A Rédliable and Scalable Striping Protocol *

Hari Adiseshu, Guru Parulkar and George Varghese
hari @dworkin.wustl.edu, guru@cs.wustl.edu, and varghese@cs.wustl.edu
Department of Computer Science, Washington University
St. Louis, MO 63130, USA
TEL: (314) 935-6160, FAX: (314) 935-7302

Abstract

Link striping algorithms are often used to overcome transmission
bottlenecks in computer networks. Traditional striping algorithms
suffer from two major disadvantages. They provideinadequatel oad
sharing in the presenceof variable length packets, and may resultin
non-FIFOdelivery of data. We describeanew family of link striping
algorithms that solves both problems. Our scheme applies to any
layer that can provide multiple FIFO channels.

We deal with variable sized packets by showing how fair queu-
ing algorithms can betransformed into load sharing algorithms. Our
transformation resultsin practical |oad sharing protocols, and shows
atheoretical connection betweentwo seemingly different problems.
The sametransformation can be applied to obtain load sharing pro-
tocolsfor links with different capacities. We deal with the FIFO re-
quirement for two separate cases. If asequencenumber can beadded
to each packet, we show how to speed up packet processing by let-
ting the receiver simulate the sender algorithm. If no header can be
added, we show how to provide quasi-FIFO delivery. Quasi-FIFO is
FIFO except during occasional periods of loss of synchronization.
We arguethat quasi-FIFOis adequatefor most applications. Wealso
describe a simple technique for speedy restoration of synchroniza-
tion in the event of loss.

We develop an architectural framework for transparently em-
bedding our protocol at the network level by striping | P packetsacross
multiple physical interfaces. Theresulting strlPe protocol has been
implemented within the NetBSD kernel. Our measurementsand sim-
ulations show that the protocol offers scalablethroughput evenwhen
striping isdoneover dissimilar links, and that the protocol synchro-
nizes quickly after packet loss. Measurements show performance
improvements over conventional round robin striping schemesand
striping schemesthat do not resequence packets.

1 Introduction

Parallel architectures are attractive when scalar architectures with

therequired performanceare unavailableor have poor cost-performance.

*Hari Adiseshu and Guru Parulkar were supportedin part by ARPA, National Sci-
ence Foundation, and an industrial consortium of Ascom Timeplex, Bellcore, BNR,
Goldstar, NEC, NTT, SynOptics, and Tektronix. George Varghese was supported in
part by NSF Research Grant NCR-9405444 and an ONR Young I nvestigator Award.

Examples include multiprocessors and RAID systems that use disk
striping. Parallel solutions, however, have additional costsfor syn-
chronization(e.g., the need to keep multiprocessor cachescoherent)
and fault-tolerance (e.g., the need for parity disksin disk arrays).

Similar considerations apply to computer networks [TS95] be-
cause of transmission and processing bottlenecks. High end work-
stationsand serverscan easily saturate existing Local AreaNetworks
(LANS). Such devices may obtain increased throughput by “ strip-
ing” data across multiple adaptors and multiple LANS. Solutions
that use striping may even be cheaper than the alternatives.

Asan example of cost-performancetradeoffs, a 155 Mbps mul-
timodefiber together with transmitter/receiver opticscostsabout $75
today, while a 622 Mbps single mode fiber costs about $700. For a
wirelength of amile or so, striping data acrossfour 155 Mbpsfibers
may be cheaper than using a622 Mbpslink. Similarly, in the wide
area the price differential between T1 and T3 lines makes striping
across T1 links attractive. On the other hand, many of the Giga-
bit testbeds [TG93, JD93] have resorted to striping because of the
unavailability of high speed equipment: for instance, the IBM SIA
adaptor [TG93] emulates a SONET STS-12 line using four sTs-3c
lines.

Thus channel striping, also known as load sharing or inverse
multiplexing, is often used in computer networks. However, asin
other parallel solutions, there are synchronizationand fault-tolerance
coststhat are inherent to channel striping. If a FIFo (First-In-First-
Out) stream of packetsis striped across multiple channels, pack-
ets may be received out of order at the receiver because of differ-
ent delays (called skews) on channels. In many applicationsthe re-
ceiver must reconstruct the sender sequencefrom the parallel packet
streams. Thisaddsasynchronizationcost. Inaddition, channel strip-
ing must also be resilient to common faults such as bit errors and
link crashes.

Aswe will seein Section 2.1, earlier solutions to the synchro-
nization and fault-tolerance problems are expensive, inefficient, or
dependent on assumptionsthat make them infeasible in certain ap-
plication domains. Our paper, on the other hand, describes a new
family of channel striping algorithms that is both general and effi-
cient. Our striping schemesare based on acombination of two novel
ideas: fair load sharing and logical FIFO reception.

The theoretical contributions of this paper include: a new con-
nection between fair queuing and load sharing, the idea of logical
reception, and anovel distributed algorithm to restore synchroniza-
tion in the face of loss. The practical contributions of this paper
include: an architectural model, a working software implementa-
tion of the model and the striping algorithm, and measurementsand
evaluation of the striping algorithm.

Overview of Solution Components

In Section 2, we present a model of the load sharing problem, and
review previouswork. To provide load sharing in the presence of
varying length packets, we use fair load sharing algorithms. We
show suchfair load sharing algorithms can be automatically derived
by transforming aclassof fair queuing algorithms. In Section 3, we
develop acriterion for this transformation, and provide an instance
of fair load sharing algorithms.

In Section 4, we deal with the FIFO delivery problem. Our so-
lution is compatible with our fair load sharing solutions described
in Section 3. Our main idea is the notion of logical receptionin
which we separate physical reception from logical reception by a
per-channel buffer; we then have the receiver simulate the sender
algorithm in order to remove packetsin FIFO order from channel
buffers. We show how to achievequasi-FIFO delivery at thereceiver
without any modification of the transmitted packets, by using logi-
cal reception.

We define quasi-FIFO delivery as FIFO delivery except during
periods of loss of synchronization between the sender and the re-
ceiver. Undetected loss of packets between the sender and receiver
may cause loss of synchronization. We show in Section 5 how to
quickly detect and recover from such loss of synchronization.

In Section 6 we present the details of our prototypeimplementa-
tion. Wefirst present aframework for striping 1P packetsover mul-
tiple1pinterfacesin Section 6.1. Wethen present experimental veri-
fication of theload sharing and F1FO delivery properties of our chan-
nel striping schemein Section 6.2. We show how an implementa-
tion of our striping algorithm over two dissimilar links can provide
the aggregate throughput of the individual links. We also study the
individual impact of our two ideas: SRR versus round robin, and
logical reception versus no resequencing.

2 Model and Related Work

To allow our algorithmsto bewidely applicable, we useabroad def-
inition of achannel. For the rest of this paper, we define a channel
tobealogical FIFo path at either the physical, datalink, network, or
transport layers. We use packetsto refer to the atomic units of ex-
change between two entities communicating across a channel. The
generic channel striping configuration is depicted in Figure 1.

Sender Node S Receiver node R

:D:D Channel 1
:D:D Channel 2
Channel 3
TMh—
:D:D Charine\ N

Channel

— Striping
III Algorithm

Resequencing
Algorithm

11—

Figure 1: Channel striping configuration

As seen in Figure 1, there are NV channels between the sender
S and the receiver R. For simplicity, we consider traffic in only
one direction; the same analysis and algorithms apply for the re-
versedirection. Node.S implements the striping algorithm to stripe
outgoing traffic acrossthe N channels, and node R implementsthe
resequencing algorithm to combine the traffic into a single stream.
We will sometimes assume, for throughput analysis, that sender .S
is backlogged, i.e., it always has packetsto transmit. However, our
algorithms work for any traffic pattern offered to the sender.

