
Hierarchical Packet Fair Queueing Algorithms

Jon C.R. Bennett

FORE Systems

jcrb@fore.com

Hui Zhang

Carnegie Mellon University

hzhang@cs.cmu.edu

Abstract

Hierarchical Packet Fair Queueing (H-PFQ) algorithms have
the potential to simultaneously support guaranteed real-
time service, rate-adaptive best-e�ort, and controlled link-
sharing service. In this paper, we design practical H-PFQ
algorithms by using one-level Packet Fair Queueing (PFQ)
servers as basic building blocks, and develop techniques to
analyze delay and fairness properties of the resulted H-PFQ
servers. We demonstrate that, in order to provide tight de-
lay bounds in a H-PFQ server, it is essential for the one-
level PFQ servers to have small Worst-case Fair Indices
(WFI). We propose a new one-level PFQ algorithm called
WF2Q+ that is the �rst to have all the following three prop-
erties: (a) providing the tightest delay bound among all
PFQ algorithms; (b) having the smallest WFI among all
PFQ algorithms; and (c) having a relatively low implemen-
tation complexity of O(log N). We show that practical H-
PFQ algorithms can be implemented by using WF2Q+ as
the basic building block and prove that the resulting H-
WF2Q+ algorithms provide similar delay bounds and band-
width distribution as those provided by a H-GPS server.
Simulation experiments are presented to evaluate the pro-
posed algorithm.

1 Introduction

Future integrated services networks [3, 7, 19] will support
multiple service classes that include real-time service, best-
e�ort service, and others. In addition, they will need to sup-
port link-sharing [8], which allows resource sharing among
applications that require di�erent network services but be-
long to the same administrative class.

In packet-switched networks, packets from di�erent ses-
sions belonging to di�erent service classes and administra-
tive classes interact with each other when they are multi-
plexed at the same output link of a switch. The schedul-
ing algorithms at the switching nodes play a critical role in
controlling the interactions among di�erent tra�c streams,
di�erent service classes, and di�erent link sharing classes.
Rather than having separate mechanisms to control each of
these interactions, it is desirable to have one common mech-
anism.

The hypothetical Hierarchical Generalized Processor Shar-
ing (H-GPS) algorithm provides a general and exible frame-
work to support hierarchical link sharing and tra�c manage-
ment for di�erent service classes. H-GPS can be viewed as

a hierarchical integration of multiple one-level GPS servers.
With a one-level GPS, there are multiple queues and a pre-
speci�ed service share for each queue. During any time in-
terval when there are backlogged queues the server services
all backlogged queues simultaneously in proportion to their
corresponding service shares. With H-GPS, the queue at
each intermediate node is a logical one, and the service it
receives is distributed instantaneously to its child nodes in
proportion to their relative service shares. This service dis-
tribution follows the hierarchy until it reaches the leaf nodes
where there are physical queues. We will give the formal
de�nition in Section 2.

Now consider the example shown in Figure 1 (a). There
are 11 agencies or organizations sharing the same output
link. The administrative policy dictates that Agency A1
gets at least 50% of the link bandwidth whenever it has
tra�c. In addition, to avoid starvation of the best-e�ort
tra�c, of the 50% of the bandwidth assigned to A1, best-
e�ort tra�c should get at least 20%. This maps nicely to
the H-GPS system as illustrated in Figure 1 (b).

It has been shown that with a one-level GPS: (1) an
end-to-end delay bound can be provided to a session if the
tra�c on that session is leaky bucket constrained [14]; (2)
bandwidth is fairly distributed to competing sessions [6] and
(3) the sources can accurately estimate the available band-
width to them in a distributed fashion [11]. The �rst prop-
erty forms the basis for supporting real-time tra�c [3] and
the third property enables robust and distributed end-to-end
tra�c management algorithms for best-e�ort tra�c [11, 15].
Having a hierarchical GPS a�ects only the distribution of
excess bandwidth unused by each subclass, but not the �rst
or third properties. Therefore, the simple H-GPS con�g-
uration in Figure 1 (b) simultaneously supports all three
goals, namely, link-sharing, real-time tra�c management,
and best-e�ort tra�c management.

The above example shows that H-GPS is an ideal mecha-
nism to support integrated services networks. Since H-GPS
is de�ned in a hypothetical uid system, packet algorithms
that approximate H-GPS need to be designed. A num-
ber of one-level Packet Fair Queueing (PFQ) algorithms
have been proposed to approximate the one-level GPS al-
gorithm [9, 14]. To reduce the implementation complexity,
they all use the notion of a virtual time function that tracks
the progress in the uid system. As we will show in Sec-
tion 2, the same technique based on a single virtual time
function does not apply to H-GPS.

In this paper, we propose to approximate H-GPS by us-
ing one-level PFQ servers as basic building blocks and orga-
nizing them in a hierarchical structure. The resulting Hier-
archical Packet Fair Queueing (H-PFQ) algorithms should
have the following properties: (1) tight per session delay
bounds that are comparable to a H-GPS server; (2) band-
width distribution in a hierarchical fashion that is similar to

5%

...

1%4%

Real-Time Best-Effort

A 11

20%30%

5%5%50%

...

link

Best-EffortReal-Time

A 1 A 2 A 3 GPSGPS

GPS

real-time sessions best-effort sessions

...

best-effort sessionsreal-time sessions

...

Input Traffic

Output Link

(a) (b)

Figure 1: A Link Sharing Example

a H-GPS server; and (3) a relatively low complexity.
To construct such a H-PFQ server, the one-level server

needs to have at least the following properties: (a) tight
per session delay bound as compared to the one-level GPS
server; and (b) a relatively low complexity. In addition, as
we will demonstrate, to achieve tight delay bounds in the
H-GPS server, one-level PFQ servers also need to have (c) a
small Worst-case Fair Index (WFI) as de�ned in [2]. Most
of the previously proposed PFQ algorithms including the
popular Weighted Fair Queueing (WFQ) [6, 14] and Self-
Clocked Fair Queueing (SCFQ) [9] do not have small WFI's.
In fact, they both have WFI's that grow proportionally to
the number of queues in the system. As a result, the de-
lay bounds provided by H-PFQ servers that are made of
WFQ or SCFQ are much larger than those provided by H-
GPS. The only exception is Worst-case Fair Weighted Fair
Queueing or WF2Q, which is proven to have the smallest
WFI among all PFQ algorithms [2]. However, WF2Q uses
a virtual time function with a high complexity.

In this paper, we propose a new algorithm that maintains
all the important properties of WF2Q, but has a lower com-
plexity than WF2Q. We call the new algorithm WF2Q+ .
We show that practical H-PFQ algorithms can be imple-
mented by using WF2Q+ as the basic building block and
prove that the resulting H-WF2Q+ algorithms preserve both
the bounded-delay and fairness properties of H-GPS.

The rest of the paper is organized as follows. In Sec-
tion 2, we review issues of designing packet approximation
algorithms for uid algorithms in the context of both one-
level GPS and H-GPS systems. In Section 3, we analyze
the delay and fairness property of H-PFQ servers, and show
that having PFQ's with small WFI values are pre-requisite
for providing tight delay bounds in a H-PFQ server. We
discuss limitations of existing PFQ algorithms and present a
new algorithm WF2Q+ that overcome these limitations. In
Section 4, we describe the detailed algorithm to construct a
H-PFQ server by using PFQ servers as basic building blocks.
In Section 5, we present simulation experiments to illustrate
the properties of H-WF2Q+ .

2 Background: Fluid Systems and Packet Systems

Throughout the paper, we discuss two types of systems: u-
ids system in which the tra�c is in�nitely divisible and the
server can serve tra�c streams simultaneously, and packet
systems in which only one tra�c stream can receive service
at a time and the minimum service unit is a packet. While
uid systems cannot be realized in the real world, they are

conceptually simple and some of them have properties that
are highly desirable for network control. For these uid sys-
tems, people have studied their packet approximation algo-
rithms.

In this section, we �rst review Generalized Processor
Sharing (GPS), and illustrate how it can be approximated
by packet algorithms based on virtual time functions. We
then de�ne Hierarchical GPS (H-GPS) and show that the
same technique cannot be applied directly to H-GPS.

2.1 Approximating GPS with Packet Algorithms

A one-level GPS server with N queues is characterized by
N positive real numbers, �1; �2; � � � ; �N . During any time
interval when there are exactly M non-empty queues, the
server serves the M packets at the head of the queues simul-
taneously, in proportion to their service shares. Formally, let
Wi(t1; t2) be the amount of session i tra�c served in the in-
terval [t1; t2]. Then a work-conserving GPS server is de�ned
as one for which

Wi(t1; t2)

Wj(t1; t2)
�

�i

�j
j = 1; 2; � � � ;N (1)

holds for any queue i that is backlogged throughout the in-
terval [t1; t2] [14]. It immediately follows from the de�nition
that

Wi(t1; t2)

�i
=
Wj(t1; t2)

�j
(2)

holds for any two queues i and j that are backlogged through-
out the interval [t1; t2], i.e., the server distributes bandwidth
fairly to all backlogged queues in proportion to their service
shares.

