
A Reliable and Scalable Striping Protocol�

Hari Adiseshu, Guru Parulkar and George Varghese
hari@dworkin.wustl.edu, guru@cs.wustl.edu, and varghese@cs.wustl.edu

Department of Computer Science, Washington University

St. Louis, MO 63130, USA

TEL: (314) 935-6160, FAX: (314) 935-7302

Abstract

Link striping algorithms are often used to overcome transmission
bottlenecks in computer networks. Traditional striping algorithms
suffer from two major disadvantages. They provide inadequate load
sharing in the presence of variable length packets, and may result in
non-FIFO delivery of data. We describe a new family of link striping
algorithms that solves both problems. Our scheme applies to any
layer that can provide multiple FIFO channels.

We deal with variable sized packets by showing how fair queu-
ing algorithms can be transformed into load sharing algorithms. Our
transformation results in practical load sharing protocols, and shows
a theoretical connection between two seemingly different problems.
The same transformation can be applied to obtain load sharing pro-
tocols for links with different capacities. We deal with the FIFO re-
quirement for two separate cases. If a sequencenumber can be added
to each packet, we show how to speed up packet processing by let-
ting the receiver simulate the sender algorithm. If no header can be
added, we show how to provide quasi-FIFO delivery. Quasi-FIFO is
FIFO except during occasional periods of loss of synchronization.
We argue that quasi-FIFO is adequate for most applications. We also
describe a simple technique for speedy restoration of synchroniza-
tion in the event of loss.

We develop an architectural framework for transparently em-
bedding our protocol at the network level by striping IP packetsacross
multiple physical interfaces. The resulting strIPe protocol has been
implemented within the NetBSD kernel. Our measurementsand sim-
ulations show that the protocol offers scalable throughputeven when
striping is done over dissimilar links, and that the protocol synchro-
nizes quickly after packet loss. Measurements show performance
improvements over conventional round robin striping schemes and
striping schemes that do not resequence packets.

1 Introduction

Parallel architectures are attractive when scalar architectures with
the required performance are unavailableor have poor cost-performance.

�Hari Adiseshu and Guru Parulkar were supported in part by ARPA, National Sci-
ence Foundation, and an industrial consortium of Ascom Timeplex, Bellcore, BNR,
Goldstar, NEC, NTT, SynOptics, and Tektronix. George Varghese was supported in
part by NSF Research Grant NCR-9405444 and an ONR Young Investigator Award.

Examples include multiprocessors and RAID systems that use disk
striping. Parallel solutions, however, have additional costs for syn-
chronization (e.g., the need to keep multiprocessor cachescoherent)
and fault-tolerance (e.g., the need for parity disks in disk arrays).

Similar considerations apply to computer networks [TS95] be-
cause of transmission and processing bottlenecks. High end work-
stations and servers can easily saturate existing LocalArea Networks
(LANs). Such devices may obtain increased throughput by “strip-
ing” data across multiple adaptors and multiple LANs. Solutions
that use striping may even be cheaper than the alternatives.

As an example of cost-performance tradeoffs, a 155 Mbps mul-
timode fiber togetherwith transmitter/receiver optics costs about $75
today, while a 622 Mbps single mode fiber costs about $700. For a
wirelength of a mile or so, striping data across four 155 Mbps fibers
may be cheaper than using a 622 Mbps link. Similarly, in the wide
area the price differential between T1 and T3 lines makes striping
across T1 links attractive. On the other hand, many of the Giga-
bit testbeds [TG93, JD93] have resorted to striping because of the
unavailability of high speed equipment: for instance, the IBM SIA

adaptor [TG93] emulates a SONET STS-12 line using four STS-3c
lines.

Thus channel striping, also known as load sharing or inverse
multiplexing, is often used in computer networks. However, as in
other parallel solutions, there are synchronizationand fault-tolerance
costs that are inherent to channel striping. If a FIFO (First-In-First-
Out) stream of packets is striped across multiple channels, pack-
ets may be received out of order at the receiver because of differ-
ent delays (called skews) on channels. In many applications the re-
ceiver must reconstruct the sender sequencefrom the parallel packet
streams. This addsa synchronizationcost. In addition, channelstrip-
ing must also be resilient to common faults such as bit errors and
link crashes.

