
Improving the Start-up Behavior of a Congestion Control Scheme for TCP

Janey C. Hoe

Laboratory for Computer Science

Massachusetts Institute of Technology

janey@ginger.lcs.mit.edu

Abstract

Based on experiments conducted in a network simulator and
over real networks, this paper proposes changes to the con-
gestion control scheme in current TCP implementations to
improve its behavior during the start-up period of a TCP
connection.

The scheme, which includes Slow-start, Fast Retransmit,
and Fast Recovery algorithms, uses acknowledgments from
a receiver to dynamically calculate reasonable operating val-
ues for a sender's TCP parameters governing when and how
much a sender can pump into the network. During the start-
up period, because a TCP sender starts with default pa-
rameters, it often ends up sending too many packets and
too fast, leading to multiple losses of packets from the same
window. This paper shows that recovery from losses during
this start-up period is often unnecessarily time-consuming.

In particular, using the current Fast Retransmit algo-
rithm, when multiple packets in the same window are lost,
only one of the packet losses may be recovered by each Fast
Retransmit; the rest are often recovered by Slow-start after
a usually lengthy retransmission timeout. Thus, this paper
proposes changes to the Fast Retransmit algorithm so that it
can quickly recover frommultiple packet losses without wait-
ing unnecessarily for the timeout. These changes, tested in
the simulator and on the real networks, show signi�cant per-
formance improvements, especially for short TCP transfers.
The paper also proposes other changes to help minimize the
number of packets lost during the start-up period.

1 Introduction

Since the speci�cation of Transmission Control Protocol (TCP)
in 1981 [14], implementations of TCP have been augmented
with several performance-enhancing algorithms, such as con-
gestion control. Implementations are now expected to in-
clude Jacobson's congestion control algorithms as described

in [8] and fast retransmit and Fast Recovery algorithms
[9, 10, 17]. (We refer to these algorithms collectively as
the congestion control scheme.) Based on experiments con-
ducted in a simulator and over the networks, this paper
analyzes the behavior of the congestion control scheme, fo-
cusing on the start-up period. It also proposes changes to
improve the performance during this period. The changes
require only modi�cations to a TCP sender, and a TCP
with these changes is interoperable with any existing TCP
implementation.

In a TCP connection, the congestion control scheme uses
acknowledgments (ACK's) from the receiver to dynamically
calculate reasonable operating values for TCP parameters,
which determine when and how much the sender can pump
into the network. When the sender starts up, without any
information about the network capacity and the receiver,
the scheme uses default values for the parameters. Since
these default values are arbitrary, the sender usually ends
up outputting too many packets 1 too quickly and thus los-
ing multiple packets in the same window.2 We show that
recovery from these losses is often unnecessarily time-costly.

More speci�cally, using the current Fast Retransmit algo-
rithm, when multiple packets are lost, only one of the packet
losses may be recovered by the algorithm; the rest are of-
ten recovered by Slow-start after a usually lengthy retrans-
mission timeout. Based on these observations, we propose
several changes to improve this algorithm. One proposed
change makes better use of existing parameters to de�ne a
Fast Retransmit phase so that the algorithm can recover
multiple packet losses without waiting unnecessarily for the
timeout. The other changes de�ne how packets are retrans-
mitted during the Fast Retransmit phase to allow faster re-
covery of multiple packet losses. Another change proposes
using an estimated value instead of the default value for an
important parameter, ssthresh,3 to minimize the number of
packets lost during the start-up period.

Tested in a network simulator and over real networks,
these simple changes (i.e. translates into a few lines of

1In this paper, we use the terms packets and segments
interchangeably.

2Although the paper focuses on the start-up period, the experi-
ments over real networks show that multiple losses of packets from
the same window can occur several times throughout a data transfer.
The proposed changes can apply to those cases as well.

3In this paper, we keep TCP parameter names as close to those in
current TCP implementations [18] as possible.



code) to a sender's TCP allow for signi�cant performance
improvements during the start-up period. TCP's perfor-
mance during this period is important because this period
is a signi�cant portion of the duration of most data transfers
over TCP connections for two reasons. First, with the in-
creased complexity and size of networks, this start-up period
of probing the network for reasonable operating parameters
lasts longer in duration. Second, a large number of appli-
cation protocols, e.g. FTP, HTTP, etc., use TCP for short
transfers, which deliver relatively small number of data seg-
ments and terminate before TCP settles into its steady-state
behavior.

We start by discussing closely related work. After de-
scribing the congestion control scheme using graphs from
simulations, we show that similar behavior occurs in real
networks. Finally, we propose changes to improve the per-
formance. We show the results of testing these changes in
the simulator and over real networks.

1.1 Related Work

Van Jacobson's important paper [8] de�nes his congestion
avoidance and control scheme, generally known as Slow-
start. The scheme was later modi�ed to include Fast Re-
transmit and Fast Recovery algorithms [10, 9]. We refer to
this scheme in Section 2.