For ease of discussion and without losing generality, we

restrict the assignment of �'s so that
PN

i=1
�i = 1 holds.

Let ri = �ir where r is the server rate, it can be shown that

Wi(t1; t2) � ri(t2 � t1) (3)

holds for any interval [t1; t2] during which queue i is con-
tinuously backlogged, i.e., queue i gets a minimum service
rate of ri during any period when it is backlogged regardless
of the behavior of other sessions. With such a strong band-
width guarantee, GPS can also provide a worst-case delay
bound for a session that is constrained by a leaky bucket
with an average rate no greater than ri [14].

A good packet approximation algorithm of GPS would
be one that serves packets in increasing order of their �nish
times in the uid system [6, 14]. However, when the packet

system is ready to choose the next packet to transmit, it
is possible that the next packet to depart under the uid
system have not arrived at the packet system. Waiting for
it requires knowledge of the future and also causes the sys-
tem to be non-work-conserving. To have a work-conserving
packet system, the packet server must choose a packet to
transmit based only on the state of the uid system up to
time � . In Weighted Fair Queueing (WFQ) [6], when the
server is ready to transmit the next packet at time � , it
picks, among all the packets queued in the system at � , the
�rst packet that would complete service in the correspond-
ing GPS system if no additional packets were to arrive after
time � .

A practical implementation of WFQ can be designed
based on the following important property of the one-level
GPS system [14]:

Property 1 The relative �nish order of all packets that are
in the system at time � is independent of any packet arrivals
to the system after time � . That is, for any two packets p
and p0 at time � in a GPS system, if p �nishes service before
p0 assuming there are no arrivals after time � , p will �nish
service before p0 for any pattern of arrivals after time � .

With this property, it is possible to maintain the relative
GPS �nish order for packets in the WFQ system by using
a priority queue mechanism. An implementation based on
the notion of a virtual time function is proposed in [6, 14].
During any system busy period [t1; t2], VGPS(�) is de�ned as
follows:

VGPS(t1) = 0 (4)

@VGPS(�)

@�
=

1P
i2BGPS(�)

�i
8t1 � � � t2 (5)

where BGPS(�) is the set of backlogged queues at time � .
In GPS, if connection j is backlogged at time � , it receives

a service rate of @VGPS(�)

@�
�jr, where r is the link speed.

Therefore, VGPS(�) can be interpreted as the marginal rate
at which backlogged queues receive service in GPS. For the
kth packet on session i, its virtual start and �nish times Ski ,
F k
i are de�ned as:

S
k
i = maxfF

k�1
i ; V (aki)g (6)

F
k
i = S

k
i +

Lki
ri

(7)

while F 0
i = 0, and aki and Lki are the arrival time and the

length of the packet respectively. Based on Property 1, for
all the packets that are present in the WFQ system at time
� , their relative �nish order in GPS is the same as the rel-
ative order of their virtual �nish times. Therefore, WFQ
can be implemented as follows: when the server selects the
next packet for service at time � , it always picks the packet
with the smallest virtual �nish time. We call such a policy
\Smallest virtual Finish time First" (SFF) policy.

This implementation has two advantages: (a) the vir-
tual �nish time of a packet can be calculated at the packet
arrival time, therefore there is no need to calculate packet
�nish times in GPS system each time the server picks the
next packet to transmit; (b) a priority queue mechanism
based on packet virtual �nish times can be used to main-
tain the relative packet �nish order in the GPS system. The
complexity of each insertion or deletion operation for the
queue is O(log N).

Besides maintaining a priority queue, there is also the
cost of maintaining the virtual time function VGPS(:) with

this implementation. While the average complexity of com-
puting VGPS(:) is O(1), the worst complexity can be O(N) [9].
It is possible to have other Packet Fair Queueing algorithms
based on virtual time functions with lower worst-case com-
plexity. For example, in [9], Golestani proposed a virtual
time function VSCFQ with a worst-case complexity of O(1).
Later in this paper, we will propose a more accurate vir-
tual time function with a worst-case complexity of O(log
N). Therefore, by exploiting Property 1 of GPS, it is pos-
sible to design virtual-time-function-based PFQ algorithms
that have an overall complexity of O(log N).

2.2 Hierarchical Generalized Processor Sharing (H-GPS)

A H-GPS server can be represented by a tree with a positive
number �n associated with each node n. The root node,
denoted by R, corresponds to the physical link and each
leaf node corresponds to a session with a queue of pack-
ets. A non-leaf node is called backlogged if at least one of
its leaf descendent nodes is backlogged. Let Wi(t1; t2) be
the amount of session i tra�c served in the interval [t1; t2],
and Wn(t1; t2) =

P
i2leaf(n)

Wi(t1; t2), where leaf(n) is the

set of the leaf descendent nodes for node n, then a work-
conserving H-GPS server is de�ned as one for which

Wn(t1; t2)

Wm(t1; t2)
�

�n

�m
(8)

holds if (a) node n is backlogged throughout the interval
[t1; t2], and (b) m, n are sibling nodes that share the same
parent node. It immediately follows that

Wm(t1; t2)

�m
=

Wn(t1; t2)

�n
(9)

holds for any two sibling nodes m, n that are backlogged
throughout the interval [t1; t2].

Comparing (8) and (9) with (1) and (2), we can see that
they are very similar. The major di�erence is that while
these relationships hold for any two queues in GPS, they
hold only for sibling nodes in H-GPS { notice that packet
queues are associated with only leaf nodes in H-GPS. In H-
GPS, the bandwidth is not always distributed to all queues
in proportion to their service shares as in GPS. Instead,
each node receives bandwidth from its parent node and in
turn distributes it to its its children in proportion to the
relative service shares among themselves. Therefore, if two
queues have the same �0s and are both backlogged, it is
possible that they receive di�erent amount of service due to
the di�erent relative shares between their ancestor nodes.

As in the case of one-level GPS, we assume the sum of
the �0is of all session, i.e.,

P
i2leaf(R)

�i = 1. In addition, we

assume
P

m2child(n)
�m = �n. It immediately follows that

�R = 1. Let rn = �nr, it can be easily shown that (3) holds
also for H-GPS. Therefore, H-GPS can provides the same
minimum bandwidth and delay bound guarantees for each
session as GPS. As discussed above, the major di�erence
between GPS and H-GPS is the distribution of the excess
bandwidth when a session cannot fully utilize its guaranteed
bandwidth. While GPS distributes the excess bandwidth
fairly among all backlogged queues, H-GPS prioritizes the
distribution according to the hierarchy. Sessions that share
smaller subtrees with the session of excess bandwidth have
higher priorities.

As in the case of GPS, H-GPS needs to be approximated
by a packet algorithm. While it is possible to design prac-
tical implementations of WFQ based on virtual time func-
tions, this is not the case with H-GPS. The main reason is

that Property 1 does not hold for H-GPS, i.e., the relative
order of packet �nish time in the uid system is dependent
on future arrivals.

Consider the example where the root of H-GPS has two
children A and B with service shares of 0.8 and 0.2 respec-
tively. Node B is a leaf node while Node A has two children
leaf nodes A1 and A2 with service shares of 0.75 and 0.05
respectively. Let the link speed be 1 and all packets have
the same length of 1. At time 0, A1 has an empty queue, A2
and B have many packets queued. Thus, A2 and B will have
80% and 20% of the link bandwidth respectively. With the
assumption that there are no future arrivals, the �nish times
in the H-GPS server are 1.25, 2.5, 3.75, ..., for A2 packets,
and 5, 10, 15, ..., for B packets. Therefore, at time 0, the
relative order of packets is: p1A2, p

2
A2, p

3
A2, p

4
A2, p

1
B, p

5
A2,

Now assume that a sequence of A1 packets arrive at time
1. According to the bandwidth distribution hierarchy, the
bandwidth shares for A1, A2, B will be 75%, 5%, and 20%
respectively. While this will not a�ect the �nish times for
session B packets, it does a�ect the �nish times for session
A2 packets, which will become 21, 41, 61, cdots. That is,
the relative ordering between session A2 and B packets have
changed after the arrival of session A1's packets.

In a GPS system, the ratio between the service received
by any two sessions during any period in which they are both
backlogged is a constant regardless of the packet arrivals of
other sessions. In a H-GPS system, this ratio is a�ected
by other sessions in the hierarchy. This is the fundamental
reason why Property 1 does not hold for H-GPS.