As we will see in Section 2.1, earlier solutions to the synchro-
nization and fault-tolerance problems are expensive, inefficient, or
dependent on assumptions that make them infeasible in certain ap-
plication domains. Our paper, on the other hand, describes a new
family of channel striping algorithms that is both general and effi-
cient. Our striping schemesare basedon a combination of two novel
ideas: fair load sharing and logical FIFO reception.

The theoretical contributions of this paper include: a new con-
nection between fair queuing and load sharing, the idea of logical
reception, and a novel distributed algorithm to restore synchroniza-
tion in the face of loss. The practical contributions of this paper
include: an architectural model, a working software implementa-
tion of the model and the striping algorithm, and measurements and
evaluation of the striping algorithm.

Overview of Solution Components

In Section 2, we present a model of the load sharing problem, and
review previous work. To provide load sharing in the presence of
varying length packets, we use fair load sharing algorithms. We
show such fair load sharing algorithms can be automatically derived
by transforming a class of fair queuing algorithms. In Section 3, we
develop a criterion for this transformation, and provide an instance
of fair load sharing algorithms.

In Section 4, we deal with the FIFO delivery problem. Our so-
lution is compatible with our fair load sharing solutions described
in Section 3. Our main idea is the notion of logical reception in
which we separate physical reception from logical reception by a
per-channel buffer; we then have the receiver simulate the sender
algorithm in order to remove packets in FIFO order from channel
buffers. We show how to achievequasi-FIFO delivery at the receiver
without any modification of the transmitted packets, by using logi-
cal reception.

We define quasi-FIFO delivery as FIFO delivery except during
periods of loss of synchronization between the sender and the re-
ceiver. Undetected loss of packets between the sender and receiver
may cause loss of synchronization. We show in Section 5 how to
quickly detect and recover from such loss of synchronization.

In Section 6 we present the details of our prototype implementa-
tion. We first present a framework for striping IP packets over mul-
tiple IP interfaces in Section 6.1. We then presentexperimental veri-
fication of the load sharing and FIFO delivery properties of our chan-
nel striping scheme in Section 6.2. We show how an implementa-
tion of our striping algorithm over two dissimilar links can provide
the aggregate throughput of the individual links. We also study the
individual impact of our two ideas: SRR versus round robin, and
logical reception versus no resequencing.

2 Model and Related Work

To allow our algorithms to be widely applicable, we use a broad def-
inition of a channel. For the rest of this paper, we define a channel
to be a logical FIFO path at either the physical, data link, network, or
transport layers. We use packets to refer to the atomic units of ex-
change between two entities communicating across a channel. The
generic channel striping configuration is depicted in Figure 1.

Channel
Striping

Algorithm

Channel 1

Channel 2

Channel 3

Channel N

Sender Node S Receiver node R

Resequencing
Algorithm

Figure 1: Channel striping configuration

As seen in Figure 1, there are N channels between the sender
S and the receiver R. For simplicity, we consider traffic in only
one direction; the same analysis and algorithms apply for the re-
verse direction. Node S implements the striping algorithm to stripe
outgoing traffic across the N channels, and nodeR implements the
resequencing algorithm to combine the traffic into a single stream.
We will sometimes assume, for throughput analysis, that sender S
is backlogged, i.e., it always has packets to transmit. However, our
algorithms work for any traffic pattern offered to the sender.

All channelsare assumed to be FIFO. Channels can be subject to
packet loss and corruption. Channels that occasionallydeviate from
FIFO delivery can also be modeled as having burst errors. Finally,
we allow the end-to-end latency or skew across each channel to be
potentially different and to vary on a packet to packet basis. This is
important to model realistic network channels. This also rules out

simple solutions to the resequencing problem based on skew com-
pensation, if the skew cannot be bounded or characterized.