All channelsare assumedto be FIFO. Channelscan be subject to
packetlossand corruption. Channelsthat occasionally deviatefrom
FIFO delivery can also be modeled as having burst errors. Finally,
we allow the end-to-end latency or skew across each channel to be
potentially different and to vary on a packet to packet basis. Thisis
important to model realistic network channels. This also rules out

simple solutions to the resequencing problem based on skew com-
pensation, if the skew cannot be bounded or characterized.

The simplest example of a channel at the data link layer is a
point-to-point link that connectstwo devices, wherethetwo devices
could be workstations, switches, routers, or bridges. A less obvi-
ous example of adata link channel isa LAN (e.g., Ethernet), that
guaranteesFIFO delivery between agiven sender and receiver. Net-
work layer channel examplesinclude ATM or x.25 virtual circuits.
Even in datagram networks, it may be possible to construct “net-
work” channels(e.g., by using strict | P sourcerouting to set up mul-
tiple pathsbetween two | P endpoints), but these examples seem con-
trived. Finally, since most transport protocols like TCP provide a
stream service, it is possibleto think of achannel asatransport con-
nection. A fast cPu may achieve higher throughput by striping data
across multiple “intelligent” adaptors, each of which implements a
TCP connection. However, the most useful examples appear to be
data link and virtual circuit channels.

Given aset of FIFO channels, the desirable properties of achan-
nel striping schemeincludefair load sharing with variable sized pack-
ets and variable capacity channels, FIFO delivery of packetsat the
receiver, and applicability to awide variety of channelswithout any
modification to existing channel packet formats or equipment. In
addition the schemeshould berobust enoughto recover from bit and
burst errors, and be scalable enough to impose little overhead.

2.1 Existing Channel Striping Algorithms

[TS95] describesamodel of load striping, and summarizesvar-
ious approaches to the problem. Table 1 compares the features of
some solutions to striping.

The simplest channel striping schemeis round robin striping —
the sender sendspacketsin round robin order on the channels. Round
robin provides for neither load sharing with variable sized packets,
nor FIFO delivery without packet modification. Fair load sharing
doesnot hold if the sender alternates between big and smaller pack-
ets and stripes over two channels. In this case, al the big pack-
ets go over one channel. Also, since the channels may have vary-
ing skews, the physical arrival of packetsat the receiver may differ
from their logical ordering. Without sequencinginformation, pack-
ets may be persistently misordered.

Round robin schemes can be made to guarantee FIFO delivery
by adding a packet sequence number which can be used to rese-
guence packets at the receiver. However, this violates the goal of
working over existing channelswhich do not allow header modifi-
cation. For example, in ATM networks where the cell sizeis fixed
at 53 bytes, it appears difficult to add extra headers to cells (e.g.,
to stripe cells between two switches), and yet use existing equip-
ment. Even channels that allow variable sized packets (e.g., Eth-
ernets) have a restriction on the maximum packet size. We cannot
add an extra header if the packetsthat the sender wishesto send are
already maximum sized packets.

Both the variable packet size problem and the FIFO problem can
be solved if the channel striping algorithm can modify the equip-
ment (typically hardware) or reformat the packets at the endpoints
of a channel. For example, in the First Come First Serve scheme,
the packets are split into fixed size striping units of data, which are
then striped round robin across the channels. The striping unit can
be a bit or a byte or a bigger aggregation. Bit or byte interleaving
is often done at the hardware level using devices known asinverse
multiplexers.

Inverse multiplexers which operate on 56 kbps and 64kbpscir-
cuit switched channels are commercially available. Industry wide
standardization of inverse multiplexershasbeeninitiated by the BOND-
ING [Dun94][Fre94][Gro92] consortium, which hasissued standards
for a frame structure and procedures for establishing a wideband
communications channel by combining multiple switched 56 and

Scheme FIFO delivery Load sharing with Variable | Target Environment
Length Packets
Round-Robin, no header May be non-FIFO Poor At all levels
Round-Robin with header Guaranteed FIFO Poor Only if we can add headers
BONDING Guaranteed FIFO Good Only over synchronousserial channels
Fair Queuing algorithm with | Guaranteed FIFO Good Only if we can add headers
header
Fair Queuingalgorithm, no header | Quasi-FIFO Good At dl levels

Table1: Featuresof somechannel striping solutions. Thefirst threerows describeexisting schemes, and the last two rows describethe features

of our new schemes.

64-kbps channels. The BONDING scheme uses a fixed size frame
structure and skew compensationfor reordering, together with frame
seguence numbers to recover from errors. The BONDING scheme
requires special hardware at the sender and receiver.

The ATM Forum is considering a standard for ATM cell strip-
ing called A1m (ATM Inverse Multiplexing) based on delay compen-
sation. As with BONDING, this works only when the skew can be
bounded tightly.

The establishment of Gigabit testbeds led to the design of sev-
eral network adaptorswhich striped dataacrossmultiple slower speed
ATM linksto achieve gigabit throughputs. Asmentioned earlier, the
IBM SIA adaptor [TG93] doesstriping over 4 sSTS-3c channels. The
Bellcore HA s adaptor [Joh95)] stripesH1PPI packetsover SONET lines

using aFirst-Come-First-Serve (FCFS) striping policy, whilethe cAsA

Gigabit testbed [JD93] uses round robin striping at the byte level.
The osiRIsSAdaptor[DP94] doescell striping over ATM channels. A
single packet is sent as a number of “minipackets’ on each channel
and a parallel reassembly of the packetsis done at the receiver. All
these schemeseither rely on extra hardwareto do load sharing (e.g.,
using byte striping), or rely on extrainformation for resynchroniza-
tion (e.g., information embeddedin SONET or ATM headers). Thus
none of these schemesmeet all our goals.

Existing striping schemes which operate at higher levels usu-
ally sacrifice either fair load sharing or FIFO delivery. For exam-
ple, the Random Selection scheme [Bay95] relies on random as-
signment of channelsto packetsto ensureload sharing, but does not
provide FIFo delivery. The sameistrue for the Shortest Queue First
schemeusedinthe EQL serial linedriver in the Linux operating sys-
tem: in this scheme, the channel with the smallest queueis selected
for transmitting the next packet. On the other hand, the Address-
based Hashing scheme [Bay95] relies on hashing packet addresses
to channelsto route packets destined for the same address over the
same channel. This provides FIFO delivery of packetsdestined for
the same address, but does not provide load sharing for packets ad-
dressed to any given destination.

Thelnternet standard RFC1717 specifiesm PPP(PPPMUultipoint).
This provides a framework and packet formats for striping across
multiple ppp links. However, no algorithm is specified for either
the sending or the receiving end. In addition, the sender modifies
each packet by adding sequence numbersto it.

Our stripe protocol described later differs from mpPpPP in three
fundamental ways. First, it works transparent to 1P over any inter-
face, not just a pPp interface. Second, there is no modification of
any datapacket, sinceno new headeristaggedal ong with each packet.
Thisisessential for striping over high speedinterfaces. Finally, MmppPP
supplies no algorithm for striping at the sender and resequencing at
the receiver, while our striPe protocol does.

While some of the solutions described in [TG93, Joh95, JD93]
look superficially similar to ours (e.g., the use of queuesat the re-
ceiving endsof channels), these schemesrely on extrainformation
such as SONET framing for synchronization, which is unavailable

for many channels. Further, they either do not providegeneral mech-
anisms for fair load sharing or rely on mechanismslike byte strip-
ing that are infeasible in many contexts. By contrast, we use a dis-
tributed algorithm to restore synchronization, and a transformation
of afair queuing algorithm to provide fair load sharing. Our algo-
rithms are applicable to a wide variety of channels.