The fact that H-GPS does not have the relative-packet-
order-invariant property means that the packet approxima-
tion algorithm de�ned above cannot be implemented using
a virtual time function. Therefore, when the packet server
is picking the next packet to transmit, if the set of back-
logged sessions has changed since last picking, it needs to
recompute the H-GPS �nish time for each packet at head of
a queue and perform a minimization operation. Since such
an implementation has a complexity of O(N), where N is
the number of sessions, it is not practical for high speed
implementation.

3 PFQ's as Building Blocks for H-PFQ

In the previous section, we have shown that the same ap-
proach of approximating GPS by using a virtual time func-
tion does not directly apply to H-GPS. In this paper, we
propose to implement packet approximation algorithms for
H-GPS by using one-level PFQ servers as basic building
blockings and organizing them in a hierarchical structure.
We call the resulting algorithms Hierarchical Packet Fair
Queueing (H-PFQ) algorithms.

In this section, we show that the delay bound provided by
a H-PFQ server relates not only to the delay bound provided
by PFQ server nodes in the hierarchy, but also to the Worst-
case Fair Index (WFI) of the PFQ servers. We propose a
new PFQ algorithm called WF2Q that not only provides
tight delay bound and low WFI, but also has a relatively
low complexity. We demonstrate that practical H-PFQ can
be constructed using WF2Q+ .

3.1 Limitation of WFQ

Weighted Fair Queueing (WFQ) [3, 6], also known as Packe-
tized Generalized Processor Sharing [14], is the best-known
packet approximation algorithm for GPS. It has been shown

WFQ service order

connection 2

connection 1

connection 11

WF Q service order2

... ...

Figure 2: WFQ and WF2Q

that the delay bound provided by WFQ is within one packet
transmission time of that provided by GPS [14].

Even though WFQ and GPS have almost identical de-
lay bounds, there could be large discrepancies between the
services provided by these two systems. Consider the exam-
ple illustrated in Fig. 2 where there are 11 sessions sharing
the same link. For simplicity, assume all packets have the
same size of 1 and the link speed is 1. Also, let the guar-
anteed rate for session 1 be 0.5, and the guaranteed rate
for each of the other 10 sessions be 0.05. In the example,
session 1 sends 11 back-to-back packets starting at time 0
while each of all the other 10 sessions sends only one packet
at time 0. If the server is GPS, it will take 2 time units
to transmit each of the �rst 10 packets on session 1, one
time unit to transmit the 11th packet, and 20 time units
to transmit the �rst packet from another session. Denote
the kth packet on session j to be pkj , then in the GPS sys-

tem, the �nish time is 2k for pk1 ; k = 1 : : : 10, 21 for p111 ,
and 20 for p1j ; j = 2 � � � 11. Under WFQ, since the �rst 10

packets on session 1 (pk1 ; k = 1 : : : 10) all have GPS �nish
times smaller than packets on other sessions, the server will
transmit 10 packets on session 1 back to back before trans-
mit packets from other sessions. After the burst, the next
packet on session 1, p111 , will have a larger �nishing time in
the GPS system than the 10 packets at the head of other
sessions' queues, therefore, it will not be served until all the
other 10 packets are transmitted. This is shown in Fig. 2.
In the above example, between time 0 and 10, WFQ serves
10 packets from session 1 while GPS serves only 5. After
such a period, WFQ needs to serve other sessions in order
for them to catch up. Intuitively, the di�erence between the
amounts of transmit provided to each session by WFQ and
GPS is a measure of inaccuracy of WFQ in approximating
GPS. Therefore, the inaccuracy introduced by WFQ is not
merely one packet, but N=2 packets, where N is the number
of sessions sharing the link.

The inaccuracy introduced by WFQ will signi�cantly af-
fect the delay bound in a hierarchical server. Consider the
example with a link sharing structure in Fig. 1 (a) and the
packet arrival sequence in Fig. 2. Assume that WFQ is used
instead of GPS and the �rst 10 packets of class A1 belong
to the best-e�ort sub-class and the 11th packet belong to
the real-time sub-class. Even though the real-time sub-class
of A1 reserves 30% of the link bandwidth, when a real-time
packet arrives, it may still have to wait 10 packet transmis-
sion times. Now consider the example where there are 1001

classes sharing a 100 Mbps link with the maximum packet
size of 1500 bytes. For a real-time session reserving 30%
of the link bandwidth, its packet may be delayed by 120
ms in just one hop! In contrast, if GPS or H-GPS is used,
the worst-case delay for a packet arriving at an empty A1
real-time queue is 0.4 ms.

3.2 WFI and Its E�ect on Delay Bounds of H-PFQ

In [2], we introduce a metric called Worst-case Fair Index
(WFI) to characterize PFQ servers. In this session, we will
show that having PFQ servers with small WFIs is a pre-
requisite to constructing a H-PFQ server that provides tight
delay bounds.

De�nition 1 A server s is said to guarantee a Time Worst-
case Fair Index (T-WFI) of Ai;s for session i, if for any
time � , the delay of a packet arriving at � is bounded above
by 1

ri
Qi(�) +Ai;s, that is,

d
k
i � a

k
i �

Qi(a
k
i)

ri
+Ai;s (10)

where ri is the rate guaranteed to session i, Qi(�) is the
number of bits in the session queue at time � (including the

packet that arrives at time �), aki and d
k
i are the arrival and

departure times of kth packet of session i respectively.

Intuitively, Ai;s represents the maximum time a packet
coming to an empty session queue needs to wait before re-
ceiving its guaranteed service rate. An important observa-
tion is that both GPS and H-GPS have a WFI of 0. That
is, with GPS or H-GPS, a packet coming an empty session
queue can receive its guaranteed service rate immediately
after its arrival. However, as illustrated in the example in
Fig. 2, the T-WFI for WFQ can be quite large. In fact, it
is shown in [2] that WFI for WF2Q increases linearly as a
function of the number of sessions N.

Since the previous de�nition of WFI applies only to a
standalone server, we introduce a general de�nition of WFI
that applies also to a server node in a hierarchical system. A
non-root server node di�ers from a standalone server in two
aspects: (a) it receives its service from its parent and there-
fore does not have a constant service rate; (b) the queues it
serves do not have to be FIFO.

De�nition 2 A server node s is said to guarantee a Bit
Worst-case Fair Index (B-WFI) of �i;s for session i, if dur-
ing any time interval [t1; t2] when the queue is continuously
backlogged, the following holds

Wi(t1; t2) �
�i

�s
Ws(t1; t2)� �i;s (11)

where �i
�s

is the service share guaranteed to queue i by server
s.

For a standalone server, �s = 1, Ws(t1; t2) = r(t2 � t1).
Therefore, (11) is equivalent to:

Wi(t1; t2) � ri(t2 � t1)� �i;s (12)

To see that De�nition 2 is equivalent to De�nition 1 in
the case of a standalone server, we �rst observe the following
property for a FIFO queue i,

Wi(a
k
i ; d

k
i) = Qi(a

k
i) (13)

Plugging (13) into (12) by letting t1 = aki and t2 = dki

Qi(a
k
i) � ri(d

k
i � a

k
i)� �i;s (14)

Rearranging the terms, we have

d
k
i � a

k
i �

Qi(a
k
i)

ri
+
�i;s

ri
(15)

Therefore, the two de�nitions are equivalent for a standalone
server, with Ai;s and �i;s measures WFI in unit of time and
bit respectively, and �i;s = riAi;s.

Before we proceed to establish the relationship between
the delay bound of a H-PFQ server and WFI's of PFQ server
nodes, we �rst give the following de�nition of guaranteed
service burstiness index (SBI) as proposed in [4]. We will
show that the guaranteed service burstiness property can be
viewed as a generalized bounded delay property that applies
not only to a standalone server, but also to a server node in
a hierarchical system.

De�nition 3 A server node s is said to guarantee a service
burstiness index (SBI) of i;s to session i if for any time
instant t2 when session i is backlogged, there exists another
time instant t1 within the same server busy period of t2,
where t1 < t2, Qi(t

�

1) = 0, and Qi(t1) 6= 0 hold, such that

Wi(t1; t2) �
�i

�s
Ws(t1; t2)� i;s (16)

where �i
�s

is the service share guaranteed to queue i by server
s.

While looking similar, worst case fair is a stronger prop-
erty than bounded service burstiness. In the case of the
worst-case fair property, (16) needs to hold for all intervals
when the session is continuously backlogged. In the case of
the guaranteed service burstiness property, for each time in-
stant t2 when the session is backlogged, (11) needs to hold
for only one interval that ends at t2 and starts at the begin-
ning of a session i's backlogged period. Notice that t1 and t2
need not to belong to the same session i backlogged period.
By letting t1 to be the start of the backlogged period that
includes t2, it immediately follows that a session's guaran-
teed WFI is also the session's guaranteed SBI. The opposite
is not always true. For example, with WFQ, the guaran-
teed SBI for any session is Pmax. This is much smaller
than the guaranteed WFI value, which can be as large as
N �Pmax. Therefore, worst-case fair is a stronger property
than bounded service burstiness with the same index value.