Selective acknowledgment (SACK) options [12] have been
proposed to be added to TCP standards. Using selective ac-
knowledgments, a receiver can inform the sender about the
segments that have arrived successfully, so a sender needs to
retransmit only the missing segments. Because SACK can
give a sender more information about which segments are
actually cached at the receiver, algorithms designed to be
used with SACK, such as Forward Acknowledgment conges-
tion control algorithm [13], may allow more precise control
over the data ow in the networks. Fall and Floyd [3] used
simulations to compare the performance of Tahoe, Reno,
SACK TCP, and New Reno, which is Reno TCP with an
earlier version of our proposed changes[7]. Although selec-
tive acknowledgments and related algorithms can resolve the
issues in the recovery from multiple packet losses, they re-
quire cooperative receivers. The proposed algorithms in this
paper require simple changes only to TCP implementation
at the senders and are consistent with current TCP speci�-
cation.

The sender-side congestion avoidance algorithm of TCP
Vegas [2] changes Slow-start's linear growth. Instead, Vegas
can increment, decrement or not adjust the window by one
segment every roundtrip time. Work in [1] evaluates Vegas'
performance compared against Reno.

Shenker and Zhang [15] use simulations to make some
observations about the behavior of the congestion control al-
gorithm in the 4.3-Tahoe BSD TCP implementation. Floyd
and Jacobson [5] discusses bias against certain tra�c as a
result of tra�c phase e�ects in networks with Drop Tail
gateways. They show that Random Early Detection (RED)
gateway, a gateway congestion avoidance algorithm that mon-
itors the average queue size and drops packets when the av-
erage queue size gets too large, can correct the bias against
bursty tra�c.

Our previous work [7] discusses some observations of the
congestion control scheme in the BSD Net/2 implementa-
tion in detail, describing the e�ects of congestion window
adjustments, delayed acknowledgment, damped exponential
phase of Slow-start after a timeout, and Fast Retransmit
and Recovery algorithms. It proposes some changes to the
congestion control scheme. This paper mainly focuses on the
fast retransmit and Fast Recovery algorithms, and presents
revised changes to the algorithms, based on our earlier work.

2 The Congestion Control Scheme

The congestion control scheme in current TCP implemen-
tations has two main parts: 1) Slow-start and 2) Fast Re-
transmit and Fast Recovery algorithms.

2.1 Slow-Start

Using Slow-start, a TCP sender starts with a congestion
window of one segment and exponentially increases the con-
gestion window. When the congestion window hits a thresh-
old, ssthresh, the sender continues to increase the conges-
tion window linearly, probing the network capacity as it be-
comes available. Evidently, in this scheme, the choice of the
threshold, which is an estimation of the equilibrium operat-
ing point, i.e. a packet leaves the network as a sender puts
a packet into the network, is key to the performance of the
algorithm.

In Figure 1,4 we show a segment number versus time
graph of a 1-Mbyte transfer in the Netsim simulator [6],
running BSD Net/2 TCP implementation. All the simula-
tor experiments in this paper use a segment size of 1024
bytes, and the maximum window size for the connection is
50 segments. (For details about the simulation environment
and how to read the graph, see the appendix.) In this imple-
mentation, ssthresh is initialized arbitrarily to 64 segments.
In Figure 1, this high initial threshold allows the sender to
exponentially ramp up the sending rate, leading to multiple
packet losses very soon after the connection starts.

A packet loss can only be recovered by either the Fast
Retransmit algorithm or Slow-start after a retransmission
timeout. In this case, the Fast Retransmit is unable to re-
cover multiple packets, and thus the connection has to idlely
wait for a timeout and �nally recover the lost packets with
Slow-start at 1.5 sec. In the next section, we look at the
Fast Retransmit algorithm in more detail by zooming in on
each of the circled regions in Figure 1.

2.2 Fast Retransmits and Fast Recovery

Since a receiver acknowledges the highest in-order sequence
number it has seen so far, when it receives out-of-order pack-
ets, it generates acknowledgments for the same highest in-
order sequence number (i.e. duplicate ACK's). Thus, when

4To facilitate detailed discussion, we use segment numbers instead
of sequence numbers in the graphs of simulator results. In the graphs
of the results from real networks showing general behavior, we use
sequence numbers.



Single packet
loss recovered
by fast
retransmit

1000

800

600

400

200

642

segment number

time (secs)

Multiple packet
losses leading
to a timeout

False fast
retransmit

Figure 1: A 1-Mbyte transfer in Netsim simulator

a sender receives three duplicate ACK's, the Fast Retrans-
mit algorithm deduces that a segment has been lost. It
assumes that the missing segment starts with the sequence
number immediately after the number acknowledged by the
duplicate ACK's, and the presumed missing segment is re-
transmitted. In addition, ssthresh and the congestion win-
dow are lowered to approximately half of the congestion win-
dow size prior to the Fast Retransmit to slow down the send-
ing rate. The Fast Recovery algorithm refers to the way the
congestion window and ssthresh are adjusted so that after
a Fast Retransmit, the sender slows down and enters a mode
that linearly instead of exponentially increases the conges-
tion window.