3 Using Fair Queuing algorithms for Load Sharing

We solvethe variable packet size problem by transforming fair queu-
ing algorithms into load sharing algorithms. We use the term fair
queuing to refer to a generic class of algorithms that are used to
share a single channel among multiple queues. Henceforth we will
refer to such algorithms as FQ algorithms. In FQ, we partition the
traffic onasingle output channel equitably from aset of input queues
which feed that channel. In load sharing, on the other hand, we seek
to partition thetraffic arriving on asingleinput queueequitably among
a set of output channels.

Queue 1

\ R . Output Channel
queiez (P GERENS) — [aod(] -
[40d]1] [40d]e] [200]d]

Figure 2: Example of fair queuing

Channel 1

Pt Ruieue Load Sharing \~"" [iseieseld—
(550 — (~Agorithm < Chamnel2
[40d]¢] [200[d]—

Figure 3: Example of load sharing

Figures 2 and 3 explain the intuitive relationship between fair
load sharing and fair queuing. In Figure 2, an arbitrary FQ algo-
rithm feeds an outgoing channel from two queues. In the figure,
each packet is marked with its size in bytes and a unique identifier,
which ranges from a to f. The FQ agorithm transmits the packets
in aparticular sequence as shown. Notice that the bandwidth of the
channel is partitioned roughly equally among the channels. They
have the same fair share of 500 bytes each. Now, consider the op-
eration of the FQ algorithm in atime reversed manner, with the di-
rection of the arrows reversed. We would then obtain the situation
shown in Figure 3.

In a rough sense, load sharing algorithms are ‘time reversals
of fair queuing algorithms. We simply run a FQ algorithm as the
load sharing algorithm at the sender! The reversal lies in reversing
the direction of flow of packets—where the FQ algorithm transmits
packets from one of the many queues on to the single channel, the
load sharing algorithm transmits packets from the single queue to

one of the many channels. We believe this to be an important in-
sight, since it suggeststhat the considerable amount of work done
in the FQ area can be directly applied to load sharing. However, as
we shall see, only a subset of FQ algorithms can be used for load
sharing.

3.1 Causal and Non Causal Fair Queuing Algorithms

Consider anoderunning aFQ algorithm to feed achannel from mul-
tiple queues. Within each queue, packetsaretransmitted in FIFO or-
der. Assume all queues are backlogged (i.e., have packetsto send).
Thefair queuing problem liesin selecting the queue from which the
next transmitted packet should originate. This decision can depend
not only on the previously transmitted packets, but also on other
parameters, like the size of packets at the head of each queue, the
current queue sizes, and so on. For instance, the DKS algorithm
[DK'S89] depends on the packets at the head of each queuein or-
der to simulate bit-by-bit round robin.

In the backlogged case, if a FQ algorithm depends only on the
previous packetssent to choose the current queueto serve, then we
call the algorithm a Causal FQ (CFQ) algorithm. All other FQ algo-
rithms are called non-causal algorithms. Thus the DKS fair queu-
ing algorithm [DK S89] is non-causal, while ordinary round robin is
causal.

Why do we restrict ourselves to backlogged FQ behavior? In
the non-backlogged case, most FQ algorithms maintain alist of ac-
tive flowsas part of their state. Thisallowsthem to skip over empty
gueues. However, this mechanism also makes ailmost all FQ algo-
rithms non-causal. Thusfor our transformation werestrict ourselves
to the backlogged behavior of aFQ protocol. Notice that any FQ al-
gorithm must handlethe backlogged traffic case. Intuitively, inload
sharing there is no phenomenon corresponding to empty queuesin
fair queuing; this anomaly is avoided by considering only the back-
logged case.

In the backlogged case, cFQ agorithms can be formally char-
acterized by repeated applications of two functions in succession.
One function f(s) selects a queue, given the current state s of the
sender. Thisisillustrated on the left in Figure 4. After the packet
at the head of the selected queueis transmitted, another function ¢
is invoked to update the sender state to be equal to g(s, p) where
p isthe packet that was just sent. For example, in ordinary round
robin the state s is the pointer to the current queue to be serviced,;
the function f(s) is the identity function: f(s) = s; finally, the
function g(s, p) merely increments the pointer to the next queue.

3.2 Use of CFQ Algorithms for Load Sharing at the Sender

The transformation from fair queuing to fair load sharing is illus-
trated in Figure 4. We start on the left with an cFQ algorithm and
end with afair load sharing algorithm on the right.

The cFQ algorithm is characterized by aninitial state s, and the
two functions f and g. To obtain thefair load sharing algorithm we
start the load sharing algorithm in state so. If p isthe latest packet
received on the high speed input channel (seetheright of Figure 4),
the load sharing algorithm sends packet p to low speed output line
f(s). Thuswhile thefair sharing algorithm uses f () to pull pack-
etsfrom input queues, the load sharing algorithm uses f(s) to push
packets to output channels. In both cases, the sender then updates
its state by applying the function g to the current state and the packet
that was just transmitted. Notice that there is no requirement for
the load sharing algorithm to work only in the backlogged case; if
the queue of packets from the input high speed channel is empty,
theload sharing algorithm does not modify its state further until the
next packet arrives.

IID Pick packet Send packet

from queue f(s) to channel f(s)
LTy _

[T 1T

CAUSAL FAIR QUEUEING

FAIR LOAD SHARING

Figure 4: Consider a backlogged execution of a fair queuing algorithm. If the
algorithm is causal we firstapply a function f (s) to selecta queue. We transmit
the packet p at the head of the selected queue and then update the state using
a function g(s,p). We can obtain a fair load sharing algorithm by using the
same function f to pick a channel to transmit the next packet on, and update
the state using the same function g.

3.3 Evaluating the Transformation: Throughput Fairness

To precisely evaluatefair sharing, we define throughput fairnessfor
both deterministic and probabilistic fair queuing schemes. In dis-
cussing throughput fairness it makes senseto only consider the case
when all input queues are backlogged.

Consider a fair queuing scheme with several input queues. In
the start state each queue contains a sequence of packets with ar-
bitrary packet lengths. Define a backlogged execution to be an ex-
ecution in which no input queue is ever empty. There are an infi-
nite number of possiblebacklogged executionscorrespondingto the
different ways packets, especially packet lengths, can be assigned
to queuesin the start state. In a backlogged execution we assume,
without loss of generality, that all packetsthat are serviced arrivein
the start state. An execution will produce as output a finite or in-
finite sequence of packets taken from each input queue. The bits
allocated to aqueues in an execution £ isthe sum of the lengths of
all packetsfrom queue: that are serviced in execution F.

We say that a deterministic fair queuing schemeis fair if over
all backlogged executions F, the difference in the bits allocated to
any two queuesdiffers by at most a constant. For instance, the dif-
ference cannot grow with the length of an execution. We say that a
randomized fair queuing schemeisfair if over all backlogged exe-
cutions F, the expected number of bits allocated to any two queues
isidentical.

We can make anal ogousdefinitionsfor load sharing algorithms.
A backlogged execution now beginswith an arbitrary sequence of
packetson the high speed channel. Thebits allocated to achannel :
inanexecution £ isthe sum of thelengthsof all packetsthat are sent
tochannel in execution £. Thefairnessdefinitionsfor load sharing
and fair queuing are then identical except with the word “channel”
replacing the word “ queue” . Note that any execution of aload shar-
ing algorithm can be modeled as a backlogged execution aslong as
theload sharing algorithm is causal. Thusthereis no loss of gener-
ality in considering only backlogged executions.

3.4 The Transformation Theorem

We show that aload sharing algorithm obtained by transforming an
CFQ agorithm as shown above has the same fairness properties as
the original cFQ algorithm.

Theorem 3.1 Consider an cFQ algorithm A and a fair load shar-
ing algorithm B that is produced by the transfor mation described
above. Thenif A isfair, sois B.