In the following lemma, we establish the relationship be-
tween the guaranteed SBI and guaranteed delay bound to a
leaky bucket constrained session. A session i is constrained
by a leaky bucket (�i; �i) if the following holds for any in-
terval [t1; t2]

Ai(t1; t2) � �i + �i(t2 � t1) (17)

where Ai(t1; t2) is the amount of session i bits arrived during
[t1; t2].

Lemma 1 Consider session i that is leaky bucket constrained
by (�i; ri). If a standalone server guarantees a SBI of i;s

to the session, it can guarantees a delay bound of
�i+i;s

ri

Proof.For a standalone server, �s = 1 and Ws(t1; t2) =

r(t2 � t1) hold. Let a
k
i and dki be the arrival and departure

time of the kth packet of session i respectively. Since the
server guarantees a SBI to session i, there exists a t1, where
t1 < dki , Qi(t

�

1) = 0, and Qi(t1) 6= 0 hold, such that

Wi(t1; d
k
i) �

�i

�s
Ws(t1; d

k
i)� i;s

= ri(d
k
i � t1)� i;s (18)

Since session i has a FIFO queue and Qi(t
�

1) = 0, we have

Wi(t1; d
k
i) = Ai(t1; a

k
i) (19)

In addition, session i is leaky bucket constrained, thus

Ai(t1; a
k
i) � �i + ri(a

k
i � t1) (20)

Combining (18), (19), and (20), we have

�i + ri(a
k
i � t1) � ri(d

k
i � t1)� i;s (21)

Rearranging the terms and dividing both sides by ri, we
have

d
k
i � a

k
i �

�i + i;s

ri
(22)

Q.E.D.
For most rate-based service disciplines [20], if the server

guarantees a delay bound ofDi to a leaky bucket constrained
session, it also guarantees a SBI of riDi � �i to the ses-
sion [4]. Therefore, bounded service burstiness property and
bounded delay property are equivalent for standalone rate-
based servers. Since the bounded service burstiness property
applies also to server nodes in a hierarchy, it can be used as
a generalized bounded delay property.

From Lemma 1, it immediately follows that a bounded
WFI for a session also implies a bounded delay. However,
the delay bound calculated from the WFI may not be tight
in some cases. For example, while the tight delay bound
for a leaky bucket constrained session in a WFQ server
is �i

ri
+ Pmax

r
, the delay bound based on the WFI can be

�i
ri

+N Pmax

r
, which is much larger. Intuitively, WFI is the

maximum amount of time a packet has to wait to receive
its fair share service when it comes to an empty queue i.
The reason that a packet may have to wait for a long time
is that some packets related to it have received more service
than deserved in the previous time period. In the case of
a standalone server, these packets must belong to the same
session i; in the case of a hierarchical server, these packets
may belong to sessions that share an ancestor node with
session i. Therefore, WFI does not bound delay tightly in
the case of a standalone server since it does not take into
account the fact that packets from the same session may
receive more service in the previous time period. However,
WFI is important in characterizing the delay in a hierar-
chical server since the extra service received in the previous
time period may have been received by a session other than
the one being considered.

Now that we have de�ned WFI and SBI that are ap-
plicable to both standalone servers and server nodes in a
hierarchy, we are ready to derive WFI and delay bound for
an H-PFQ server. For a session i with H ancestors in a H-
PFQ server, we use p(i) to represent its parent node, ph(i)

to represent the parent node of ph�1(i) for h = 1; � � � ;H,
where p0(i) = i and p1(i) = p(i) hold. It follows directly

that pH(i) is the root node R.

Theorem 1 For a session i with H ancestors in a H-PFQ
server, the following holds

�i;H�PFQ =

H�1X
h=0

�i

�ph(i)
�ph(i) (23)

where �i;H�PFQ is the B-WFI for session i queue with the
H-PFQ server, �ph(i) is the B-WFI for the logical queue at

node ph(i) for the server node ph+1(i), h=0, � � �, H-1.

The proof is given in Appendix A. Basically, the theorem
states that the WFI for a H-PFQ server is the sum of WFI's
weighted by the guaranteed rate for all the PFQ server nodes
along the path from the leaf node to the root node.

Since a bounded WFI also implies a bounded delay, it
immediately follows that

Corollary 1 For a session i with H ancestors in a H-PFQ
server, if it is constrained by a leaky bucket (�i; ri), then the
delay of any packet in the session is bounded by

�i

ri
+

H�1X
h=0

�ph(i)

rph(i)
(24)

While Corollary 1 gives the delay bound for a leaky
bucket constrained session in a H-PFQ server, the bound
is not the tightest as it does not account for the situation
where packets from the same session received more service
in a previous time period. The following theorem provides
a tighter bound for a H-PFQ server.

Theorem 2 For a session i with H ancestors in a H-PFQ
server, if it is constrained by a leaky bucket (�i; �i), then the
delay of any packet in the session is bounded by

Di +

H�1X
h=1

�ph(i)

rph(i)
(25)

where �ph(i) is the B-WFI for the logical queue at node ph(i)

for the server node ph+1(i), h=1, � � �, H-1, and riDi � �i is
the SBI guaranteed to session i by its parent server node, i.e.,
Di is the delay bound guaranteed to session i by a standalone
p(i) server.

The proof of the theorem is given in Appendix B. The
theorem states that the delay bound provided by an H-PFQ
server to session i is the sum of the delay bound provided by
session i's parent server to session i and the WFI's weighted
by the guaranteed rate for all the other PFQ server nodes
along the path from the leaf node to the root node. To
achieve tight delay bounds in a H-PFQ server, the WFI's
for the intermediate and root server nodes should be small.

3.3 WF2Q

We have shown that to achieve tight delay bounds in a H-
PFQ server, it is important for the PFQ server nodes to have
small WFI's.

Most of the previously proposed PFQ algorithms have
large WFI's. In [2], we present an algorithm called Worst-
case Fair Weighted Fair Queueing (WF2Q). With WF2Q,
when the server picks the next packet to transmit at time
� , rather than selecting it from among all the packets at
the server as in WFQ, the server only considers the set of
packets that have started service in the corresponding GPS

system. selects the packet among them that has the smallest
virtual �nish time. A packet is said to be eligible at time �
if its (virtual) start time is less than or equal to the current
(virtual) time.

We call the policy used by WF2Q \Smallest Eligible vir-
tual Finish time First" (SEFF) policy If we consider again
the example in Section 3.1, at time 0, all packets at the head
of each session's queue, p1i , i = 1; � � � ; 11, have started service
in the FFQ system. Among them, p11 has the smallest �nish
time in FFQ, so it will be transmitted �rst in WF2Q. At
time 1, there are still 11 packets at the head of the queues:
p21 and p1i , i = 2; � � � ; 11. Although p21 has the smallest vir-
tual �nish time, it will not start service in GPS until time
2, therefore, it won't be eligible for transmission at time 1.
The other 10 packets have all started service at time 0 at
the FFQ system, thus are eligible, and one of them will be
transmitted. p12 as the next packet for service. At time 3,
p21 becomes eligible and has the smallest �nish time among
all packets, thus it will start service next. The service or-
der for all packets under WF2Q is shown as the last time
line in Fig. 2. During any interval in the example, the dif-
ference between the amounts of bits transmitted by GPS
and WF2Q is less than one packet size. Therefore, WF2Q
is a more accurate approximation of GPS than WFQ. The
following theorem is proven in [2].

Theorem 3 (1) WF2Q is a work-conserving policy.
(2) WF2Q is worst-case fair for session i

�i;WF2Q = Li;max + (Lmax � Li;max)
ri

r
(26)

(3) For a session i constrained by a leaky bucket (�i; ri),

WF2Q guarantees a delay bound of �i
ri

+ Lmax
r

.

As can be seen, the WFI for WF2Q is independent of the
number of sessions sharing the server. In the case of
Li;max = Lmax, �i;WF2Q will simply be Lmax. Since the
B-WFI for a packet system is at least one packet trans-
mission time, this means that WF2Q is an optimal packet
policy with respect to the worst-case fair property. In addi-
tion, since the maximum di�erence between a delay bound
provided by a PFQ server and a GPS server is one packet
transmission time, both WFQ and WF2Q provide the tight-
est delay bound among all PFQ algorithms.

3.4 WF2Q+

While WF2Q provides the tightest delay bound and smallest
WFI among all PFQ algorithms, it has the same worst-case
complexity of O(N) as WFQ because they both need to com-
pute VGPS(�).