In this section, we discuss the Fast Retransmit algorithm
being invoked under two circumstances: (1) single packet
loss and (2) multiple losses of packets from the same window.
We also look at a case in which a Fast Retransmit is falsely
invoked. We show that the Fast Retransmit algorithm works
well in the �rst case, but is unable to recover from the second
case.

2.2.1 Single Packet Loss

Figure 2 shows the connection successfully recovering from
a single packet loss using Fast Retransmit. At time right
before 5.43 sec (in the circled region), the connection starts
receiving duplicate ACK's for segment 579. Upon receiv-
ing three duplicate ACK's for segment 579, segment 580
is Fast Retransmitted, and the congestion window size is
halved. Right before the Fast Retransmission occurred, the
connection has a congestion window of size say old cwnd,
and therefore, old cwnd segments are outstanding. In the
bottom graph, 5 we see that with each duplicate ACK that

5The sudden deep fade of congestion window size is a result of the
implementation details of Fast Retransmit. When Fast Retransmit is
activated, ssthresh is set to half of the minimum of the congestion
window and the send window. The congestion window drops to one
segment and tcp output() is called so that only one segment is fast
retransmitted. The congestion window is then increased to ssthresh

plus one segment so that the sender enters linear increase mode im-
mediately after the fast retransmit. Note that the graph shown is a
zoomed-in view of a 1-Mbyte transfer, and thus the lowest value of
the y axis is not 0 bytes

660

640

620

600

580

560

5.65.55.45.3

segment number

time (secs)

Fast retransmit

after three duplicate ACK’s

50000

40000

30000

20000

10000

5.65.55.45.3

cwnd (bytes)

time (secs)

Figure 2: The connection recovers from a single packet loss
after a Fast Retransmit. The bottom graph shows the cor-
responding congestion window size.

continues to come in after the Fast Retransmit, the conges-
tion window is increased by one segment. At time 5.52 sec,
we see that the congestion window is increased to the value
old cwnd. As the congestion window continues to open, the
connection is able to have more segments outstanding and
send new segments. At time right before 5.6 sec, an ACK
for a large number of segments, including segment 579, is
received. This ACK causes the inated congestion window
(accounting for cached segments at the receiver side) to be
retracted to ssthresh, and the sender enters the linear mode
as a result of the Fast Recovery algorithm.

In Figure 3, we make the observation that the group of
segments sent between 5.52 sec and 5.6 sec triggers the group
of ACK's to come back in a similar pattern, triggering the
next group of packet to be sent out in a similar pattern, and
so on. This \grouping" e�ect becomes less obvious after
6.2 sec, as the pipeline is being �lled and the ACK's are
coming in continuously. This e�ect is a good demonstration
of TCP using the acknowledgments as a self-clocking signal
discussed in [8].

2.2.2 Multiple Packet Losses

In this section, we show that multiple losses of packets in the
same window cannot be recoverable by the Fast Retransmit



800

700

600

6.565.5

segment number

time (secs)

Figure 3: The \grouping" e�ect during the loss recovery
after a fast retransmit triggered by a single packet loss

algorithm, and thus the connection must wait for a retrans-
mission timeout. We show one particular case in Figure 4.
As seen in the �gure, the large congestion window at time
right before 0.8 sec allows a burst of closely spaced pack-
ets into the network overowing the queue in the bottleneck
switch.

To take a closer look at the Fast Retransmit algorithm,
we will focus on segments 50 through 54. The packet trace
in the simulator indicates that segments 51 and 53 were
dropped at the bottleneck switch and segments 50 and 52
were received. Figure 4 shows how the current scheme re-
covers packet 51 and 53. Around the time 0.83 sec (in the
circled region), the sender receives a duplicate ACK for seg-
ment number 50. At this point, the sender is not able to
send any new segments, since a full window of segments
is outstanding. As time proceeds, a group of closely-spaced
duplicate ACK's for segment 50, triggered by the large surge
of segments sent earlier, is received. On the third duplicate
ACK, segment 51 is Fast Retransmitted, causing an ACK
for segment 52 to return at time 1 sec.

We discuss the above sequence of events in further de-
tail. When the sender received three duplicate ACK's for
segment 50, it can deduce that at least two segments fol-
lowing segment 50 have been received (assuming that the
network is not duplicating packets) and that segment 51
has not been received. When the sender receives the ACK
for segment 52 as a response to the Fast Retransmit of seg-
ment 51, this implies that the receiver already had segment
52. Since segment 52 is con�rmed as one of the two received
segments following segment 50, the other received segment is
either segment 53 or 54. However, because the receiver only
ACKed up to segment 52 not 53, this ACK is a clear cue
that segment 53 may have been lost. Although it is possible
that segment 53 has been reordered in the network and may
still arrive at the receiver, the series of ACK's imply that
53 has been delayed by more than one entire roundtrip time
relative to segment 54, which strongly suggest that segment
53 is lost. As we will see, this clear cue is not used to allow
fast recovery of lost segments.