Proof: (Idea) Notice that the theorem applies to both randomized
and deterministic CFQ algorithms. The main idea behind the proof
issimple and is best illustrated by Figure 1. We usethe initial state
so and the functions f and g of A and define B as we described
earlier. Now consider any execution F of theresulting load sharing

protocol B, e.g., the execution shown in Figure 3. From execution
E we generate a corresponding execution £’ (e.g., the execution
shown in Figure 2) of the original cFQ algorithm A.

To construct £’ from E we consider the outputs of the load shar-
ing algorithm in £ to betheinputsfor £’. More precisely, we ini-
tialize queue: in £’ to contain the sequence of packets output for
channel ¢ in £. We then show that if the cFQ algorithm A isrunon
this output, it producesthe executionwe call £’, and the output se-
quencein £’ isidentical to theinput sequenceas . Thustheinput
of £ correspondsto the output of £’, and vice versa. This corre-
spondence can be formally verified by an inductive proof.

Finally, we know that since A is fair, the output sequencein £’
contains approximately the same number of bits from every queue.
Thus, since there is a 1-1 correspondence between outputs and in-
putsin £ and E’, we seethat the output sequencein £ assigns ap-
proximately the same number of bits to every output channel. Since
thisistrue for every execution £ of B, B isalso fair. Note that the
correspondence does not work in the reverse direction. O

The theorem can be used to convert causal fair queuing algo-
rithmsinto load sharing algorithms. A simple exampleisarandom-
ized fair queuing (RFQ) schemethat randomly picksaqueueto ser-
vice. RFQ can be transformed into a randomized load balancing al-
gorithm that keepsthe expected number of bytestransmitted on each
line the same. However, amore useful exampleis the SRR scheme
that we describe next.

3.5 Surplus Round Robin (SRR)

We turn to a specific example of a cFQ algorithm, which we call
Surplus Round Robin (SRR), to which the transformation theorem
can be applied. SRR is based on amodified version of DRR [SV94].
SRR is also identical to a FQ algorithm proposed by Van Jacobson
and Sally Floyd [Flo93].

In the SRR algorithm, each queue is assigned a quantum of ser-
vice, measuredin units of data, and is associated with acounter called
the Deficit Counter (DC'), whichisinitialized to 0. Queuesare ser-
viced in around robin manner. When a queueis picked for service,
its DC isincremented by the quantum for that queue. Aslong as
the DC' is positive, packetsare sent from that queue, andthe DC'is
decremented by the size of the transmitted packet. Oncethe DC be-
comes non-positive, the next queuein round robin order is selected
for service. Thusif aqueueoverdrawsits account by some amount,
it is penalized by this amount in the next round.

Round 2 Round 1
1 1
End of Startof | End of Start of 1 I
Round Round | Round Round Initialization
DC;=0 DC; =450 | DG = -50 DG, =500 | DG =0

Dcl 300

1
I
I
|
|
| -—> I Queue 1 —_
|
|
|
I
1

SRR FQ
Algorithm

400[1] - -—>| Queue2 —

DC, =300
DC,=0 DC, = 400 IDC2 -100 DC, = 500| DC,=0
1

Output Channel
L

Figure5: Exampleof SRR Fair Queuing. Each queuehasaquantum
of 500 bytes

Figure 5 graphically illustrates the operation of the SRR CFQ al-
gorithm. In thefigure, we seetwo input queues, onecontaining pack-
etslabeled a, b, ¢, in that order, and the other containing packetsd,
e and f. Both queues are assigned a quantum of 500 each. In addi-
tion to its label, each packet is also marked with its size. Thefigure
showsthevaluesof the DC's associated with each queue asthe SRR

algorithm executes. Notethat aroundisasequenceof visitsto con-
secutivechannels, before returning to the starting channel. The DC
of each queueis incremented by the quantum associated with that
gueuein each round. When the D C' becomes non-positive, packets
are sent from the next queue.

In Figure 5 the DC of channel 1 is initialy the quantum size
(500). After sendingout packet« (of size550), the DC of channel 1
becomes500—550 = —50 whichisnegative. Thustheround robin
pointer moves on to channel 2, where two packets, d and e, with
combined size 600, are sent before the DC' of channel 2 becomes
500 — 600 = —100. At this point, the round robin scan returns
to channel 1 to start round 2. A fresh quantum of 500 is added to
the DC for channel 1, leaving a value of 450, which now allows
packetsb and ¢ to be sent out in the second round.

As can be seen, SRR sends roughly the same amount of data
from each queue. It is possibleto precisely characterize throughput
fairness for the SRR FQ algorithm. Let the quantum of service as-
signedto queue: be Quantum,;. Letthemaximum quantumamong
all the channels be Quantum. Let the maximum packet size be
Mazx.

Theorem 3.2 Consider any execution of the SRR FQ algorithmin
which queuei is backlogged. After any K rounds, the difference
between the bytesthat queuei should havesent, i.e., K -Quantum;,
and the bytesthat queuei actually sendsis bounded by M ax + 2 -
Quantum.

The proof is similar to the proof of fairness of DRR [SV94].

Transforming SRR into a load sharing algorithm Thecorre-
sponding load sharing algorithm works as follows. Each channel is
associated with a Deficit Counter (D ('), and a quantum of service,
measuredin unitsof data, proportional to the bandwidth of the chan-
nel. Initialy, the DC of each channel isinitialized to 0, and thefirst
channel is selected for service, i.e., for transmitting packets. Each
time a channel is selected, its DC' is incremented by the quantum
for that channel. Packets are sent over the selected channel, and its
DC isdecremented by the packet length, till the 2C' becomesnon-
positive. Thenext channel isthen selected in around robin manner,
anditsquantumisaddedto its DC'. Packetsare sent over thischan-
nel till its DC becomes non-positive, and then the next channel is
selected, and so on.

Input Queue

—

, Round 2 , Round 1
End of Start of End of Start of IS
: Round Round :Round Round | Initialization
| DC;=0 DC;, = 450 |Dq -50 DC = 500| DG =0
| D<:1 300
Srrsupne " | B [S | cramen
Algortim”) [} 1 (] oo 1 crami?
! DC, = 300
|
1

DC,=0 DC, = 400 ID(:2 -100 DC, = sool DC,=0
1

Figure 6: Example of SRR Load Sharing. Each channel hasa quan-
tum of 500

Figure 6 illustrates the operation of the SRR load sharing algo-
rithm. Theload sharing algorithm preservesthe samefairnessbounds
as the FQ algorithm. Using the terminology of the previous theo-
rem:

Lemma 3.3 Consider any execution of the SRR load sharing algo-
rithm. After any /X rounds, the difference between the bytes that
should have been sent on Channel ¢, i.e., K - Quantum;, and the
bytesactually sent on Channel : isboundedby M az+2-Quantum.

The SRR load sharing scheme has a number of nice properties
that makesit appropriate for usein a practical packet striping algo-
rithm. It divides the bandwidth fairly among output channels even
in the presence of variable length packets. It is extremely simpleto
implement, requiring only a few more instructions than the normal
amount of processing needed to send a packet to an output chan-
nel. Itisalso possibleto generalize SRR to handle channel swith dif-
ferent rated bandwidths by assigning larger quantum values to the
higher bandwidth lines — this correspondsto weighted fair queu-

ing.
4 FIFO Delivery using Logical Reception

This section describes techniquesfor ensuring FIFO delivery at the
receiver. Our main ideais what we call logical reception.

Logical reception combinestwo separateideas. buffering at the
receiver to allow physical reception to bedistinguished from logical
reception, and receiver simulation of the sender striping algorithm.
Logical reception can beexplained very simply using Figure 1. No-
tice that there are per-channel buffers shown between the channel
and the resequencing algorithm. Notice also that if we look at the
picture at the receiver node, it is clear that the receiver is perform-
ing afair queuing function. But we have already seen a connection
between channel striping and fair queuing schemes. Thusthe main
ideaisasfollows. Thereceiver canrestore the FIFO stream arriving
to the sender if it usesafair queuing algorithm that is derived from
the channel striping algorithm used at the sender.