The simplest example of a channel at the data link layer is a
point-to-point link that connects two devices, where the two devices
could be workstations, switches, routers, or bridges. A less obvi-
ous example of a data link channel is a LAN (e.g., Ethernet), that
guarantees FIFO delivery between a given sender and receiver. Net-
work layer channel examples include ATM or X.25 virtual circuits.
Even in datagram networks, it may be possible to construct “net-
work” channels (e.g., by using strict IP source routing to set up mul-
tiple paths between two IP endpoints), but these examples seem con-
trived. Finally, since most transport protocols like TCP provide a
stream service, it is possible to think of a channelas a transport con-
nection. A fast CPU may achieve higher throughput by striping data
across multiple “intelligent” adaptors, each of which implements a
TCP connection. However, the most useful examples appear to be
data link and virtual circuit channels.

Given a set of FIFO channels, the desirable properties of a chan-
nel striping scheme include fair load sharing with variable sized pack-
ets and variable capacity channels, FIFO delivery of packets at the
receiver, and applicability to a wide variety of channels without any
modification to existing channel packet formats or equipment. In
addition the schemeshould be robust enough to recover from bit and
burst errors, and be scalable enough to impose little overhead.

2.1 Existing Channel Striping Algorithms

[TS95] describes a model of load striping, and summarizes var-
ious approaches to the problem. Table 1 compares the features of
some solutions to striping.

The simplest channel striping scheme is round robin striping —
the sender sendspackets in round robin order on the channels. Round
robin provides for neither load sharing with variable sized packets,
nor FIFO delivery without packet modification. Fair load sharing
does not hold if the sender alternates between big and smaller pack-
ets and stripes over two channels. In this case, all the big pack-
ets go over one channel. Also, since the channels may have vary-
ing skews, the physical arrival of packets at the receiver may differ
from their logical ordering. Without sequencing information, pack-
ets may be persistently misordered.

Round robin schemes can be made to guarantee FIFO delivery
by adding a packet sequence number which can be used to rese-
quence packets at the receiver. However, this violates the goal of
working over existing channels which do not allow header modifi-
cation. For example, in ATM networks where the cell size is fixed
at 53 bytes, it appears difficult to add extra headers to cells (e.g.,
to stripe cells between two switches), and yet use existing equip-
ment. Even channels that allow variable sized packets (e.g., Eth-
ernets) have a restriction on the maximum packet size. We cannot
add an extra header if the packets that the sender wishes to send are
already maximum sized packets.

Both the variable packet size problem and the FIFO problem can
be solved if the channel striping algorithm can modify the equip-
ment (typically hardware) or reformat the packets at the endpoints
of a channel. For example, in the First Come First Serve scheme,
the packets are split into fixed size striping units of data, which are
then striped round robin across the channels. The striping unit can
be a bit or a byte or a bigger aggregation. Bit or byte interleaving
is often done at the hardware level using devices known as inverse
multiplexers.

Inverse multiplexers which operate on 56 kbps and 64kbps cir-
cuit switched channels are commercially available. Industry wide
standardization of inverse multiplexers has been initiated by the BOND-
ING [Dun94][Fre94][Gro92] consortium, which has issued standards
for a frame structure and procedures for establishing a wideband
communications channel by combining multiple switched 56 and

Scheme FIFO delivery Load sharing with Variable
Length Packets

Target Environment

Round-Robin, no header May be non-FIFO Poor At all levels
Round-Robin with header Guaranteed FIFO Poor Only if we can add headers
BONDING Guaranteed FIFO Good Only over synchronous serial channels
Fair Queuing algorithm with
header

Guaranteed FIFO Good Only if we can add headers

Fair Queuing algorithm, no header Quasi-FIFO Good At all levels

Table 1: Features of some channel striping solutions. The first three rows describe existing schemes, and the last two rows describe the features
of our new schemes.

64-kbps channels. The BONDING scheme uses a fixed size frame
structure and skew compensationfor reordering, togetherwith frame
sequence numbers to recover from errors. The BONDING scheme
requires special hardware at the sender and receiver.

The ATM Forum is considering a standard for ATM cell strip-
ing called AIM (ATM Inverse Multiplexing) based on delay compen-
sation. As with BONDING, this works only when the skew can be
bounded tightly.

