checksum and the composition of the checksum pipe
and a byte swapping pipe, composed as shown in Figure 1 for copy
& checksum & byteswap.

Even when compared to the separate case which does not have
a cache flush between the data manipulation operations, integration
provides a factor of 1.4 performance benefit, and is clearly worth-
while. In the case where there is a flush, integration provides a
factor of 1.6 performance improvement. The table also demon-
strates that our emitted copying routines are very close in efficiency
to carefully hand-optimized integrated loops.

5.2 Low-latency data transfer

The need for low-latency data transfer pervades distributed systems.
The use of ASHs allows applications to quickly respond to messages
without paying the high cost of application upcalls.

In Table 6 we measure the effects of ASHs on raw roundtrip
times for a simple remote increment message. The ASH receives a
message, performs an increment, then responds with another mes-
sage. This experiment also demonstrates the low cost of control
transfer and message initiation in our system.

Our TCP implementation allows ASHs to lower the cost of data
transfer by downloading the common-case fast path in the kernel.

Network With ASH Without ASH
AN2 142 176

Table 6: Raw roundtrip times for remote increment (in microsec-
onds) with and without ASHs.

Measurement With ASH Without ASH

Latency 347 364
Throughput 4.52 4.10

Table 7: Latency (microseconds) and throughput (megabytes per
second) for TCP on AN2 with and without ASHs.

An ASH can run when the following constraints are satisfied: the
packet is “expected” (the packet we receive is the one we have
predicted), the user-level TCP library is not currently using that
TCB (concurrency control), and the TCP library is not behind in
processing, so that messages stay in order. If these constraints are
not satisfied, the ASH aborts and the message is handled by the
user-level library. When the header prediction constraint is met, the
ASH nearly never needs to abort for the other reasons (non-header-
prediction-related aborts occurred less than 0.5% of the time in our
latency and throughput experiments). As shown in Table 7, the
use of ASHs enables a 17 microsecond improvement in latency,
and a .4 MByte/second gain in throughput, providing performance
better than the in place, with checksum experiment of Table 3. The
improvement in latency occurs despite the fact that no messages are
initiated from the TCP ASH during the latency experiment.

To estimate the cost of sandboxing for a complete implemen-
tation of the ASH system, we have compared the ASH time for a
generic untrusted remote write to that for an application-specific
remote write in isolation without the cost of communication, using
the simple sandboxer we developed for an earlier implementation
of the ASH system (see Section 3.5). The remote write, modeled
after that of Thekkath et al. [39], reads the segment number, offset,
and size from the message, uses address translation tables to deter-
mine the correct place to write the data to, and then writes the data
(assuming the request is valid). The application-specific version
not only assumes the message was sent by a trusted sender, but also
uses a different protocol for communication: the handler assumes
it is given a pointer to memory, instead of a segment descriptor
and offset. This protocol would clearly not be applicable for all
applications, but those that could benefit by it (such as a distributed
shared memory system comprised of trusted threads) should not be
forced into a more expensive model.

We found the overhead of sandboxing for 40-byte writes to be
0–13%, and for 128 bytes 3–7%. We strongly emphasize that these
overheads are for a very rudimentary implementation of sandbox-
ing: we sandbox every load and store, rather than only register
definitions. An examination of the generated code shows that even
simple flow analysis is sufficient to remove almost all sandboxing
instructions, thereby reducing sandboxing overhead to an unimpor-
tant fraction of runtime.

As this data shows, when performing the same operation, ASHs
are very close in performance to hand-crafted routines. Further-
more, since ASHs can utilize application-specific knowledge, they
can be implemented more efficiently than inflexible kernel routines.
For example, because it can exploit application semantics (i.e., an
organization of trusted peers in a distributed shared memory sys-
tem), the specialized remote write facility is approximately 12%
faster than the “in-kernel” untrusted remote write facility.
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5.3 Control transfer

Low-latency control transfer is also crucial to the performance of
tightly-coupled distributed systems. Examples include remote lock
allocation, reference counting, voting, global barriers, object loca-
tion queries, and method invocations. The need for low-latency
remote computation is so overwhelming that the parallel commu-
nity has spawned a new paradigm of programming built around the
concept of active messages [43]: an efficient, unprotected transfer
of control to the application in the interrupt handler.

A key benefit of ASHs is that because the runtime of downloaded
code is bounded, they can be run in situations when performing a full
context switch to an unscheduled application is impractical. ASHs
thus allow applications to decouple latency-critical operations such
as message reply from process scheduling. Past systems precluded
protected, low-latency control transfer, or heavily relied on user-
level polling to achieve performance (e.g., in U-Net using signals
to indicate the arrival of a message instead of polling adds 30 mi-
croseconds to the 65-microsecond roundtrip latency [36]). The cost
of control transfers is sufficiently high that recently a dichotomy
has been drawn between control and data transfer in the interests of
constructing systems to efficiently perform just data transfer [39].
ASHs remove the restrictive cost of control transfer for those oper-
ations that can be expressed in terms of ASHs. We believe that the
expressiveness of ASHs is sufficient for most operations subject to
low-latency requirements.