Supposein Figure 1 that the sender sendspacketsin round robin
order sending packet 1 on Channel 1, packet 2 on Channel 2, . . .
and packet N on Channel N. Packet N + 1 is sent on Channel 1
and so on. Thereceiver algorithm usesasimilar round robin pointer
that isinitialized to Channel 1. Thisis the channel that the receiver
next expects to get a packet on. The main idea is that the receiver
will not move on Channel ¢ + 1 until it is able to remove a packet
from the head of the buffer for Channel :. Thus, suppose Channel 1
ismuch faster than the others and packets1 and NV + 1 arrive before
the others at the receiver. The receiver will remove the first packet
fromthe Channel 1 buffer. However, the receiver will block waiting
for apacket from Channel 2 and will not remove packet N + 1 until
packet 2 arrives.

In general, if the sender striping algorithm is atransformed ver-
sion of a Causal Fair Queuing (CFQ) agorithm, then the receiver
can run the cFQ algorithm to know the channel over which the next
packet isto arrive from the sender. The receiver then blocks on that
channel, waiting for the next packet to arrive, while buffering pack-
etsthat arrive on other channels. The simulation, coupled with the
buffering and receiver blocking, ensureslogical FIFO reception, ir-
respectiveof the nature of the skew present betweenthe variouschan-
nels. Formally:

Theorem 4.1 Let B betheload striping algorithmderivedby trans-
forming an cFQ algorithm A. If B isused asa channel striping al-
gorithmat the sender and A is used as the resequencing algorithm
at thereceiver, and no packetsarelost, then the sequenceof packets
output by the receiver is the same as the sequence of packets input
to the sender.

Synchronization between sender and receiver can be lost dueto
theloss of asingle packet. In the round robin example shown above
if packet 1 islost, thereceiver will deliver the packet sequence N +
1,2,3,...,N,2N +1, N +2, N +3,...and permanently reorder
packets. Thus the sender must periodically resynchronizewith the
receiver. Such synchronization can be done quite easily as shown
in Section 5. If packetsare lost infrequently and periodic synchro-
nization is done quickly, logical reception works well. We discuss
performance simulations in Section 6.

Why isit necessary for the fair queuing algorithm to be causal?
For the receiver to simulate the sender, it is necessary for it to know
the channel over which the next packet is going to arrive. This de-
cision hasto be made based on the current state, which can encode
only the previousarrivals. By definition, thisis the property of cFQ
algorithms.

Buffering of packets often does not introduce any extra over-
head because once the packets are read in, they do not have to be
copied for further processing—only pointersto the packetsneed be
passed, unlessthe packet hasto be copied from one address spaceto
another (e.g., from the adaptor card to the main memory), in which
case acopy isneededin any case.

Even in the case when sequencenumbers can be added to pack-
ets, logical reception can help simplify the resequencingimplemen-
tation. Some of the hardware implementations for resequencing,
e.g., [McA93], rely on hardware to sort out of order packets and
modified packet formats. Logical reception can be used to avoid
such sorting. The sequence number inserted by the sender is now
needed only for confirmation, since logical reception suffices for
FIFO delivery. The sequence numbers, however, provide sequenc-
ing of packetseven when the sender and receiver lose synchroniza-
tion, and guarantee FIFO reception.

The most important application of logical reception (see goals
listed earlier) is the case when sequence numbers cannot be added.
Unfortunately, in this case we cannot guarantee FIFO delivery al-
ways. We refer to this mode of packet reception, in which the re-
ceiver maintainsFiFO delivery, except during periodsof lossasquasi-
FIFO reception. Thisis in contrast to guaranteed FIFO reception.
For quasi-FIFO reception to be of practical significance, we need to
restore synchronization periodically, or the receiver will continueto
deliver packets out of order. We now describe the synchronization
protocol.

5 Synchronization Recovery at the Receiver

Thetechniquesdescribed bel ow utilize special marker packets, which
the receiver can distinguish from the normal data packets. We as-
sumethat when either the sender or the receiver goesdown and comes
up, it reinitializes the channel, thus restoring synchronization. So
the error cases that we have to deal with are channel errors which
cause packet loss, and hardware/software errors at either the sender
or receiver. Sending marker packetsdoes not require modifications
to the data packets, which is one of the desirable properties of a
striping scheme. The only requirement isthat the lower level proto-
col provides adistinct codepoint (i.e., demultiplexing information)
for the marker packets, to distinguish markersfrom normal data pack-
ets. Suchcodepointsareavailablefor ATM virtual circuits, e.g., OAM
cells or LLC/SNAP encapsulation, and for most existing links. For
example, on Ethernet, codepoints for marker packets are available
simply by using a different packet typefield. Note that using a dif-
ferent typefield for marker packetsdoesnot alter ordinary datapack-
etsor link packet formatsin any way, asopposed to existing striping
schemes (e.g., MPPP) which require a modified link packet format
for all packets.

We now describeamarker synchronization schemefor thestrip-
ing schemeusing the SRR striping algorithm. Aspreviously defined,
around is a sequence of visits to consecutive channels before re-
turning to the starting channel. In each round, the sender sendsdata
over all channels. Similarly, in each round, the receiver receives
data from all channels.

The state at the sender can be fully specified by specifying the
current round, and the value of the SRR Deficit Counters (DC's) at
each channel. Similarly, the state at the receiver consists of the cur-
rent receiver round number, and the value of the SRR DC's at each
of the channelsas seen by thereceiver. In the absenceof packet loss
or corruption, the state at the sender would correspondto the state at

the receiver, modulo the packetsin transit, and the receiver would
stay in synchronization. However, if there were a packet loss, then
the two states would differ, and the receiver would run out of step
with the sender.

Intuitively, each packet sent can be implicitly numbered with a
tuple (R, D), where R istheround number beforethe packet is sent
and D isthe value of the DC before the packet is sent. Similarly,
at the receiver, areceived packet can beimplicitly numbered by the
round number and DC' before the packet is received. If the (im-
plicit) receive and send numbers for each packet are identical, then
the receiver will deliver packetsin the correct order.

Receiver R

Sender S

Channel 1

SRR
Channel
Striping

Algorithm

SRR
Resequencing
Algorithm

Channel 2

Figure 7: Configuration to illustrate synchronization recovery

Channel 1

[51i=0i1]

Sender S

SRR
Channel
Striping

Algorithm

Lol [s] (& [&] 2] [

el
R03unc! Rozundf Rolund

Channel 2

Figure 8: Sender sends packets

. Chanpel 1

5111

Receiver R

Lol [s1 [e] [&] (2] [

SRR
Resequencing
Algorithm

IoE
3R0§Jnd5 Rozund Roimd

Channel 2
Figure 9: Receiver in synchronization with the sender

A simple example of the illustrating the idea behind synchro-
nization recovery is illustrated in Figures 7 to 13. We consider the
configuration shown in Figure 7. The SRR CFQ algorithm is used
for resequencing at the receiver, while the transformed version of
the algorithm is used as the striping algorithm at the sender. There
aretwo channelsof equal capacity linking the senderto the receiver.
We assumethat all packets are of equal size, and that the quantum
of servicefor both channelsisthe same and equal to the packet size.
In such a scenario, SRR reducesto RR.

Figure 8 shows packetsarriving at the sender, and being striped
across the two channels. Each packet is numbered in the order of
arrival. As can be seen, packets1 and 2 are sent in the first round,
packets 3 and 4 in the second round, and so on. Figure 9 shows
the operation of the receiver. In the first round, the receiver picks
one packet from channel 1, followed by one packet from channel
2. Similarly in the second round, the receiver picks packets 3 and
4 from channels 1 and 2 respectively. Thus, the receiver delivers
packetsin the same order as the sender receivesthem.