The establishment of Gigabit testbeds led to the design of sev-
eral network adaptors which striped data acrossmultiple slower speed
ATM links to achieve gigabit throughputs. As mentioned earlier, the
IBM SIA adaptor [TG93] does striping over 4 STS-3c channels. The
Bellcore HAS adaptor [Joh95] stripes HIPPI packetsover SONET lines
using a First-Come-First-Serve (FCFS) striping policy, while the CASA
Gigabit testbed [JD93] uses round robin striping at the byte level.
The OSIRIS Adaptor[DP94] does cell striping over ATM channels. A
single packet is sent as a number of “minipackets” on each channel
and a parallel reassembly of the packets is done at the receiver. All
these schemes either rely on extra hardware to do load sharing (e.g.,
using byte striping), or rely on extra information for resynchroniza-
tion (e.g., information embedded in SONET or ATM headers). Thus
none of these schemes meet all our goals.

Existing striping schemes which operate at higher levels usu-
ally sacrifice either fair load sharing or FIFO delivery. For exam-
ple, the Random Selection scheme [Bay95] relies on random as-
signment of channels to packets to ensure load sharing, but does not
provide FIFO delivery. The same is true for the Shortest Queue First
scheme used in the EQL serial line driver in the Linux operating sys-
tem: in this scheme, the channel with the smallest queue is selected
for transmitting the next packet. On the other hand, the Address-
based Hashing scheme [Bay95] relies on hashing packet addresses
to channels to route packets destined for the same address over the
same channel. This provides FIFO delivery of packets destined for
the same address, but does not provide load sharing for packets ad-
dressed to any given destination.

The Internet standard RFC1717specifies MPPP(PPP Multipoint).
This provides a framework and packet formats for striping across
multiple PPP links. However, no algorithm is specified for either
the sending or the receiving end. In addition, the sender modifies
each packet by adding sequence numbers to it.

Our strIPe protocol described later differs from MPPP in three
fundamental ways. First, it works transparent to IP over any inter-
face, not just a PPP interface. Second, there is no modification of
any data packet, since no new headeris taggedalong with each packet.
This is essential for striping over high speed interfaces. Finally, MPPP

supplies no algorithm for striping at the sender and resequencing at
the receiver, while our strIPe protocol does.

While some of the solutions described in [TG93, Joh95, JD93]
look superficially similar to ours (e.g., the use of queues at the re-
ceiving ends of channels), these schemes rely on extra information
such as SONET framing for synchronization, which is unavailable

for many channels. Further, they either do not provide generalmech-
anisms for fair load sharing or rely on mechanisms like byte strip-
ing that are infeasible in many contexts. By contrast, we use a dis-
tributed algorithm to restore synchronization, and a transformation
of a fair queuing algorithm to provide fair load sharing. Our algo-
rithms are applicable to a wide variety of channels.

3 Using Fair Queuing algorithms for Load Sharing

We solve the variable packetsize problem by transforming fair queu-
ing algorithms into load sharing algorithms. We use the term fair
queuing to refer to a generic class of algorithms that are used to
share a single channel among multiple queues. Henceforth we will
refer to such algorithms as FQ algorithms. In FQ, we partition the
traffic on a single outputchannelequitably from a set of input queues
which feed that channel. In load sharing, on the other hand, we seek
to partition the traffic arriving on a single input queue equitably among
a set of output channels.

300 c 550 a150 b400 f 200 d400 eFair Queueing
Algorithm

Queue 1

Queue 2

300 c 550 a150 b

400 f 200 d400 e

Output Channel

Figure 2: Example of fair queuing

300 c 550 a150 b400 f 200 d400 e
Load Sharing

Algorithm

Channel 1

Channel 2

300 c 550 a150 b

400 f 200 d400 e

Input Queue

Figure 3: Example of load sharing

Figures 2 and 3 explain the intuitive relationship between fair
load sharing and fair queuing. In Figure 2, an arbitrary FQ algo-
rithm feeds an outgoing channel from two queues. In the figure,
each packet is marked with its size in bytes and a unique identifier,
which ranges from a to f . The FQ algorithm transmits the packets
in a particular sequence as shown. Notice that the bandwidth of the
channel is partitioned roughly equally among the channels. They
have the same fair share of 500 bytes each. Now, consider the op-
eration of the FQ algorithm in a time reversed manner, with the di-
rection of the arrows reversed. We would then obtain the situation
shown in Figure 3.