At this point, only two events can cause the retransmis-
sion of segment 53 to occur: (1) another activation of the
Fast Retransmit algorithm and (2) a retransmission time-
out. A Fast Retransmit to recover segment 53 at this point

100

80

60

40

1.61.41.210.8

segment number

time (secs)

Fast retransmit

after three duplicate ACK’s

50000

40000

30000

20000

10000

1.61.41.210.8

cwnd (bytes)

time (secs)

Figure 4: As a result of multiple packet losses, Fast Retrans-
mit did not work here. The sender has to wait for a retrans-
mit timeout. The bottom graph shows the corresponding
congestion window size.

is probably out of the question, since the connection is idle
and no duplicate ACK's is expected. More speci�cally, the
value of the congestion window before the last Fast Retrans-
mission is 51 segments, which is the beyond the maximum
send window size. The surge of segments the sender trans-
mits before 0.83 sec triggers the duplicate ACK's seen be-
tween time 0.83 sec and 1 sec. After the Fast Retransmit
of segment 51, the congestion window is reduced to approx-
imately half. With each duplicate ACK the sender receives,
the sender is able to open the congestion window by one seg-
ment, as seen in Figure 4. However, since the sender is not
allowed to have more than a full window of data outstand-
ing, it cannot send any more segments until non-duplicate
ACK's comes in. Because many roundtrip times have al-
ready passed since the last transmission, the likelihood of
any packets being stuck in the network and still having the
possibility of making it to the receiver is minimal. Thus,
without any further transmission, no further ACK's can be
triggered, and therefore fast retransmission cannot be used
to retransmit segment 53. The only other way for retrans-
mission to occur is to wait for the retransmission timeout,
which �nally occurs at time 1.5 sec.

The underlying issues of this time-consuming loss recov-
ery are (1) the initial arbitrary value of ssthresh, which
allows the sender to clock out a large surge of packets in ex-
ponential slow-start mode leading to multiple packet losses
and (2) the failure of the Fast Retransmit algorithm to re-



120

100

80

60

1.91.81.71.61.5

segment number

time (secs)

Figure 5: False Fast Retransmit

cover the lost packets. The result is that the sender must
wait for the long retransmission timeout, which drastically
reduces the performance during the start-up period. We
mentioned the ACK for segment 53 is a cue not used by the
Fast Retransmit algorithm. In the proposed changes, we
suggest making better use of existing information so that
we can take advantage of the cue.

2.2.3 False Fast Retransmits

In some cases, false Fast Retransmits can occur. We observe
the case at time 1.95 sec (in the circled region) in Figure 5.
The sender is in the exponential mode immediately after a
retransmission timeout, recovering from an episode of multi-
ple losses of packets in the same window. More speci�cally,
odd numbered segments between segment 50 and segment
62 are lost. When the out-of-order segments (segments 52,
54, 56, etc.) arrive at the receiver, they are stored in the
receiver's reassembly queue until the missing odd-numbered
segments arrive. To explain Figure 5, we tabulate the begin-
ning of the recovery process from the sender's perspective
in Table 1.

We see that the retransmission of a segment that was not
lost, i.e. already cached at the receiver, generates a dupli-
cate ACK. Around time 1.94 sec, the earlier retransmission
of segments that are cached at the receiver leads to a se-
ries of duplicate ACK's and thus a Fast Retransmit in the
circled region. We call this a false Fast Retransmit, since
the algorithm is activated even though there is no segment
loss. The false retransmit mistakenly forces the sender to go
into the less aggressive linear mode, when there is really no
congestion.

In the same circled region, we also note a large spike right
before the False Retransmit. This spike is due to the large
ACK that arrived, which acknowledged most of the out-
standing segments. We discuss this further in Section 3.3.

3 Proposed Changes

In Section 2, we made some observations on the start-up
dynamics of TCP. To improve TCP's performance during

this period, it is useful to review the observations and note
the episode of events that is time-costly. We repeated the
same experiments from Section 2 many times over real net-
works from a MIT machine to a Berkeley machine to show
that the previous observations in the simulations also occur
in real networks. (Details of the experiments are in the ap-
pendix). We show in Figure 6 one of the transfers over real
networks that closely resemble our simulation results. We
see the familiar episode of a surge of packets being sent, lead-
ing to multiple packet losses and an unsuccessful attempt to
recover those packets using Fast Retransmission. The end
result is the long wait for the retransmission timeout, which
is shown in the �gure as the at portion of the graph during
which the sender is not able to send any segments. Note
that during the �rst 3 seconds of the transfer, about half of
the time was spent waiting for the retransmission timeout.

1000000

800000

600000

400000

200000

 17:15:15  17:15:10  17:15:05 

sequence number

time of day (hr:min:sec)

Figure 6: A 1-Mbyte transfer from a east coast machine to
a west coast machine using the original congestion control
scheme

To deal with these issues, there are two simple approaches:
(1) curtail the surge of packets that lead to multiple packet
losses and (2) change the Fast Retransmit algorithm so that
it recovers from multiple losses of packets in the same win-
dow and thus reduces the need to wait for the retransmit
timeouts. The �rst approach can be implemented by �nd-
ing a better initial value of ssthresh, and the second requires
a more aggressive Fast Retransmit algorithm to recover lost
segments.

We discuss these approaches below. We also mention
briey a way to deal with the large spike in the circled region
of Figure 5. These approaches give us a basis for future work
on TCP performance during the start-up period.