As a simple experiment to illustrate the advantages of decou-
pling latency-critical operations from scheduling a process,we com-
pare executing code in an in-kernel ASH versus in a user-level
process while increasing the number of user processes. In the ex-
periment, the user-level processes are scheduled round-robin. As
shown in Figure 5, as the number of active processes increases,
the latency for the roundtrip remote increment increases, because
the scheduler is not integrated with the communication system,
and does not know to increase the priority of a process that has a
message waiting for it. When ASHs are used, on the other hand,
the roundtrip time for the remote increment stays nearly constant,
despite the increase in the number of processes. A more sophisti-
cated scheduler that raises the priority of a process immediately on
a network interrupt would reduce the measured effect, but is not a
general solution either (e.g., if the message is not latency critical).

Even when the destined process is running and polling the net-
work, ASHs can still provide benefit. The user-level raw latency
experiment was performed under scheduling conditions highly fa-
vorable to the application: there was only one user process running
(the application sitting in a tight poll loop). As shown by the remote
increment experiments of Table 6, the use of ASHs still provided
great benefit, eliminating the system call overhead, the cost of the
full context switch to the application, and several writes to the AN2
board.

5.4 Dynamic protocol composition: a simple server

One of the unique properties of the ASH system is that it pro-
vides mechanisms for efficient dynamic protocol composition. For
example, it can integrate layer processing steps at runtime. To
demonstrate the benefits of protocol composition we built a simple
web server that serves HTTP requests. The server usesan ASH built
out of three layers for the send and receive path. The receive path
consists of three layers for: processing the AAL5 trailer, computing
the IP and TCP checksums, and performing an application-specific
operation that checks whether the data requested is in the server
cache. (The send path is also an integrated ASH composed out of
three layers.)

We have also built a UDP version of this simple server by
just composing the UDP layer instead of the TCP layer with the
AAL5 layer and application layer. Unlike the TCP version, the
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Figure 5: As the number of processes on the system increases, the
cost of waiting for a process to be scheduled becomes increasingly
higher; times are in microseconds per roundtrip.

UDP version does not set up and tear down connections. We have
downloaded the UDP version into the kernel and run it as an ASH.
The TCP version has also been dynamically composed,but has only
been tested in user space.

The ASH system dynamically composes the three layers, inte-
grates copying and checksumming, and executes the resulting code
on message arrival. If the web page is in the main-memory cache,
the server sends a reply messagedirectly out of the ASH. If the ASH
aborts (e.g., because the requested web page is not in the cache),
the message is delivered to the server process, which can load the
requested page, install it in the cache, and then reply. Although the
server is quite simplistic, its basic operation is like any other server.

We have measured the latency to serve one kilobyte web pages
using our dynamically composed UDP server. The latency per re-
quest, 660 microseconds, is almost exactly equal to the latency per
request of the same server implemented in user space with static
protocols. This data shows that even with an untuned implemen-
tation of ASHs, protocol composition can be performed at runtime
without a performance penalty.

6 Related work

Upcalls ASHs can been viewed as a restricted form of Clark’s
upcalls [8]. ASHs are intended primarily for simple, small-latency
operations; the time they run in can be bounded, because the op-
erating system can reason about their behavior (as well as check
for safety). ASHs must be limited in expressiveness to allow the
operating system to do this reasoning. Upcalls do not suffer this
limitation. Therefore, in cases where a richer set of computations
is required, the operating system could perform an upcall to the
application at message processing time, instead of calling an ASH
(or the ASH could initiate this upcall itself). If the upcall does not
complete promptly, the operating system simply interrupts it, saves
its state, and continues. While this model is more expressive than
ASHs, it has a high computational cost: a full or partial context-
switch is required, as well as a number of kernel/user protection
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crossings. We believe that both of the models can be useful in sys-
tems. Those that can tolerate more latency can use the flexibility of
the upcall; those that cannot will be confined to ASHs.

Code importation There are a number of clear antecedents to
our work: Deutsch’s seminal paper [12] and Wahbe et al.’s mod-
ern revisitation of safe code importation [44] influenced our ideas
strongly, as did Mogul’s original packet filter paper [31]. In some
sense this work can be viewed as a natural extension of the same
philosophical foundation that inspired the packet filter: we have pro-
vided a framework that allows applications outside of the operating
system to install new functionality without kernel modifications.

The SPIN project [4] is concurrently investigating the use of
downloading code into the kernel. SPIN’s Plexus network system
runs user code fragments in the interrupt handler [21] or as a ker-
nel thread. Plexus guarantees safety by requiring that these code
fragments are written in a type-safe language, Modula-3. Plexus
simplifies protocol composition, but unlike ASHs, does not pro-
vide direct support for dynamic ILP. Preliminary Plexus numbers
for in-kernel UDP on Ethernet and ATM look promising but are
slower than our user-level implementation of UDP. No numbers are
reported yet for TCP.