In a rough sense, load sharing algorithms are ‘time reversals’
of fair queuing algorithms. We simply run a FQ algorithm as the
load sharing algorithm at the sender! The reversal lies in reversing
the direction of flow of packets– where the FQ algorithm transmits
packets from one of the many queues on to the single channel, the
load sharing algorithm transmits packets from the single queue to

one of the many channels. We believe this to be an important in-
sight, since it suggests that the considerable amount of work done
in the FQ area can be directly applied to load sharing. However, as
we shall see, only a subset of FQ algorithms can be used for load
sharing.

3.1 Causal and Non Causal Fair Queuing Algorithms

Consider a node running a FQ algorithm to feed a channel from mul-
tiple queues. Within each queue, packets are transmitted in FIFO or-
der. Assume all queues are backlogged (i.e., have packets to send).
The fair queuing problem lies in selecting the queue from which the
next transmitted packet should originate. This decision can depend
not only on the previously transmitted packets, but also on other
parameters, like the size of packets at the head of each queue, the
current queue sizes, and so on. For instance, the DKS algorithm
[DKS89] depends on the packets at the head of each queue in or-
der to simulate bit-by-bit round robin.

In the backlogged case, if a FQ algorithm depends only on the
previous packets sent to choose the current queue to serve, then we
call the algorithm a Causal FQ (CFQ) algorithm. All other FQ algo-
rithms are called non-causal algorithms. Thus the DKS fair queu-
ing algorithm [DKS89] is non-causal, while ordinary round robin is
causal.

Why do we restrict ourselves to backlogged FQ behavior? In
the non-backlogged case, most FQ algorithms maintain a list of ac-
tive flows as part of their state. This allows them to skip over empty
queues. However, this mechanism also makes almost all FQ algo-
rithms non-causal. Thus for our transformation we restrict ourselves
to the backlogged behavior of a FQ protocol. Notice that any FQ al-
gorithm must handle the backlogged traffic case. Intuitively, in load
sharing there is no phenomenon corresponding to empty queues in
fair queuing; this anomaly is avoided by considering only the back-
logged case.

In the backlogged case, CFQ algorithms can be formally char-
acterized by repeated applications of two functions in succession.
One function f(s) selects a queue, given the current state s of the
sender. This is illustrated on the left in Figure 4. After the packet
at the head of the selected queue is transmitted, another function g
is invoked to update the sender state to be equal to g(s; p) where
p is the packet that was just sent. For example, in ordinary round
robin the state s is the pointer to the current queue to be serviced;
the function f(s) is the identity function: f(s) = s; finally, the
function g(s; p) merely increments the pointer to the next queue.

3.2 Use of CFQ Algorithms for Load Sharing at the Sender

The transformation from fair queuing to fair load sharing is illus-
trated in Figure 4. We start on the left with an CFQ algorithm and
end with a fair load sharing algorithm on the right.

The CFQ algorithm is characterized by an initial state s0 and the
two functions f and g. To obtain the fair load sharing algorithm we
start the load sharing algorithm in state s0. If p is the latest packet
received on the high speed input channel (see the right of Figure 4),
the load sharing algorithm sends packet p to low speed output line
f(s). Thus while the fair sharing algorithm uses f(s) to pull pack-
ets from input queues, the load sharing algorithm uses f(s) to push
packets to output channels. In both cases, the sender then updates
its state by applying the function g to the current state and the packet
that was just transmitted. Notice that there is no requirement for
the load sharing algorithm to work only in the backlogged case; if
the queue of packets from the input high speed channel is empty,
the load sharing algorithm does not modify its state further until the
next packet arrives.

Pick packet
from queue f(s)

Send packet
to channel f(s)

FAIR LOAD SHARINGCAUSAL FAIR QUEUEING

Figure 4: Consider a backlogged execution of a fair queuing algorithm. If the
algorithm is causal we firstapply a function f(s) to select a queue. We transmit
the packet p at the head of the selected queue and then update the state using
a function g(s; p). We can obtain a fair load sharing algorithm by using the
same function f to pick a channel to transmit the next packet on, and update
the state using the same function g.