In this section, we present a new packet algorithm that
provides the same delay bound and WFI as WF2Q, but with
a lower complexity. Since this policy is also worst-case fair,
but is simpler than WF2Q, we call it WF2Q+ . WF2Q+ also
uses the SEFF policy. The key aspect of WF2Q+ is the
use of a new virtual time function VWF2Q+(�) that achieves
both low complexity and high accuracy in approximating
the ideal virtual time function used in GPS. While a num-
ber of new virtual time functions have been proposed to
simplify the implementation of WFQ [9, 18], they all result
in PFQ algorithms with large WFI's. The unique advan-
tage of VWF2Q+(�) is that the resulting WF2Q+ algorithm
combines all three properties that are important for a PFQ
algorithm to be used in a H-PFQ server: tight delay bound,
small WFI, and low algorithmic complexity.

With WF2Q+ , the virtual time function is de�ned as
follows,

VWF2Q+(t+ �) = max(VWF2Q+(t) + �; min
i2B̂(t)(S

hi(t)

i))

(27)

where B̂(t) is the set of sessions backlogged in the WF2Q+
system at time t, hi(t) is the sequence number of the packet

at the head of the session i's queue, and S
hi(t)

i is the virtual
start time of the packet.

There are several noteworthy properties of VWF2Q+(�).
First, it is a strictly monotonically increasing function of
time with a minimum slope of 1. We call this the \mini-
mum slope property" of VWF2Q+. As discussed in [1], hav-
ing a virtual time function with the minimum slope property
is a necessary and su�cient condition for a PFQ server to
provide delay bounds to leaky bucket constrained sources
that are within one packet transmission time of those pro-
vided by GPS. The virtual time function VGPS(�), used by
both WFQ and WF2Q, satis�es this requirement by using
the marginal service rate of the GPS server as the slope,
which has a minimum value of 1. Therefore, both WFQ and
WF2Q can provide tight delay bounds. On the other hand,
the virtual time function used by SCFQ [9] may have a slope
of 0 during certain periods, and therefore the delay bounds
provided by the resulting SCFQ algorithm are much larger
than those provided by WFQ and WF2Q [10]. The second
important property of VWF2Q+(�), as provided by the max
over min operation in (27), is that it is at least as large as
the minimum virtual start time of all packets at the head
of all queues. This has two implications. First, this ensures
that a newly backlogged session has a virtual start time at
least as large as one of the existing backlogged sessions. This
is important for the resulting WF2Q+ algorithm to achieve
a low WFI. In addition, the property also ensures that at
least one packet in the system has a virtual start time less
than the current virtual time. This guarantees the result-
ing SEFF policy to be work-conserving as only packets with
virtual start time less than or equal to the current virtual
time are eligible for transmission.

To simplify the implementation, we also modify the def-
inition of virtual start and �nish times as de�ned in (6)
and (7). With the old de�nition, virtual start and �nish
times need to be maintained on a per packet basis. Usually
this means stamping the values of Ski and F k

i in the header
of packet pki . This overhead may not be acceptable for net-
works with small packet sizes, such as ATM networks. With
the following de�nition, there is only one pair of Fi and Si
that needs to be maintained for each session i. Whenever
a packet pki reaches the head of the queue, Fi and Si are
updated according to the following

Si =

�
Fi ifQi(a

k
i�) 6= 0

max(Fi; V (a
k
i)) ifQi(a

k
i�) = 0

(28)

Fi = Si +
Lki
ri

(29)

where Qi(a
k
i�) is the queue size of session i just before time

aki . With this de�nition, the per session Si and Fi are also
the virtual start and �nish times of the packet at the head
of the session queue.

There are two major tasks associated with implementing
WF2Q+ : (a) computation of the virtual time function; and
(b) maintaining the set of eligible sessions sorted by virtual
�nish times. As shown in [1], both can be accomplished with
O(log N) complexity.

The following theorem is proven in [1]

Theorem 4 (1) WF 2Q+ is work-conserving.
(2) WF 2Q+ is worst-case fair for session i with

�i;WF2Q+ = Li;max + (Lmax � Li;max)
ri

r
(30)

(3) For a session i constrained by a leaky bucket (�i; ri),

WF 2Q+ guarantees a delay bound of �i
ri

+ Lmax
r

.

Therefore, WF2Q+ has the same worst-case fairness and
bounded delay properties as WF2Q, but uses a virtual time
function with a lower complexity.

The Corollary below, which gives the delay bound for
H-WF2Q+ , follows directly from Theorem 2 and Theo-
rem 4.

Corollary 2 For a session i with H ancestors in a H �
WF 2Q+ server, if it is constrained by a leaky bucket (�i; �i)
and Lmax = Li;max, the delay of any packet in the session
is bounded by

�i

ri
+

H�1X
h=0

Lmax

rph(i)
(31)

4 Implementation of H-PFQ

In this section, we �rst discuss the general issues that are
involved in converting a standalone PFQ server into a PFQ
server node within a hierarchical structure. We then present
the detailed algorithm of H-WF2Q+ .

4.1 Standalone Server and Server Node in a Hierarchy

As discussed in Section 3.2, a PFQ server node in a hierarchy
di�ers from a standalone PFQ server in two aspects: (a) it
receives its service from its parent and therefore does not
have a constant service rate; (b) the queues it serves do
not have to be FIFO. We need to address the following two
issues when we transform a standalone PFQ into a server
node (1) the meaning of \real time" in the computation of
virtual time function; and (2) the determination of the head
of non-FIFO logical queue.

The virtual time function is a measure of the normal-
ized service that should be provide to each session. For a
standalone server that operates at a �x rate, the length of
the server busy period is a good reference against which
the per session normalized service should be compared. As
mentioned in Section 3.4, in order for a standalone PFQ
algorithm to provide delay bounds within one packet trans-
mission time of those provided by FFQ, the virtual time
function should have the \minimum slope property". If we
re-examine the computation of VWF2Q+(�) as de�ned in (27),
we notice that one element in the formula is � , which is
the time elapsed since the last computation of the virtual
time. With � in the formula, we ensure that the slope of
VWF2Q+(�) is never less than 1. This computation applies
only to a server with a constant service rate. For a server
that does not have a constant service rate, the total elapsed
time no longer provides the same reference point against
which we can measure system work.

To address this issue, we de�ne a more general notion of
Reference Time that can measure the system work in both
constant-rate and non-constant-rate servers. The Reference
Time Tn for a server node n in a H-PFQ server is de�ned

to be Tn(t) =
Wn(0;t)

rn
, where Wn(0; t) is the total amount of

bits that have been serviced by node n during period [0,t].
We now show that the Reference Time is equivalent to the

real time for the constant-rate root server. For the root node
R, �R = 1 holds. For any period [t1; t2], during which the
H-PFQ server is continuously busy, we have:

TR(t2)� TR(t2) =
(t2 � t1) � r

1 � r
= t2 � t1 (32)

Therefore, during any system busy period, TR has the same
evolution as the real time t.

The second di�erence between a server node in a hier-
archy and a standalone server is that a standalone server
serves per session FIFO queues whereas a server node serves
per subtree logical queues that are not necessarily FIFO. A
number of operations in the implementation of PFQ servers
need to use packets from the head of each queue. While it
is obvious which packet is at the head in a FIFO queue, we
need to de�ne the head packet for the logical queue that is
associated with a child subtree.

4.2 Pseudocode

To implement H-WF2Q+ , we have a tree representation
of the hierarchy. The root node represents the physical link
and the leaf node represents a physical queue. Each non-root
node n is connected to its parent p(n) by a logical queue Qn.
For the parent node to implement the WF2Q+ algorithm,
only the head of the logical queue is needed. Therefore, at
any given time, only the reference to the packet, which is
the head of the logical queue, is stored in queue Qn. The
actual packet remains stored in the real queue at the leaf
node until the link �nishes transmission of the packet. For
consistency, we also de�ne QR for the root server to be the
packet currently being transmitted. At any given time when
the server is busy, there exists a path from a leaf to the root
such that the logical queues of all nodes traversed by the
path point to the same physical packet that is currently
being transmitted. The logical queues and associated data
structures at each node are updated when a packet arrives
at an empty session queue at the leaf node, or when the
link is picking the next packet to transmit. In the following,
we present the pseudocode to describe the details of the
algorithm.
Arrive(i; Packet)

1 Enqueue(bQi; Packet)
2 if Qi(t) 6= ;
3 then return

4 Qi(t) Packet
5 n p(i)
6 si(t) max(fi(t); Vn(Tn(t)))

7 fi(t) si(t) +
Li(t)

ri

8 if Busyn = FALSE
9 then Restart-Node(n)