3.1 A Better Initial Value of ssthresh

From the previous section, we see that the initial value of
ssthresh is critical. One way to avoid the large surge of
packet that leads to multiple packet losses is to pick a better
ssthresh than the arbitrary initial value. A lower ssthresh
would allow the congestion window to open exponentially,
aggressively up to ssthresh and then open additively (one
segment per window), probing the capacity of the \pipe"
instead of overfeeding it. However, if the initial ssthresh



Time (sec) Segments Sent ACK's Received

1.5 Segment 53 is
retransmitted.

1.61

The retransmission of segment 53 at time 1.5
sec leads to an ACK of two segments: seg-
ments 53 and 54. The receiver acknowledges
segment 54 as well, since segment 54 is al-
ready cached in the reassembly queue at the
receiver.

1.61
Segments 55 and 56 are re-
transmitted.

1.72

The retransmission of segment 55 leads to an
ACK of two segments: segments 55 and 56,
since segment 56 is already cache in the re-
assembly queue.

1.72 Segments 57, 58, 59 are
retransmitted.

1.725
The retransmission of segment 56 at time 1.61
sec leads to a duplicateACK of segment 56.

1.82 The retransmission of segment 57 leads to an
ACK of two segments: 57 and 58, since seg-
ment 58 was already cached at the receiver.

1.82 Segments 60, 61, and 62
are retransmitted.

1.83 The retransmission of segment 58 leads to du-
plicate ACK of segment 58.

1.835 The retransmission of segment 59 leads to an
ACK of segments 59 and 60 since segment 60
was already cached at the receiver.

1.835 Segments 63, 64, and 65
are retransmitted.

1.93 The retransmission of 60 leads to duplicate
ACK of segment 60.

1.935 The retransmission of segment 61 leads to an
ACK of segment 61 through 72 since they
were cached at the receiver.

1.935 Segments 73 through seg-
ment 78 are retransmitted.

1.94 The retransmission of 61 leads to a duplicate
ACK of segment 72.

1.945 The retransmission of 62 leads to the second
duplicate ACK of segment 72.

1.95 The retransmission of 63 leads to the third
duplicate ACK of segment 72.

1.95 Segment 73 is Fast Re-
transmitted even though it
hasn't been lost.

Table 1: Tabulation of events leading up to a false Fast Retransmit



is set too low, the sender would prematurely switch to the
additive increase mode, and the performance would su�er.
As a result, although there is no packet loss, the sender
would be sending so slowly that the transfer would take
signi�cantly longer.

So, we need to �nd an estimate of the threshold at which
the sender is closely approaching the full network capac-
ity and thus should slow down and probe the remaining
capacity. An example of such an estimate would be the
bandwidth-delay product. We discuss one simpli�ed way to
estimate this value and show some preliminary results.

Data packets, which are sent closely spaced, arrive at the
receiver at the rate of the bottleneck link bandwidth. If the
ACK's arrive at the sender with approximately the same
spacing, using the ACK's and the time at which they ar-
rive, we can calculate an approximation of the bandwidth.
The round-trip delay can be approximated by timing one
segment, reading the timestamp upon sending the segment
and reading the timestamp again once the ACK for the seg-
ment is received. We can then calculate the bandwidth-
delay product. We set ssthresh to the byte-equivalent of
this product.

In Figure 7, we show the simulation results from ini-
tializing ssthresh with the bandwidth-delay product. We
allow ssthresh to be initialized to 64 segments as before.
We time the SY NC segment, the �rst segment transmit-
ted by a sender for synchronization between the receiver
and the sender, to get an approximation of the round-trip
delay. Once the connection is established, the bandwidth
is calculated by using the least-squares estimation on three
closely-spaced ACK's received at the sender and their re-
spective time of receipt. (This is similar to the concept of
Packet-Pair algorithm in [11].) Ssthresh is then adjusted
to the resulting estimate. As a result, we see a very smooth
transfer without retransmission timeouts, since the estimate
of the ssthresh estimate prevented the episode of a large
surge of packets that leads to multiple packet losses. The
occasional single packet loss is e�ectively recovered by the
Fast Retransmit algorithm.

This estimation method makes the fairly conservative as-
sumption that ssthresh can be at least four segments, so
that there would be enough time to get the three ACK's
needed for the estimation and pull the ssthresh value down
to the estimated value in time to prevent the excessive ramp-
up that leads to multiple packet losses.

Since our topology is simple and involves only one uni-
lateral transfer, the estimation method works well for our
transfer In reality, we may not be able to obtain an esti-
mate as good or as quickly. In particular, problems such as
ACK-Compression causing ACK's to return to the sender
di�erently spaced as the segments they ACK may lead to
inaccurate estimations. However, the important issue is not
that the bandwidth estimation be completely reliable but
that the value of ssthresh chosen using this estimate be no
worse than and frequently better than the arbitrary initial
value in current implementations. Even if the resulting es-
timate is higher than the \right" value, it would be better
than the arbitrary maximum value of 64 segments in our
case, which allows the sender to open the congestion win-
dow too aggressively and leads to many packet losses. In the
worst case, if the estimate is too low, the sender may end

1000

800

600

400

200

0
54321

segment number

time (secs)

Figure 7: A 1-Mbyte transfer initializing the ssthresh with
the byte-equivalent of bandwidth-delay product

up being too conservative, and the resulting performance for
that one connection can be worse than losing multiple pack-
ets and waiting for a retransmit timeout to recover. How-
ever, a conservative sender is more desirable than an overly
aggressive one in the interest of the collective performance
of the network.