3.3 Evaluating the Transformation: Throughput Fairness

To precisely evaluate fair sharing, we define throughput fairness for
both deterministic and probabilistic fair queuing schemes. In dis-
cussing throughput fairness it makes sense to only consider the case
when all input queues are backlogged.

Consider a fair queuing scheme with several input queues. In
the start state each queue contains a sequence of packets with ar-
bitrary packet lengths. Define a backlogged execution to be an ex-
ecution in which no input queue is ever empty. There are an infi-
nite numberof possible backloggedexecutionscorresponding to the
different ways packets, especially packet lengths, can be assigned
to queues in the start state. In a backlogged execution we assume,
without loss of generality, that all packets that are serviced arrive in
the start state. An execution will produce as output a finite or in-
finite sequence of packets taken from each input queue. The bits
allocated to a queue i in an executionE is the sum of the lengths of
all packets from queue i that are serviced in executionE.

We say that a deterministic fair queuing scheme is fair if over
all backlogged executions E, the difference in the bits allocated to
any two queues differs by at most a constant. For instance, the dif-
ference cannot grow with the length of an execution. We say that a
randomized fair queuing scheme is fair if over all backlogged exe-
cutionsE, the expected number of bits allocated to any two queues
is identical.

We can make analogous definitions for load sharing algorithms.
A backlogged execution now begins with an arbitrary sequence of
packets on the high speed channel. The bits allocated to a channel i
in an executionE is the sum of the lengths of all packets that are sent
to channel i in executionE. The fairness definitions for load sharing
and fair queuing are then identical except with the word “channel”
replacing the word “queue”. Note that any execution of a load shar-
ing algorithm can be modeled as a backlogged execution as long as
the load sharing algorithm is causal. Thus there is no loss of gener-
ality in considering only backlogged executions.

3.4 The Transformation Theorem

We show that a load sharing algorithm obtained by transforming an
CFQ algorithm as shown above has the same fairness properties as
the original CFQ algorithm.

Theorem 3.1 Consider an CFQ algorithm A and a fair load shar-
ing algorithm B that is produced by the transformation described
above. Then if A is fair, so is B.

Proof: (Idea) Notice that the theorem applies to both randomized
and deterministic CFQ algorithms. The main idea behind the proof
is simple and is best illustrated by Figure 1. We use the initial state
s0 and the functions f and g of A and define B as we described
earlier. Now consider any executionE of the resulting load sharing

protocol B, e.g., the execution shown in Figure 3. From execution
E we generate a corresponding execution E0 (e.g., the execution
shown in Figure 2) of the original CFQ algorithm A.

To constructE0 fromE we consider the outputs of the load shar-
ing algorithm in E to be the inputs for E0. More precisely, we ini-
tialize queue i in E0 to contain the sequence of packets output for
channel i in E. We then show that if the CFQ algorithm A is run on
this output, it produces the execution we callE0 , and the output se-
quence in E0 is identical to the input sequence asE. Thus the input
of E corresponds to the output of E0 , and vice versa. This corre-
spondence can be formally verified by an inductive proof.

Finally, we know that since A is fair, the output sequence in E0

contains approximately the same number of bits from every queue.
Thus, since there is a 1-1 correspondence between outputs and in-
puts in E and E0, we see that the output sequence in E assigns ap-
proximately the same number of bits to every output channel. Since
this is true for every executionE of B, B is also fair. Note that the
correspondence does not work in the reverse direction. 2

The theorem can be used to convert causal fair queuing algo-
rithms into load sharing algorithms. A simple example is a random-
ized fair queuing (RFQ) scheme that randomly picks a queue to ser-
vice. RFQ can be transformed into a randomized load balancing al-
gorithm that keeps the expectednumber of bytes transmitted on each
line the same. However, a more useful example is the SRR scheme
that we describe next.

3.5 Surplus Round Robin (SRR)

We turn to a specific example of a CFQ algorithm, which we call
Surplus Round Robin (SRR), to which the transformation theorem
can be applied. SRR is based on a modified version of DRR [SV94].
SRR is also identical to a FQ algorithm proposed by Van Jacobson
and Sally Floyd [Flo93].