When a packet arrives at a leaf node i, if session i's logical
queue for its parent node Qi is not empty, the packet is just
appended to the end of the physical FIFO queue for the
session. Otherwise, the packet also becomes the head of the
logical queue Qi. The virtual start and �nish times for the
logical queue are then updated, and the procedure Restart-
Node() is called with the parent node if it is currently idle.
Restart-Node(n)
1 Pick m 2 En(t) s:t: fm(t) = minl2En(t)(fl(t))
2 if m 6= ;
3 then
4 ActiveChildn m
5 q p(n)

Tn(t) the Reference Time for server n as a function of real time t.
Vn(Tn(:)) the Virtual Time for server n as a function of its Reference Time.
rn guaranteed rate for server n.
sn(t) the virtual starting time of the packet Qn(t)
fn(t) the virtual �nishing time of the packet Qn(t)
Ln(t) the length of the packet Qn(t)
Busyn(t) a boolean function indicating whether or not node n is transmitting a packet at time t
p(n) the index of the node that is the parent of node n
Qn the logical queue for node n
Qn(t) the packet in the logical queue for node n at time tbQi the real queue for the leaf node ibQi(t) the packet at the head of the queue bQi at time t
ActiveChildn(t) the index of the node m 2 children(n) for which Qm(t) = Qn(t)
Cn the set composed of the indicies of all nodes which are children of node n.bCn(t) the set composed of the indices of all nodes m 2 Cn s.t. Qm(t) 6= ;
Sminn(t) Sminn(t) = min

m2bCn(t)(sm(t))
En(t) 8m 2 bCn(t+) j sm(t) � max(Vn(Tn(t)); Sminn(t

+))

Table 1: Notations used in the section

6 Qn(t) Qm(t))
7 if Busyn(t) = TRUE
8 then sn(t) fn(t)
9 else sn(t) max(fn(t); Vq(Tq(t)))

10 fn(t) sn(t) +
Ln(t)

rn

11 Busyn TRUE

12 Vn(Tn(t)) max(Vn(Tn(t))Sminn(T)) +
Ln(t)

rn

13 Tn(t) Tn(t) +
Ln(t)

rn

14 else
15 ActiveChildn ;
16 Busyn FALSE
17 if (n 6= R) and (Qq(t) ;)
18 then Restart-Node(q)
19 if (n = R) and (QR(t) 6= ;)
20 then Transmit-Packet-To-Link(Qn(t))

A node is restarted whenever it needs to select a new
packet to transmit. This occurs either when a packet ar-
rives to an idle node or when the last packet �nishes be-
ing transmitted on the physical link. If a packet arrives at
an idle node n, the Busyn ag will be FALSE, in which
case the new start time for the node is computed using
sn(t) = max(fn(t); Vq(Tq(t))). If the node is not idle and
has a packet to transmit, the new start time will be set to
the current �nish time. If the node is not idle but has no
more packets to send, busy ag will be cleared to indicate
that the node is now idle. If the current node is the root
node and there is a packet in the queue, the packet will be
transmitted over the link. If the current node is not the
root node, and its parent node does not have a packet in its
queue Qq , the node will restart its parent node.
Reset-Path(n)
1 Qn(t) ;
2 if Leaf(n) = TRUE
3 then

4 Dequeue(bQn)

5 if bQn(t) 6= ;
6 then

7 Qn(t) bQn(t)
8 sn(t) fn(t)

9 fn(t) sn(t) +
Ln(t)

rn

10 Restart-Node(p(n))

11 else
12 m ActiveChildn
13 ActiveChildn ;
14 Reset-Path(m)

When the link �nishes serving a packet, it calls Reset-
Path(R). Reset-Path descends the tree along the path to
the leaf node whose packet just �nished transmission. At
each node along the tree path, it resets the logical queue to
be empty. When the leaf node is reached, the �rst packet
of the queue is dequeued and its parent node is restarted.
During the descent, all pointers are cleared, but not the busy
ags. During the process of picking a new packet, the busy
ag acts as a reminder to the Restart-Node function that a
packet has just �nished transmission. If there are no more
packets for this node to send, Restart-Node will clear the
busy ag.

5 Simulation Experiments

..........

,...........

45Mbps

500Kbps500Kbps

1Mbps

21Mbps

9Mbps

.011

.16

333Kbps 333Kbps 333Kbps

.16

PS-21 PS-40 CS-1 CS-10

RT-1 BE-1

.81

.52

.09

.011

.16 .16

.46

..............

NR

N2

N1

333Kbps

PS-1 PS-20

11Mbps

Figure 3: Example 1

In this section, we present simulation experiments to illus-
trate the bounded delay and hierarchical link-sharing prop-
erties of H-WF2Q+ . To demonstrate the tightness of delay

30 ms

20 ms

10 ms

0 ms

8000 ms6000 ms4000 ms2000 ms0 ms

Delay (ms)

Time (ms)

Delay for Session RT-1

(a) H-WFQ

30 ms

20 ms

10 ms

0 ms
10000 ms8000 ms6000 ms4000 ms2000 ms

Delay (ms)

Time (ms)

Delay for Session RT-1

(b) H-WF2Q+

Figure 4: Absolute delay experienced by real-time session under H-WFQ and WF2Q+

372 pkts

370 pkts

368 pkts

366 pkts

364 pkts

362 pkts

9450 ms9400 ms9350 ms9300 ms9250 ms9200 ms

Arrivals/Service

Time (ms)

Arrival and Service Curves for Session RT-1

(a) H-WFQ

370 pkts

365 pkts

360 pkts

9450 ms9400 ms9350 ms9300 ms9250 ms9200 ms

Arrivals/Service

Time (ms)

Arrival and Service curves for Session RT-1

(b) H-WF2Q+

Figure 5: Service lag experienced by real-time session under H-WFQ and H-WF2Q+

bounds provided by H-WF2Q+ , we contrast the delay dis-
tributions between H-WF2Q+ and H-WFQ servers. These
experiments were conducted using a modi�ed version of the
NETSIM discrete event simulator from MIT.

5.1 Delay Characteristics

In this section we compare the packet delay distributions
for a real-time session under two di�erent H-PFQ servers,
H-WF2Q+ and H-WFQ. The service hierarchy is shown in
Fig 3. The rate above the node is the guaranteed service
rate for the node. The value inside the node represents the
node's guaranteed rate as a fraction of it's parent's rate.

The real-time session being measured is the leaf node la-
beled RT-1. It has a guaranteed share of 0.81 from its parent
node which translates into a guaranteed rate of 9Mbps. Ses-
sion RT-1 is a deterministic on/o� source which starts at
time t = 200ms with a duty cycle of 25ms on, and 75ms
o�. Session RT-1 shares node N-1 with a sibling BE-1 .
BE-1 is continuously backlogged and as a result nodes N-R ,
N-2 and N-1 are also continuously backlogged. This allows
us to see the e�ects of link-sharing between unconstrained
sessions and sessions with delay guarantees. We have two
additional types of background tra�c, the sessions labeled
PS-n are poisson tra�c sources. while the sessions labeled
CS-n are constant rate sessions with identical start times
and a peak transmission rate equal to their guaranteed rate.
The CS-n sessions are �rst passed through a multiplexer be-

fore they arrive at the server, so that they do not have simul-
taneous arrivals, but rather model the sort of packet train
burst that could be sent by individual users and/or networks
with high speed connections. For simplicity, we assume all
sessions transmit 8 KB packets.

We consider the following three scenarios:

� All sources except BE-1 are transmitting with aver-
age rates their guaranteed rates. Since the sum of the
guaranteed rates over all sessions is less than the link
speed, only session BE-1 is continuously backlogged
in the system.

� CS-n sessions are o�, but PS-n sources send at an av-
erage rate of 1.5 times their guaranteed rate.

� CS-n sessions are on and PSn sources continue to send
at an average rate of 1.5 times their guaranteed rate.

5.1.1 Poisson and Constant Cross Tra�c

In Fig. 4(a) we see that under H-WFQ, session RT-1 ex-
periences large periodic spikes in the observed delay. This
is due to the periodic nature of RT-1 and the CS-1 , � � �,
CS-10 sessions. RT-1 becomes active every 100ms, while
the CS ousrces arrive approximately every 193ms. As a
result, there is a cycle of about 3 seconds long.