3.2 Recovery from Multiple Packet Losses

We propose a change to the Fast Retransmit algorithm so
that it may recover from multiple packet losses more e�ec-
tively by making better use of the cues and implications
of the ACK's discussed earlier so that the recovery process
using Slow-start begins sooner, instead waiting for a retrans-
mission timeout. We introduce a new concept of Fast Re-
transmit phase.

In Figure 8, we outline the Fast Retransmit phase algo-
rithm. Note that step (i) in the setup is the same as that
in the original congestion control scheme. Step (ii) marks
the highest sequence number, snd high, the TCP sender has
sent so far. This is used to de�ne the Fast Retransmit phase.
The phase begins when 3 duplicate ACK's are received, and
it ends when the sender receives an acknowledgment for a
sequence number that is greater than or equal to snd high.
Being in the Fast Retransmit phase means that multiple
losses of packets in the same window have not been all re-
covered. So, while a sender is in the phase, it continues
to retransmit packets using Slow-start until all packets have
been recovered. Although this approach may cause unneces-
sary retransmissions, the cues in the ACK's as discussed in
Section 2.2.2 do give the sender a strong indication of which
segments have not been received, and the number of unnec-
essary retransmissions should be low. Step (vi) is simply an
attempt to keep the \ywheel" going; with every two dupli-
cate ACK's we receive, we force out a new data segment that
has never been sent before. This keeps new data owing in
the pipe and thus triggers additional acknowledgments.

We tested the new algorithm (with the exception of step
(vi)) in many experiments over real networks. A typical
sequence number versus time graph is shown in Figure 9.



Compared to Figure 6, we see signi�cant improvements dur-
ing the start-up period. The transfer was able to proceed
smoothly without unnecessary timeouts. The new algorithm
was triggered 4 times (in the 4 circled regions of the �gure)
in this particular experiment, and we zoom in on one in Fig-
ure 10. We see that once in the Fast Retransmit phase, the
sender continues to retransmit using Slow-start until all of
the lost packets are recovered.

Compared to the original algorithm, the Fast Retrans-
mit phase algorithm seems more aggressive. One may argue
that the long retransmission timeout after multiple packet
losses is a good idea, since it allows the queues in the net-
work to drain. In the fast retransmit phase algorithm, a
retransmission timeout serves only as the backup plan, used
only when all else fails. Waiting for queues in the network
to drain is necessary when nothing is getting through the
network. However, while in the Fast Retransmit phase, ac-
knowledgments are returning to the sender, indicating that
data is still owing in the network. Thus, as long as the
sender proceed with precaution (never exceeding half of its
original rate that led to multiple packet losses, as dictated
by step (iv)), the sender can continue to retransmit packets
until all packets losses have been recovered.

The concept of a Fast Retransmit phase can also be used
to �x the problem of false Fast Retransmits as pointed out
by [4]. Since duplicate ACK's that acknowledge segments
from the same window as the segments from a previous Fast
Retransmit are not an indication of continued congestion,
the sender can ignore all duplicate ack's as long as it is
in the Fast Retransmit phase. Thus, step (v) in Figure 8
eliminates false Fast Retransmits.

3.3 Limiting the Output of Successive Packets

As mentioned in Section 2.2.3, during the recovery of mul-
tiple packet losses, a large ACK can trigger a sudden surge
of segments to be sent as shown in the circled region of
Figure 5. This sudden surge may lead to further loss of seg-
ments. One way to deal with this problem is to limit the
number of segments TCP can output successively in such a
situation. We leave the analysis of this issue for future work.

4 Discussion

We have to be careful when comparing the performance of
TCP's with and without the proposed changes. In partic-
ular, it is not useful to compare the overall throughput of
Figure 9 and Figure 6, since the overall throughput is depen-
dent on a number of factors that are hard to keep constant
in all of the experiments over real networks. We have re-
peated the experiments numerous times, and each time, we
get a graph that looks a little di�erent in the slope and in the
number of packet loss episode. For example, the throughput
can be dependent on the time of the day, the forward and
reverse path, the number of data ows on the same path,
etc. What is useful to observe in these graphs is the behavior
of the congestion control scheme in response to the packet
losses. And it is clear that the proposed algorithms per-
form better in the start-up period since it is able to recover

(iii)  send using slow start algorithm

(iv) allow congestion window to increase as long as

       congestion window <= save_cwnd

(v)  do not start a new fast retransmit phase

(vi) upon receiving 2 duplicate ACK’s, send out 1 new

        packet beyond snd_high

Retransmit

Upon receiving 3 duplicate ACK’s,

begin fast retransmit phase

Yes

Still in fast retransmit phase

No

end of fast retransmit phase

congestion window = save_cwnd

         

Fast retransmit phase:

Setup

(ii) set

(i)  set   ssthresh                      = 1/2 congestion window

snd_high                      = snd_max

  1 segment

 snd_nxt                        = snd_una

             congestion window  =  

save_cwnd                  = ssthresh + 1 segment

seq number ACKed

          < snd_high?  