Figure 10 shows packet 7 being lost in one of the channels. We
assumethat any packet corruption causesthe packet to be discarded,
and not handed over to the resequencing algorithm. The effect of
thislossisto causethe state maintained at thereceiver to differ from

(2] [u] (0] [o] [&] [7]

Sender S

Channel 1
. L . o Patt:ket 7

N N H los
{E IR A

SRR
Channel

= @ ® E @ E

Striping
Algorithm

[12]i[w0]i[8]
Rogmds Rosund. Ro:nd

Channel 2

Figure 10: A channel loses a packet

Channel 1

o

Receiver R

(o] [2] [&] [¢]

SRR
Resequencing
Algorithm

@iE

Channel 2! :
:Round; Round
5 4

Figure 11: Receiver out of synchronization

the state maintained at the sender. As can be seenin Figure 11, in
round4, thereceiver expectspacket 7 onchannel 1, but instead picks
up packet9, sincepacket 7 islost and packet 9 isthe next packet sent
on channel 1. This causesthe receiver to go out of synchronization
with the sender, and start delivering packets out of order.

The sender periodically sends marker packetson each channel,
containing its state, which in this simple case consists of the round
number G. AsshowninFigure 12, the sender sendsamarker packet
labeled M beforeround 7, containing the round number G setto 7.
When themarker packet reachesthereceiver, asshownin Figure 13,
the receiver seesthat thereis a difference between the round num-
ber maintained by the receiver, which is currently 6, and the round
number carried in the marker packet, whichis 7. Thiscausesthere-
ceiver to skip this channel in the current round, and proceed to the
next channel. This is because the difference in round numbersis
caused by missing packets, indicating that the receiver has skipped
ahead out of turn on this channel, and therefore needs to wait that
many rounds before visiting that channel again. Hencein round 6,
thereceiver skipschannel 1. By round 7, thereceiver isfully in syn-
chronization with the sender, as can be seen in Figure 13.

We now describethe reasoning behind the channel skipping done
by the receiver. Suppose the sender sends packet p on channel ¢,
before sending packet ¢ on channel ¢’. Then either ¢’s send round
number is greater than that of p, or the round numbers will be the
same and ¢ is visited before ¢’ in the round robin cycle. Thus if
the receiver has the same receive numbersfor p and p’ the receiver
will deliver p before p’ aslong as receiver delivery meetstwo con-
ditions: C1: The receiver never delivers a higher round number
packet before alower round number packet. C2: Thereceiver visits
channelsin the same order as the sender in the round robin cycle.

Condition C2 caneasily beenforcedif thereceiver and the sender

Channel 1

Sender S

SRR
Channel

@ EE

Striping
Algorithm

t[ae]i[ae] i3]

‘Round | Round} Round
9 8 7

Channel 2

Figure 12: Sender sendsa marker packet

Marker packet received with round number

reater than expected, causin " . .
the receiver o Skip this channel i this round’ P 9 by periodically running a snapshot [CL85] and then doing a reset

Channel 1

EiEl=n

Receiver R

= EE E =
\

Proper resequencing of packets
once synchronization is restored

SRR
Resequencing
Algorithm

[l () (]
Round Rounq: Round
8 7 6

Channel 2

Figure 13: Synchronization restored at receiver

number the channelsin the sameway, and both visit channelsinin-
creasing channel number order during around robin cycle. Thiscan
be guaranteed by having each marker carry the sender number of the
channel which can be adopted by the receiver. It remains to ensure
that:

e Eventually all packets have the same send and receive num-
bers after packet loss stops.

e Condition C1 is enforced.

To ensure synchronization of send and receivenumbers, wemain-
tain explicit packet numbersfor both sender and receiver. Both sender
and receiver maintain aglobal round number GG that is incremented
after one round robin scan over the queues. This together with the
DCsprovidesexplicit packet numbersfor each packet, thoughthese
are not carried in packets. The next step is obvious: each periodic
marker packet on achannel ¢ carries the packet number for the next
packet to be sent on channel ¢. The receiver also maintains a local
round number r. for each channel c. When the receiver receivesa
marker packet (r, d) for channel ¢, it setsr. = r and the DC of
channel c tobed. After packetlossstops, it is obviousthat thiswill
synchronize the packet sender and receiver numbers for all future
packets on channel c.

Finally, to maintain condition C1, the receiver maintainsaglobal
round number G that isincremented on every round robin scan. When
the receiver reaches a channel whose value of r. > G, it simply
skips that channel in the current round robin scan. Theintuition is
that the receiver has lost some earlier packetson channel ¢ and has
arrived “too early” at scanningthischannel. Channel ¢ will continue
to beskipped until G = r. at which point channel ¢ is serviced with
the usual SRR algorithm. This clearly maintains condition C1.

Assume that for each channel ¢, Quantum; > Maz (i.e, the
guantum assigned to each channel allows the sending of one maxi-
mum sized packet). This assumption prevents channelsfrom being
skipped in the round robin order becausetheir Deficit Counters do
not allow the sending of a packet. Using a formal model, we can
prove that:

Theorem 5.1 Marker Recovery: Let ¢ be the first time after all
channel errorsstop that amarker isdeliveredon everychannel. The
marker algorithm restoresFiFoO delivery after ¢.

Thus the algorithm recoversfrom errors very quickly (time be-
tween sending the marker plus aone-way propagation delay). Note
that in practice, channel errors never stop; the theorem saysthat if
the errors stop for a period longer than the recovery time, then the
system will be resynchronized. We have implemented this algo-
rithm and found that it works well, by providing quick restoration
of FIFO delivery, evenfor fairly high error rates. The marker recov-
ery theorem assumesthat the only channel error is detectable packet
corruption or packet loss. It is also possible to make the marker al-
gorithm self-stabilizing (i.e., robust against any error in the state)

[Var93]. We deal with sender or receiver node crashes by doing a
reset.

The main idea behind the marker recovery protocol is away of
numbering packets on a channel that dependsonly on the data sent
or received on a channel. A global numbering scheme such as a
global sequence number appears to require expensive global syn-
chronization acrossall channels. By usinga per-channel numbering
scheme, that also includesthe relevant state (i.e., the DC's) we can
synchronize each channel independently. Theonly global condition
that needsto enforcedis condition C1, which isimplemented easily
by skipping channelsthat havelower round numbersthan incoming
marker packets.

6 Implementation and Performance Evaluation

Having looked at the theory underlying the use of cFQ algorithms
for packet striping and resequencing, we now turn to implementa-
tion issues. We propose a model for striping 1P packets over multi-
pledatalink interfacesin Section 6.1. We implemented our scheme
inthe NetBSD kernel and measuredits throughput gainswhen strip-
ing was done over a combination of an ATM and an Ethernet link.
This allowed us to see the effects of SRR versus round robin, and
the effects of using logical reception versus no resequencing at all.
Theimplementation is discussedin Section 6.2.

Finally, in Section 6.3, we discussother experimentsand simu-
lations we performed to verify the load sharing and FIFO properties
of our scheme. By implementing the SRR striping protocol above
the transport layer and by simulating packet loss, we were able to
study the effect of packet loss on throughput and various parame-
ters of the marker recovery scheme. We also evaluated the effect
of the quasi-FIFO delivery of our scheme, during losses, on avideo
application.

6.1 A Model for Transparent IP Striping on a LAN

We present a simple architectural framework for striping 1P packets
over multiple data link interfaces, which can include multi-access
interfaceslike Ethernetsand Token Rings. Theframework isasshown
in figure 14. We create avirtua interface, which we term the stripe
interface, between 1P and the actual data link interfaces which are
to be striped. In this fashion, 1P striping can be totally transparent
to both 1P and upper level protocols and applications. We refer to
this technique of striping 1P packets as the striPe protocol.