With the advent of HotJava and Java [22], code importation
in the form of mobile code has received a lot of press. Recently
Tennenhouse and Wetherall have proposed to use mobile code to
build Active Networks [37]; in an active network, protocols are
replaced by programs, which are safely executed in the operating
system on message arrival. Small and Seltzer compare a number of
approaches to safely executing untrusted code [35].

Message vectoring Message vectoring has been a popular focus
of the networking community [14, 15, 16, 36]. The main differ-
ence between our work and previous work is that ASHs can per-
form application-specific computation at message arrival. By using
application-state and domain knowledge these handlers can perform
operations difficult in the context of static protocol specifications.

The most similar work to the ASH system is Edwards et al. [16],
who import simple scripts using the Unix ioctl system call to copy
messages to their destination. The main differences are the expres-
siveness of the two implementations. Their system supplies only
rudimentary operations (e.g., copy and allocate), limiting the flex-
ibility with which applications can manipulate data transfer. For
example, applications cannot synthesize checksumming or encryp-
tion functionality. Furthermore, their interface precludes the ability
to transfer control or to reply to messages. Nevertheless, their sim-
ple interface is easy to implement and tune; it remains to be seen if
the expressiveness we provide is superior to it for real applications
on real systems.

In the parallel community the concept of active messages [43]
has gained great popularity, since it dramatically decreases latency
by executing the required code directly in the message handler.
Active messages on parallel machines do not worry about issues of
software protection.

Several user-level AM implementations for networks of work-
stations have recently become available [30, 36]. U-Net designed
for ATM networks, does provide protection, but only at a cost of
higher latency: messages are not executed until the correspond-
ing process happens to be scheduled by the kernel [36]. HPAM
is designed for HP workstations connected via an FDDI layer. It
makes the optimistic assumption that incoming messages are in-
tended for the currently running process; messages intended for
other processes are copied multiple times. The described imple-
mentation of HPAM does not provide real protection: they make
the assumption that no malicious user will modify the HPAM code
or data structures. Our methodology can be viewed as an extension
of active messages to a general purpose environment in a way that

still guaranteessmall latencies while also provides strong protection
guarantees.

Issues about schedulability and when and how a message han-
dler should abort have been recently explored in Optimistic Active
Messages [46]. The tradeoffs discussed there are applicable here.

ILP and protocol composition There have been many in-
stances of ad hoc ILP, for example, in many networking ker-
nels [9]. There is also quite a bit of work on protocol composi-
tion [5, 23, 24, 41, 42].

The first system to provide an automatic modular mechanism for
ILP is Abbott and Peterson [1]. They describe an ILP system that
composes macros into integrated loops at compile time, eliminating
multiple data traversals. Each macro is written with initialization
and finalization code and a main body that takes in word-sized input
and emits word-sized output. They provide a thorough exploration
of the issues in ILP: most of their analysis can be applied directly to
our system. There are two main differences between our system and
what they describe: their system is intended for static composition,
whereas our system allows dynamic composition, and they make
no provisions for application extensions to the system, whereas our
system allows untrusted code to participate in ILP in a safe and
efficient manner. In one sense this last difference is a practical
limitation: static composition makes dynamic extensions to the
ILP engine infeasible. Given the richness of possible data manip-
ulations, however, disallowing application-specific operations can
carry a significant cost. For example, even a single re-traversal of
the data can halve available bandwidth. Proebsting and Watterson
describe a new algorithm for static ILP using filter fusion [33].

Static composition requires that all desired compositions be
known and performed at compilation time. There are two main
drawbacks to such an approach. The first is the exponential code
growth inherent in it. For example, to perform data conversion be-
tween two hosts a static system must have pre-composed all possible
conversion methods (i.e., between big- and little-endian, external
and internal ASCII, Cray floating point and SPARC, etc.). Addi-
tionally adding all possible checksum,encryption, and compression
operations will only increase code size. Dynamic composition al-
lows these operations to be combined as need be, scaling memory
consumption linearly in proportion to actual use. The second, more
subtle problem of static composition is that the system is a closed
one: the operating system can neither extend the ILP processing
it performs nor have it extended by applications. In contrast, the
ASH system allows new manipulation functions to be dynamically
incorporated into the system.

7 Conclusion

We have described an extensible, efficient networking subsystem
that provides two important facilities: the ability to safely incorpo-
rate untrusted application-specifichandlers into the networking sys-
tem, and the dynamic, modular composition of data manipulation
steps into an integrated, efficient data transfer engine. Taken in tan-
dem, these two abilities enable a general-purpose, modular and effi-
cient method of simultaneously providing both high-throughputand
low-latency communication. Furthermore, since application code
directs all operations, designers can exploit application-specific
knowledge and semantics to improve efficiency beyond that at-
tainable by fixed, hard-coded implementations.
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