Fig. 5 shows a close-up of the packet arrivals and service
received by session RT-1 corresponding to the two large

20 ms

15 ms

10 ms

5 ms

0 ms
10000 ms8000 ms6000 ms4000 ms2000 ms

Delay (ms)

Time (ms)

Delay for Session RT-1

(a) H-WFQ

20 ms

15 ms

10 ms

5 ms

0 ms
8000 ms6000 ms4000 ms2000 ms

Delay (ms)

Time (ms)

Delay for Session RT-1

(b) H-WF2Q+

Figure 6: Absolute delay experienced by real-time session with overloaded poisson tra�c

40 ms

30 ms

20 ms

10 ms

0 ms
10000 ms8000 ms6000 ms4000 ms2000 ms

Delay (ms)

Time (ms)

Delay for Session RT-1

(a) H-WFQ

30 ms

20 ms

10 ms

0 ms
10000 ms8000 ms6000 ms4000 ms2000 ms

Delay (ms)

Time (ms)

Delay for Session RT-1

(b) H-WF2Q+

Figure 7: Absolute delay experienced by real-time session with overloaded poisson tra�c and constant tra�c

spikes in Fig 4(a). The upper line is the number of packets
arrived at the server at time t, the lower line is the number
of packets served by time t. As can be seen, while the two
curves track closely with each other under H-WF2Q+ , they
can di�er by a large amount under H-WFQ.

5.1.2 Overloaded Poisson Cross Tra�c

In this section the graphs are for the same network as be-
fore with the exception that PS-n sources are transmitting
at an average of 1.5 times their guaranteed rate, and the
constant rate sources are not transmitting. As a result
all the PS-n sessions eventually become persistently back-
logged. As we see in Fig. 6(a) even with purely random ini-
tial arrival the maximum delay experienced under H-WFQ is
still much greater than that experienced under H-WF2Q+ .

5.1.3 Constant and Overloaded Poisson Cross Tra�c

In our next experiment shown in Fig 7, the poisson sessions
are still overloaded, and the constant rate sessions are turned
back on. Compared to the previous two scenarios, we can
see that the worst case delay increases substantially under
H-WFQ, but remains almost the same for H-WF2Q+ .

We make the following observations based on the three
sets of experiments. For H-WFQ server, (a) correlation
among a fraction of tra�c streams can have very adverse
e�ects on the delay experienced by other sessions; (b) even

when there is no correlation among tra�c sources, under
overload, the delay experienced by some sessions may be
very large; and (c) the e�ects of any correlated sources
are magni�ed under overload. None of these apply to H-
WF2Q+ due to its strong worst-case fairness property.

5.2 Hierarchical Link Sharing

In this section we present simulation experiments to illus-
trate how H-WF2Q+ can be used to support hierarchical
link-sharing.

We consider the link-sharing structure shown in Fig. 8(a),
which has a multi-level hierarchy with two types of sources:
TCP sources and deterministic on-o� sources. We will ex-
amine the performance of sessions labeled TCP-f1,5,8,10,11g
under link-sharing when on-o� sources alternative between
active and idle states. To see the e�ect of hierarchical link-
sharing, we use one on-o� source for each level in the hi-
erarchy. The bandwidth's and active periods of the on-o�
sources are shown in Fig. 8(b).

Fig. 9 shows the bandwidth vs. time graphs for each
of the TCP sessions under consideration. Fig. 9(a) shows
the measured bandwidth curves with an H-WF2Q+ server.
The bandwidth is measured by exponentially averaging over
50ms windows. A close-up comparison between the mea-
sured bandwidth and the bandwidth under the ideal H-GPS
server during the interval [4500 ms, 8500ms] is shown in
Fig. 9(b). We notice that the measured bandwidth curves

..........

ON/OFF-4

TCP-1 TCP-4

ON/OFF-2

ON/OFF-3

.......

TCP-8

TCP-5 TCP-7

NR

TCP-9

TCP-10 TCP-11

Link 150 Mbps

3.75 Mbps3.75 Mbps

9Mbps

54Mbps

5.4Mbps 10.8Mbps32Mbps

16Mbps6.4Mbps

5.4Mbps

9.6Mbps

9Mbps

90Mbps

9Mbps

.1

.025 .025

.1

.1 .1

.3 .2 .5

ON/OFF-1

45Mbps

.3

.2.6

.6

.1

.6 N1

N3

N2

(a) Class Hierarchy

40 Mbps

30 Mbps

20 Mbps

10 Mbps

0 Mbps
10000 ms5000 ms0 ms

Bandwidth (Mbps)

Time (ms)

Active Times and Bandwidth of ON-OFF Sessions

ON/OFF--4

ON/OFF--3
ON/OFF--2

ON/OFF--1

(b) Active Periods for On/O� Sources

Figure 8: Class Hierarchy and ON/OFF Sources

30 Mbps

20 Mbps

10 Mbps

10000 ms8000 ms6000 ms4000 ms2000 ms0 ms

Bandwidth (Mbps)

Time (ms)

Measured Bandwidth

TCP10

TCP11

TCP8

TCP5

TCP1

(a) Measured Bandwidth

30 Mbps

20 Mbps

10 Mbps

8000 ms7000 ms6000 ms5000 ms

Bandwidth (Mbps)

Time (ms)

Measured Bandwidth vs. Ideal Bandwidth
TCP10

TCP11

TCP8

TCP5

TCP1

(b) Measured vs. Ideal Bandwidth

Figure 9: Ideal and Measured link-Sharing Bandwidth under H-WF2Q+

track very closely to the ideal bandwidth curves. There-
fore, from the point of view of link-sharing, H-WF2Q+ and
H-GPS provide almost identical services.

Now we examine in more detail the dynamics of band-
width sharing due to the alternation between active and idle
states by on-o� sources. At time 5000 ms, on-o� source 4
becomes active while on-o� sources 2 and 3 become idle. On
the one hand, the bandwidths received by TCP session 10
and 11 decrease because they lose more bandwidth to on-o�
source 4 than they gain from on-o� sources 2 and 3. On
the other hand, the bandwidths of TCP sessions 5 and 8
increase as they bene�t from the departure of on-o� sources
2 and 3, but are not a�ected by on-o� source 4.

At time 5250 ms, on-o� source 1 becomes idle. Since it
is at the �rst level in the hierarchy, its excess bandwidth is
shared by all sessions, though with di�erent relative ratio's.
As can be seen, the bandwidths for all sessions increase due
to the extra available bandwidth. When the on-o� source 1
becomes active again at time 600 ms, the bandwidth of all
sessions decrease to the original level before time 5250 ms.
Similar oscillations happen at time pairs (6750ms,7500ms)
and (8250ms,9000ms). Also note that on/o� source 1 is the
only session that a�ects the bandwidth of TCP session 1.

This is because TCP session 1 is at the �rst level, and won't
be a�ected by any changes in lower levels as long as N1 is
backlogged.

At time 8000ms, on-o� source 4 becomes idle while on-o�
source 3 becomes active. The bandwidth of TCP session 1
and 5 are not a�ected because there are no changes in their
levels. The bandwidths of TCP session 10 and 11 increase
since they now gain more from the departure of on-o� source
4 than they lose to the arrival of on-o� source 3. The band-
width of TCP session 8 decreases due to the arrival of on-o�
source 3.

6 Related Work

In [16], the hierarchical WFQ mechanism is used to sup-
port integrated tra�c management. The negative e�ects
introduced by WFQ's high WFI on link-sharing and tra�c
management algorithms are not studied. To provide tighter
bounds for real-time tra�c, all real-time queues need to be
children of the root node, and link-sharing is performed only
among non-real-time sessions but not between real-time and
non-real-time sessions. That is, due to de�ciencies of WFQ,
tight delay bounds and accurate hierarchical link sharing

cannot be achieved simultaneously with H-WFQ.
In [13], an implementation of H-WFQ is presented. The

scheduler implemented is not actually a H-WFQ server, but
a WFQ server in which the weights are dynamically changed
according to the set of backlogged sessions in the packet
server. It is easy to show that such an implementation will
not only yield much larger delay bounds but also violate the
link-sharing goals in certain situations. The key problem is
that at any time instance, the set of the backlogged sessions
in a packet system can be quite di�erent from that in the
corresponding uid system. Adjusting the weight according
to the set of backlogged sessions in the packet system can
result in large errors.

In [8], Floyd and Jacobson present an architecture which
during congestion �rst gives priority to link sharing, and
once the link sharing goals are met, a general scheduler
provides for the various service guarantees. Our work dif-
fers from this work in that we build our framework on H-
PFQ, which has theoretically proven properties for support-
ing link-sharing, real-time service, and best-e�ort service.
The Class Based Queueing (CBQ) algorithm used to realize
the link-sharing architecture, however, is rather ad hoc. It
is unclear whether the guaranteed real-time service can be
provided within their framework.

A number of algorithms such as Self-Clocked Fair Queue-
ing [5, 9], Stochastic Fair Queueing [12], De�cit Round
Robin [17], and Frame-based Fair Queueing [18] have been
proposed to approximate GPS with a lower complexity. How-
ever, none of them address the issue of worst-case fairness,
and all of them have large WFI's.