Figure 8: Fast Retransmit phase algorithm with proposed
changes

1000000

800000

600000

400000

200000

 13:33:20  13:33:15 

sequence number

time of day (hr:min:sec)

Figure 9: Testing the proposed new fast retransmit algo-
rithm over real networks



60000

50000

40000

30000

11.500011.450011.400011.350011.300011.2500

sequence number

time of day (sec only)

Figure 10: A blowup of a section of the previous �gure

from multiple packet losses. The performance during this
period is especially important because many, if not most,
TCP connections do not last very long.

The proposed algorithms require very simple changes to
a sender's TCP implementation. An example of an applica-
tion is to implement the proposed algorithms in a busy FTP
server to allow speedup of frequent short data transfers to
any TCP receiver.

5 Summary

This paper proposes several possible changes to improve the
start-up behavior of the congestion control scheme. Changes
proposed include using an estimated value instead of default
value for the important parameter, ssthresh, at start-up.
More notedly are the changes to the Fast Retransmit algo-
rithm. Tested in simulations and over real networks, these
changes can signi�cantly improve TCP's performance during
the start-up period by eliminating the wait for unnecessary
timeouts. These improvements are especially noticeable in
short TCP data transfers, which are becoming increasingly
common. More extensive experiments, incorporating all the
proposed changes, are being conducted.

6 Acknowledgment

The author would like to thank David D. Clark for gen-
erously sharing his knowledge and guiding this work and
AT&T Bell Laboratories GRPW program for funding this
research. The author also thanks David Clark, Sally Floyd,
and the anonymous reviewers for their detailed and helpful
criticisms and suggestions on earlier drafts of this paper. Fi-
nally, the author would like to thank Andrew Heybey and
others who contributed to the implementation of the orig-
inal Netsim simulator, Garrett Wollman and Nathan Yee
for helping with the setup of the experiments over real net-
works, and Tim Shepard for many helpful discussions and
technical assistance.

A Methodology

This section describes the simulations and the experiments
conducted over real networks. We �rst discuss the simula-
tor, Netsim, and the network topology and parameters used
in the simulations. We briey describe the setup for ex-
periments over the real networks and give a short tutorial
on how to read the sequence number versus time graphs.
Finally, we evaluate the limitations of the simulations.

A.1 The Simulations Environment

A.1.1 The Simulator

The results presented in Section 2 are based on simula-
tions in Netsim[6], a packet-by-packet, event-driven simu-
lator. The simulator is based on the model that a computer
network consists of an interconnected set of communication
and switching components. The switching component in the
simulator simulates a Drop Tail gateway. When the queues
in the switching components overow, the last packet that
arrived at the queue is dropped.

We introduced a new TCP component to the existing
Netsim simulator. To create this TCP component, we made
minor modi�cations (which do not a�ect the behavior of
TCP) to the actual BSD Net/2 code to conform with the
simulator environment and requirements. We eliminated the
1/8 factor in the congestion window and acknowledge every
packet as mentioned in [7].

A.1.2 Network Topology and Parameters

For all the simulations in this paper, we use a very simple
topology shown in Figure 11. The bu�er size of each switch
is 10 packets. The segment size for transfer is 1024 bytes,
and the maximum window size of the connection is 50 seg-
ments (51200 bytes). We transfer 1 Mbyte across a simple
one-way TCP connection.

Host 1 Switch 1 Switch 2 Host 2
50 ms
delay

10 Mbps 10 Mbps1600 Kbps

Figure 11: Network topology used in the simulations

The parameters chosen may limit the relevance of the
results to real situations. For example, a more reasonable
number for the bu�er size parameter, may be the bandwidth-
delay product of the bottleneck link ( bandwidth � delay

packet size used for transfer
),

which is 20, in our case. However, although this paper does
look at some performance issues, the focus is on TCP's start-
up transient behavior, i.e. how TCP reacts when congestion
emerges. Since such behavior occurs over a wide range of
parameters, as long as the parameters are within the range,
the exact values of the parameters used are not of utmost
importance. In most cases, varying the parameters within
the range only varies the timing and duration of such be-
havior. A more detailed discussion on these issues is in [7].
Given that simulation has its limitations under certain cir-
cumstances, in our case, we show that behavior observed in
simulations also occur in real networks.



A.2 Experiments over Real Networks

Figure 6, Figure 9, and Figure 10 are based on 1-Mbyte,
one-way transfers from a east coast machine running Free
BSD to a west coast machine running HP-UX. The TCP's
at both machines implement the congestion control scheme
that we discuss in Section 2. We ran tcpdump during the
transfer and translate collected data into segment number
versus time graphs.