\"n_.\/irtual IP Interface

Real IP Interface Real IP Interface
strlPe

layer

IP IP
Convergencq Convergencq -
Layer Layer

Lt

ST o v

Data Link Data Link
Interface Interface

[

Physical Link

Physical Link

Figure 14: The position of the stripelayer. Thedotted linesindicate
the data flow between 1P and the data link layer viathe stripelayer.

In current protocol stacks, the 1P protocol sends and receives
IP packets from multiple 1P interfaces, which are composed of 1P
convergence layers on top of the data link layers (see Figure 14).
The convergence layer is responsible for mapping 1P addressesto
data link addresses, and encapsulating the 1P packet in a data link
frame. For example, for Ethernet interfaces, the convergence layer
performs ARP. ThestriPelayer becomesone suchconvergencelayer
below 1P and above the data links that the packets will be striped
over. Thestripelayer implementsthe sender side striping algorithm
and the receiver side resequencing algorithm. In our case, both al-
gorithms are based on SRR.

Whenever asending host seesthat a packetisto beroutedto one
of the 1P addressescorrespondingto thereceiver with multiple chan-
nels, it sends the packets to the stripe layer. Thisis accomplished
by modifying the routing table of the sending host. Recall that it is
possible for host specific routes to override network specific routes.
Thus, if the two ethernets are on 1P networks Netl and Net2, and if
the receiving host’s two 1P addresses are Net1.B and Net2.B, then
we simply make entries in the sending host’s routing table, asking
it to route packetsto Net1.B and Net2.B to interface C, which cor-
respondsto the stripe interface.

At the receiving end, the data link interfaces hand over striped
packets to the stripe layer for resequencing. Thisis accomplished
by using adifferent codepointin thedatalink layer headerfor striped
IP packets. The stripe layer at the receiving end then resequences
the packets before handing them to 1P. There are other subtleties
to do with ARP handling and differing MTU sizesthat we defer for
lack of space. We do note, however, than our model restricts the
maximum packet size, or the Maximum Transmission Unit MTuU of
the stripeinterface to the minimum M Tu of the underlying physical
interfaces.

6.2 Performance of the NetBSD Implementation

The stripe protocol was implemented in the NetBSD/i386 kernel.
Our setup consisted of two Pentium workstations, each with two 1P
interfaces. One interface was 10 Mbps Ethernet, and the other was
an ATM interface, which sent 1P packets through a Permanent Vir-
tual Circuit (Pvc). The bandwidth of the pv c could be modifiedin
hardware. Figure 15 depictsthe performance of our striPe protocol
when used to stripe 1P packets across the Ethernet and ATM inter-
faces. The bandwidth of the pv c used for 1P traffic was varied, and
the effect on striping throughout was studied. The throughput mea-
surementswere carried out at the application level, using asending
program which sent arandom mixture of small and large packetsto
the receiving program on the other workstation over a TCP connec-
tion.

Besides the throughput of our stripe protocol, we also imple-
mented and measured the performance of four other striping vari-
antsto gain insight into the advantagesof SRR versusround robin,
and logical reception versusno resequencing. Wefirst measured the
throughput of the ATM and Ethernet interfaces separately, for each
value of pvc bandwidth, and calculated the sum of the individual
throughputs: clearly thisisan upper bound on striping performance.
Note that in this case, only oneinterface is used for sending data at
atime, as opposed to the striping case, in which two interfaces are
used. Second, we replaced SRR by generalized round robin (GRR),
which allocates packetsto interfaces based on the closest integer ra-
tio of their bandwidths. Third, we implemented GRR without logi-
cal reception — i.e., no resequencing is done. Finally, we imple-
mented ordinary round robin (RR), which just alternates between
channels. Thus, besides the throughput of our stripe protocol, in
Figure 15 we have a throughput upper bound, as well as four vari-
ants of stripe with one or more of its features disabled.

The throughput upper bound was measured by sending packets
separately over the Ethernet and ATM interfaces, and by adding the

30.0 &—=>Sum of Ethernet and ATM throughputs
(G—FOASRR, logical reception
[3—FISRR, no logical reception

/~—7\GRR, logical reception
25.0 Z—/GRR, no logical reception
-+—+FRR, logical reception

*—kRR, no logical reception

20.0

15.0

Application level throughput (Mbps)

3.8 13.8 23.8
ATM channel capacity (Mbps)

Figure 15: Performance of SRR as the capacity of the ATM PVC s
varied

individual throughputs. The packet sizes were kept the same for
both interfaces. We observe that the throughput upper bound in-
creases linearly before starting to fall, as the cpu cannot keep up
with the network at higher speedswith the selected range of packet
sizes. The throughput with striPe (SRR + logical reception) is ap-
proximately equal to the throughput of the sum of the ATM and Eth-
ernet interfaces till the ATM PvC bandwidth is set to 14 Mbps, af-
ter which it starts flattening. Thisis because the workstation hasto
service more interrupts in the striping case. Note that in measuring
the upper bound, only one interface is used at atime. With a sin-
gleinterface under heavy load, multiple packets can be received in
asingleinterrupt routine. This effect is less pronounced with strip-
ing, whereinterrupts are received from multiple interfaces. Conse-
quently, there is a significant increase in the number of interrupts,
and correspondingly in the processing overhead. Note that the bot-
tleneck is in theinterrupt driver processing, as opposed to the strip-
ing overhead.

The throughput of stripe is consistently better than the variants
that disable features. Its throughput is better than the variant that
USes GRR, and better than the variant that disableslogical reception.
We note that the throughput of GRR ishigher than that of GRR with-
out resequencing. RR is consistently worse than the other variants:
as the throughput of the ATM interface increases, RR performance
isstill limited by the slowest speed (i.e., Ethernet) interface. Thus,
increasing the speed of the ATM interface doesnot improve through-
put beyond a critical point. Theinitial increasein RR throughput is
due to the fact that at those points, the rate of the ATM PvCisless
than that of Ethernet. Note that RR is commonly used in existing
striping protocols, as discussedin Section 2.1.

There is a throughput gain using SRR over GRR, although the
difference is not marked in Figure 15. Thisis becauseroughly the
same amount of dataiis carried over both interfaces, and Tcrisable
to keep the transmit queues of both interfaces full. The advantage
of SRR over GRR, of course, is that it is always possible to con-
struct aworst case sequencewhich will cause GRR to perform badly,
while SRR does not have any such drawback. To show that GRR
does not work well in all situations, the following experiment was
conducted. The rate of the pPvC was set to 7.6 Mbps, so that the

ATM interface gave the same throughput as the Ethernet (6 Mbps).
Note that in this case GRR reduces to RR. Then packets were sent
in deterministic fashion, with the bigger (1000 bytes) packets al-
ternating with the smaller (200 bytes) ones. With SRR, the packet
arrival sequence did not have any effect on throughput, yielding a
striped throughput of 11.2 Mbps. With GRR, the bigger packetsare
all sent on oneinterface, and the smaller packetson the other, so the
throughput drops dramatically to 6.8 Mbps.

We note that the throughput on the single ATM interface can be
improved considerably by using alarge MTuU sizefor the ATM inter-
face. For example, we obtain throughputsin excessof 70 Mbpsover
an ATM interface using 8 KB sized packets. However, our striping
algorithm restricts the MmTU size used for a collection of linksto be
the smallest MTU size, which in this caseis that of the Ethernet in-
terface. This problem does not appear to be specific to our scheme,
but seemsto apply to any striping algorithm that does not internally
fragment and reassemble packets. Since the overall throughput is
considerably dependent on MTU size, we recommend that striping
bedoneon linkswith similar MTU sizes. Our experiments should be
viewed as a validation of our algorithms; they do not indicate that
striping acrossan ATM and an Ethernet interface is agood idea.