7 Conclusion

We make three contributions in this paper. First, we de-
velop techniques to analyze the delay and fairness proper-
ties of Hierarchical Packet Fair Queueing algorithms. We
demonstrate, both empirically and analytically, that hav-
ing a PFQ algorithm with a low WFI value is a prerequi-
site for constructing H-PFQ servers that provide tight delay
bounds. Second, we propose a new PFQ algorithm called
WF2Q+ that is the �rst to have the following three prop-
erties: (a) providing the tightest delay bound among all
PFQ algorithms; (b) having the smallest WFI among all
PFQ algorithms; and (c) having a relatively low complex-
ity of O(log N). Finally, we present an implementation of
H-WF2Q+ that provides similar delay bounds and band-
width distribution to those provided by the idealized H-GPS
server. The proposed H-WF2Q+ server is the �rst in the lit-
erature that provides both provably tight delay bounds for
real-time sessions and the full semantics of hierarchical link-
sharing service.

In the paper we have focused on a speci�c type of H-
PFQ server that has a tree structure. The work can easily
be extended to the more generalized directed acyclic graph
structure, where a node can receive its service from more
than one parent node.

References

[1] J. Bennett and H. Zhang. Worst-case fair packet fair
queueing algorithms. Technical report, 1996. Submitted
for publication.

[2] J.C.R. Bennett and H. Zhang. WF2Q: Worst-case fair
weighted fair queueing. In Proceedings of IEEE IN-

FOCOM'96, pages 120{128, San Francisco, CA, March
1996.

[3] D. Clark, S. Shenker, and L. Zhang. Supporting real-
time applications in an integrated services packet net-
work: Architecture and mechanism. In Proceedings of
ACM SIGCOMM'92, pages 14{26, Baltimore, Mary-
land, August 1992.

[4] R. Cruz. Service burstiness and dynamic burstiness
measures: A framework. Journal of High Speed Net-
works, 1(2):105{127, 1992.

[5] J. Davin and A. Heybey. A simulation study of fair
queueing and policy enforcement. Computer Commu-
nication Review, 20(5):23{29, October 1990.

[6] A. Demers, S. Keshav, and S. Shenker. Analysis and
simulation of a fair queueing algorithm. In Journal
of Internetworking Research and Experience, pages 3{
26, October 1990. Also in Proceedings of ACM SIG-
COMM'89, pp 3-12.

[7] D. Ferrari and D. Verma. A scheme for real-time chan-
nel establishment in wide-area networks. IEEE Journal
on Selected Areas in Communications, 8(3):368{379,
April 1990.

[8] S. Floyd and V. Jacobson. Link-sharing and resource
management models for packet networks. IEEE/ACM
Transactions on Networking, 3(4), August 1995.

[9] S. Golestani. A self-clocked fair queueing scheme for
broadband applications. In Proceedings of IEEE IN-
FOCOM'94, pages 636{646, Toronto, CA, June 1994.

[10] P. Goyal, S. Lam, and H. Vin. Determining end-to-end
delay bounds in heterogeneous networks. In Proceedings
of the 5th International Workshop on Network and Op-
erating System Support For Digital Audio and Video,
pages 287{298, Durham, New Hampshire, April 1995.

[11] S. Keshav. A control-theoretic approach to ow con-
trol. In Proceedings of ACM SIGCOMM'91, pages 3{
15, Zurich, Switzerland, September 1991.

[12] P. McKenney. Stochastic fair queueing. In Proceedings
of IEEE INFOCOM'90, San Francisco, CA, June 1990.

[13] O. Ndiaye. An e�cient implementation of a hierarchical
weighted fair queue packet scheduler. Master's thesis,
Massachusetts Institute of Technology, May 1994.

[14] A. Parekh and R. Gallager. A generalized processor
sharing approach to ow control - the single node case.
ACM/IEEE Transactions on Networking, 1(3):344{
357, June 1993.

[15] S. Shenker. Making greed work in networks: A game
theoretical analysis of switch service disciplines. In Pro-
ceedings of ACM SIGCOMM'94, pages 47{57, London,
UK, August 1994.

[16] S. Shenker, D. Clark, and L. Zhang. A scheduling ser-
vice model and a scheduling architecture for an inte-
grated services network, 1993. preprint.

[17] M. Shreedhar and G. Varghese. E�cient fair queue-
ing using de�cit round robin. In Proceedings of SIG-
COMM'95, pages 231{243, Boston, MA, September
1995.

[18] D. Stilliadis and A. Verma. Frame-based fair queueing:
A new tra�c scheduling algorithm for packet-switched
networks. Technical Report USCS-CRL-95-39, Univer-
sity of California at Santa Cruz, July 1995.

[19] J. Turner. New directions in communications(or which
way to the information age?). IEEE Communication
Magazine, 24(10), October 1986.

[20] H. Zhang and S. Keshav. Comparison of rate-based ser-
vice disciplines. In Proceedings of ACM SIGCOMM'91,
pages 113{122, Zurich, Switzerland, September 1991.

A Proof of Theorem 1

Let [t1; t2] be any time period that session i is continuously
backlogged. It immediately follows that the logical queue at
node ph(i) is continuously backlogged with respect to server

node ph+1(i), h=0, � � �, H-1.

Since server node ph+1(i) is worst-case fair with the log-

ical queue at node ph(i), the following holds for

Wph(i)(t1; t2) �
�ph(i)

�ph+1(i)
Wph+1(i)(t1; t2)� �ph(i) (33)

where Wph(i)(t1; t2) is the amount of service received by

node ph(i) in [t1; t2].

By multiplying �i
�
ph(i)

at both sides of (33), we have

�i

�ph(i)
Wph(i)(t1; t2) �

�i

�ph+1(i)
Wph+1(i)(t1; t2)�

�i

�ph(i)
�ph(i)

(34)
Adding (34) for h=0, � � �, H-1, and eliminating common
terms on both sides, we have:

Wi(t1; t2) �
�i

�pH (i)

WpH (i)(t1; t2)�

H�1X
h=0

�i

�ph(i)
�ph(i)

= �ir(t2 � t1)�

H�1X
h=0

�i

�ph(i)
�ph(i)

= ri(t2 � t1)�

H�1X
h=0

�i

�ph(i)
�ph(i) (35)

Therefore, the NB-WFI for session i in the H-PFQ server is

�i;H�PFQ =

H�1X
h=0

�i

�ph(i)
�ph(i) (36)

Q.E.D.

B Proof of Theorem 2

Consider the kth packet of session i. Let aki and dki be its
arrival and departure times respectively. Based on the def-
inition of SBI, for dki , there exists an instant t1 within the
node p(i) busy period that includes also dki , where t1 < dki
Qi(t

�

1) = 0, and Qi(t1) 6= 0 holds, such that

Wi(t1; d
k
i) �

�i

�p(i)
Wp(i)(t1; d

k
i)� (riDi � �i) (37)

Since both t1 and dki are in the same server busy period
of node p(i), the logical queue at node ph(i) is continuously

backlogged with respect to server node ph+1(i), h=1, � � �,

H-1. Also, server node ph+1(i) is worst-case fair with the

logical queue at node ph(i), therefore the following holds

Wph(i)(t1; d
k
i) �

�ph(i)

�ph+1(i)
Wph+1(i)(t1; t2)� �ph(i) (38)

Multiplying
�p(i)

�
ph(i)

at both sides of (38), we have

�p(i

�ph(i)
Wph(i)(t1; d

k
i) �

�p(i)

�ph+1(i)
Wph+1(i)(t1; d

k
i)�

�p(i)

�ph(i)
�ph(i)

(39)
Summing (39) for h=1, � � �, H-1, and eliminating com-

mon terms on both sides, we have:

Wp(i)(t1; d
k
i) �

�p(i)

�pH (i)

WpH (i)(t1; d
k
i)�

H�1X
h=1

�p(i)

�ph(i)
�ph(i)

= �p(i)r(d
k
i � t1)�

H�1X
h=1

�p(i)

�ph(i)
�ph(i)

= rp(i)(d
k
i � t1)�

H�1X
h=1

�p(i)

�ph(i)
�ph(i) (40)

Plugging into (37), we have

Wi(t1; d
k
i) � ri(d

k
i � t1)�

H�1X
h=1

�i

�ph(i)
�ph(i)�riDi+�i (41)

Since session i queue is FIFO and leaky bucket con-
strained, (19) and (20) holds. Combining them with (41),
we have

�i+ ri(a
k
i � t1) � ri(d

k
i � t1)�

H�1X
h=1

�i

�ph(i)
�ph(i)� riDi+ �i

(42)
Rearranging terms and dividing both sides by ri, we have

d
k
i � a

k
i � Di +

H�1X
h=1

�ph(i)

rph(i)
(43)

Q.E.D.