A.3 Reading the Graphs

The simulation results are presented in two types of graphs:
segment number versus time graphs and simple graphs trac-
ing the congestion window parameter of a TCP connection.
Both types of graphs show data collected from the sender's
perspective. The graphic convention used in the segment
number versus time graphs is similar to that developed in
[16]. To make these graphs, we convert sequence numbers
into segment numbers6 to make the graphs more readable
and the discussions simpler. We occasionally draw circles
around the regions of interest in the graph.

In a segment number versus time graph such as the one
in Figure 12, each small vertical line segment with arrows (in
the leftmost circled region) at the ends represents a segment
sent at that time. The length of a small vertical lines gives
an indication of the size of the segment represented. There
are two lines that bound the small vertical line segments: the
bottom one indicates the last acknowledged segment number
or snd una, and the top one indicates snd wnd plus snd una

at any particular time. A small tick mark on the bottom
bounding line (in the rightmost circled region) indicates that
a duplicate ACK has been received.

100

80

60

40

10.950.90.850.80.75

segment number

time (secs)

snd_una

snd_wnd +

snd_una

duplicate ACK’s

segments transmitted

Figure 12: An example of a detailed segment number versus
time graph

In Figure 13, we show another segment number versus
time graph. The �gure displays the same information for
the entire 1-Mbyte transfer. Because of the lack of resolu-
tion, this �gure does not show many details. However, we
occasionally show a picture like this to display more general
information about the transfer.

6We make the simplifying assumption that the segment number of
a segment is the closest integer to the quotient of the highest sequence
number in that segment divide by the maximum segment size, 1024
bytes.

1000

800

600

400

200

642

segment number

time (secs)

Figure 13: An example of a segment number versus time
graph for an entire 1-Mbyte transfer

A congestion window graph such as the one in Figure 14
traces the size of the congestion window, cwnd, in bytes.
The small crosses show changes in the value of ssthresh.

60000

40000

20000

0
1050

cwnd (bytes)

time (secs)

Figure 14: An example of a congestion window graph

References

[1] J. S. Ahn, P. B. Danzig, Z. Liu, and L. Yan. Evalu-
ation of TCP Vegas: Emulation and experiment. In
Proceedings of the ACM SIGCOMM '95, pages 185{
195, August 1995.

[2] L. S. Brakmo, S. W. O'Malley, and L. L. Pe-
terson. TCP Vegas: New techniques for conges-
tion detection and avoidance. In Proceedings of the
ACM SIGCOMM '94, pages 24{35, August 1994.
ftp://ftp.cs.arizona.edu/xkernel/Papers/vegas.ps.

[3] K. Fall and S. Floyd. Simulation-based comparisons
of tahoe, reno,
and sack TCP. ftp://ftp.ee.lbl.gov/papers/sacks.ps.z,
May 1996. Submitted to CCR, July 1996.

[4] S. Floyd. TCP and successive fast retrans-
mits. ftp://ftp.ee.lbl.gov/papers/fastretrans.ps, Octo-
ber 1994.

[5] Sally Floyd and Van
Jacobson. On tra�c phase e�ects in packet-switched
gateways. ftp://ftp.ee.lbl/papers/phase.ps.Z.



[6] A. Heybey. The network simulator. Technical report,
MIT, September 1990.

[7] J. C. Hoe. Start-up dynamics of TCP's congestion con-
trol and avoidance schemes, 1995.

[8] V. Jacobson. Congestion avoidance and control. In
Proceedings of the ACM SIGCOMM '88, pages 314{
329, August 1988.

[9] V. Jacobson. Modi�ed TCP congestion avoidance algo-
rithm. end2end-interest mailing list (Apr.), 1990.

[10] Van Jacobson. Berkeley TCP evolution from 4.3-tahoe
to 4.3-reno. In Proceedings of the Eighteenth Internet
Engineering Task Force, page 365, 1990.

[11] S. Keshav. A control-theoretic approach to ow control.
In Proceedings of the ACM SIGCOMM '91, pages 3{15,
September 1991.

[12] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow.
TCP selective acknowledg-
ment options. ftp://ftp.ietf.cnri.reston.va.us/internet-
drafts/draft-ietf-tcplw-sack-00.txt, April 1996. (Inter-
net Draft, work in progress).

[13] M. Mathis and Jamshid Mahdavi. Forward acknowledg-
ment: Re�ning TCP congestion control. In Proceedings
of the ACM SIGCOMM '88, August 1996. To appear.

[14] J. Postel. Transmission control protocol. Request for
Comments 793, DDN Network Information Center, SRI
International, September 1981.

[15] S. Shenker and L. Zhang. Some observations on the dy-
namics of a congestion control algorithm. ACM Com-
puter Communication Review, 20:30{39, October 1990.

[16] T. Shepard. TCP packet trace analysis. Technical
Report 494, MIT Laboratory for Computer Science,
February 1991.

[17] W. R. Stevens. TCP/IP Illustrated, volume 1. Addison-
Wesley Publishing Company, 1994.

[18] G. R. Wright and W. R. Stevens. TCP/IP Illustrated,
volume 2. Addison-Wesley Publishing Company, 1995.