6.3 Transport Layer Simulations and Experiments

In addition to implementing the stripe protocol in the NetBSD ker-
nel, a striping protocol was also implemented at the transport layer
by striping packetsacrossmultiple application socketsusing thesame
SRR striping and resequencing algorithm. The aim of this experi-
ment was to study the effect of marker position and frequency on
synchronization recovery, and to study the effect of packet loss on
applications, using quasi-FIFO delivery of packetsat the receiver.
The main findings of our experiments were asfollows:

e For arbitrary levels of packet loss (measured up to 80%), the
marker based resynchronization scheme was able to restore
FIFO delivery once packet losses stopped.

e Foragivenlossrate, increasing thefrequency of marker pack-
ets decreased the occurence of out of order delivery of pack-
ets.

e Foragivenlossrate, the position of the marker packet within
around had an effect on the number of out of order deliveries,
with the minimum number of out of order deliveries occuring
whenthe marker was sent either at the beginning or end of the
round.

e For channelsnot providing flow control, e.g., UDP channels,
asimple credit based flow control scheme proposed by Kung
et. al. [KC93] provedvery effectivein eliminating packet loss
dueto channel congestion. Thisschemewas particularly well
suited to our striping scheme, since the credits could be pig-
gybacked on the periodic marker packets.

¢ Toseethetoleranceof real world applicationsto possiblepacket

reorderingintroduced by quasi-FIFOdelivery, video traces sent
by theNV video conferencing application were captured. The
stored traces were then striped over multiple ubpp channels
with a controlled amount of loss. The received traces, with
somereordered packets, werefed to the Nv application. Only
at packet loss levels of 40% and above were any percepti-
ble differences found in the Nv playback, as compared to the
original packet stream. Incidentally, pure packet loss of 40%
(without any reordering), produced the same qualitative dif-
ference, suggesting that the effect of packet reordering was
insignificant compared to the effect of packet loss.

7 Conclusion

Thispaper describesafamily of efficient channel striping algorithms
that solve both the variable packet size and the FIFO delivery prob-
lems for afairly general class of channels. The channels can lose
packets and have dynamically varying skews. Thus, our schemes
can be applied not only at the physical layer, but also at higher lay-
ers.

We solvethe variable packet sizeproblem by transforming aclass
of fair queuing algorithms called Causal Fair Queuing (CFQ) algo-
rithms into load sharing algorithms. This transformation also pro-
videsload sharing for channelshaving different capacities. We solve
the FIFO problem using logical reception, which combines the two
ideas of receiver buffering and receiver simulation of the sender al-
gorithm. It is important to note that in order for receiver simula-
tion to work it isonly necessary that the sender algorithm be causal,
which is guaranteed by our fair load sharing schemes.

Logical reception must be augmented with periodic resynchro-
nization to handle packet |osses. We havedescribed an elegant resyn-
chronization schemethat restoressynchronizationquickly in approx-
imately aone-way propagation delay, as opposed to a conventional
reset based scheme which would have taken around-trip delay. We
have formally proved our protocol correct. We have implemented
and simulated this protocol for various values of error rates. We
found that the schemeworkswell for error rates up to 80%. We also
found by experiment that the best position to place a marker was at
the end of around.

We implemented the basic ideas at the transport level, and then
developedaframework to transparently incorporatetheminto the 1P
protocol stack. We then implemented this protocol, that we called
stripe, in the NetBSD kernel. Our experiments indicate that stripe
is capable of providing nearly linear speedup with dissimilar links.
We also confirmed that the use of SRR was better than RR because
of the guaranteed performanceimprovement. The performanceim-
provement for resequencing data packetsis sensitive to whether the
receiver is a bottleneck: for fast receivers, the cost of dealing with
out-of-order data packets may not be an issue. However, for appli-
cations that require in-order packet delivery, e.g., MPEG video, re-
seguencingis crucial.

We have also described and defended the notion of quasi-FIFO
reception. Without the addition of sequencing information, the re-
ceiver can only provide quasi-FIFO delivery. We believethat quasi-
FIFO performance is adequate for most datagram applications and
evenfor ATM, especially in caseswhere adding a sequence number
to each packet is either not possible, or is expensiveto implement.

Webelievethat striping on physical linksand striping acrossvir-
tual circuits are the most important applications of our techniques.
For an ATM virtual circuit, it appearsfeasible toimplement markers
using 0AM cellsthat are sent on the same Virtual Circuit that imple-
ments the channel. When striping end-to-end across ATM circuits,
it seems advisableto stripe at the packet layer. Striping cells across
channels would mean that AAL boundaries are unavailable within
the ATM networks; however, these boundaries are needed in order
to implement early discard policies[RF94].

We believe the stripe protocol based on SRR, logical reception,
and periodic resynchronization is suitable for practical implemen-
tation, evenin hardware. SRR requires only afew extrainstructions
to increment the Deficit Counter and do a comparison; the marker
based synchronization protocol is also simplesinceit only involves
keeping a counter and sending a marker containing the counter.

References
[Bay95] Bay Networks Web Page.

http://mww.welIfleet.com/Products/Routers/Protocol s/ Traffic2.html,
1995.

[CL8S5]

K. Mani Chandy and Leslie Lamport. Distributed Snapshots: De-
termining Global States of a Distributed System. ACM Transac-
tions on Computer Systems, pages 63—75, February 1985.

[DKS89] A.Demers, S. Keshav, and S. Shenker. Analysisand Simulation

[DPY4]

of aFair Queueing Algorithm. In Proceedings of the ACM SIG-
COMM, pages 3-12, 1989.

Peter Druschel and Larry L. Peterson. Experienceswith a High-
Speed Network Adaptor: A software Perspective. In Proceedings
of the ACM SSIGCOMM, 1994.

[Dun94] Jay Duncanson. Inverse Multiplexing. IEEE Communications

[Fl093]
[Fre94]
[Gro92]
[JD93]

[Johos]

[KC93]

Magazine, 32(4), April 1994.
Sally Floyd. Notes on Guaranteed Service in Resource Manage-
ment. Unpublished Note, 1993.

Paul H. Fredette. The Past, Present and Future of Inverse Multi-
plexing. |IEEE CommunicationsMagazine, 32(4), April 1994.

Bandwidth ON Demand INteroperability Group. Interoperability
Reguirementsfor Nx56/64 kbit/s Calls, September 1992.

W. St. John and D. DuBois. CASA Gigabit Testbed Annual Re-
port. Technical report, 1993.

C. Johnston. Presentation at CNRI Gigabit Testbed Workshop ,
June 1993, June 1995.

H.T. Kung and Alan Chapman. The FCV C (Flow Controlled Vir-
tual Channel) proposal for ATM networks. In Proceedingsof the
International Conference on Network Protocols, October 1993.

[McA93] A. J. McAuley. Parallel Assembly for Broadband Networks,

[RF94]

[Svo4]

[TGO3]

[TS95]

[Var93]

1993.

Allyn Romanov and Sally Floyd. Dynamics of TCP Traffic over
ATM Networks. In Proceedings of the ACM SSGCOMM, pages
79-88,1994.

M. Shreedhar and G. Varghese. Efficient Fair Queueing by Deficit
Round Robin. Technical Report WU94-17, Washington Univer-
sity, 1994.

V. Theoharakisand R. Guerin. SONET OC-12Interfacefor Vari-
able Length Packets. In Proceedings of the Second International
Conference on Computer Communications and Networks, pages
21-25, June 28-30,1993.

C. Brendan S. Traw and Jonathan Smith. Striping within the Net-
work Subsystem . |EEE Network, pages 22—29, 1995.

George Varghese. Self-stabilization by local checkingand correc-
tion. Ph.D. Thesis MIT/LCS/TR-583, Massachusetts Ingtitute of
Technology, 1993.