In the SRR algorithm, each queue is assigned a quantum of ser-
vice, measured in units of data, and is associatedwith a countercalled
the Deficit Counter (DC), which is initialized to 0. Queues are ser-
viced in a round robin manner. When a queue is picked for service,
its DC is incremented by the quantum for that queue. As long as
the DC is positive, packets are sent from that queue, and the DC is
decremented by the size of the transmitted packet. Once theDC be-
comes non-positive, the next queue in round robin order is selected
for service. Thus if a queue overdraws its account by some amount,
it is penalized by this amount in the next round.

300 c 550 a150 b400 f 200 d400 e

SRR FQ
Algorithm

Queue 1

Queue 2

300 c 550 a150 b

400 f 200 d400 e

Output Channel

Round 1Round 2

DC1 = 300
DC1 = 450 DC1 = -50 DC1 = 500 DC1 = 0DC1 = 0

DC2 = 0

Start of
Round

End of
Round

End of
Round

Start of
Round Initialization

DC2 = 0 DC2 = 400 DC2 = -100
DC2 = 300

DC2 = 500

Figure 5: Example of SRR Fair Queuing. Each queue has a quantum
of 500 bytes

Figure 5 graphically illustrates the operation of the SRR CFQ al-
gorithm. In the figure, we see two input queues,one containing pack-
ets labeled a, b, c, in that order, and the other containing packets d,
e and f . Both queues are assigned a quantum of 500 each. In addi-
tion to its label, each packet is also marked with its size. The figure
shows the values of theDCs associated with each queue as the SRR

algorithm executes. Note that a round is a sequence of visits to con-
secutive channels, before returning to the starting channel. TheDC
of each queue is incremented by the quantum associated with that
queue in each round. When theDC becomes non-positive, packets
are sent from the next queue.

In Figure 5 the DC of channel 1 is initially the quantum size
(500). After sending out packeta (of size550), theDC of channel1
becomes500�550 = �50which is negative. Thus the round robin
pointer moves on to channel 2, where two packets, d and e, with
combined size 600, are sent before the DC of channel 2 becomes
500 � 600 = �100. At this point, the round robin scan returns
to channel 1 to start round 2. A fresh quantum of 500 is added to
the DC for channel 1, leaving a value of 450, which now allows
packets b and c to be sent out in the second round.

As can be seen, SRR sends roughly the same amount of data
from each queue. It is possible to precisely characterize throughput
fairness for the SRR FQ algorithm. Let the quantum of service as-
signed to queue i beQuantumi . Let the maximum quantum among
all the channels be Quantum. Let the maximum packet size be
Max.

Theorem 3.2 Consider any execution of the SRR FQ algorithm in
which queue i is backlogged. After any K rounds, the difference
between the bytes that queue i should havesent, i.e.,K�Quantumi,
and the bytes that queue i actually sends is bounded byMax+2 �
Quantum.

The proof is similar to the proof of fairness of DRR [SV94].

Transforming SRR into a load sharing algorithm The corre-
sponding load sharing algorithm works as follows. Each channel is
associated with a Deficit Counter (DC), and a quantum of service,
measured in units of data, proportional to the bandwidth of the chan-
nel. Initially, theDC of each channel is initialized to 0, and the first
channel is selected for service, i.e., for transmitting packets. Each
time a channel is selected, its DC is incremented by the quantum
for that channel. Packets are sent over the selected channel, and its
DC is decremented by the packet length, till theDC becomes non-
positive. The next channel is then selected in a round robin manner,
and its quantum is added to itsDC . Packets are sent over this chan-
nel till its DC becomes non-positive, and then the next channel is
selected, and so on.

300 c 550 a150 b400 f 200 d400 e

SRR Striping
Algorithm

Channel 1

Channel 2

300 c 550 a150 b

400 f 200 d400 e

Input Queue

Round 1Round 2

DC1 = 300
DC1 = 450 DC1 = -50 DC1 = 500 DC1 = 0DC1 = 0

DC2 = 0

Start of
Round

End of
Round

End of
Round

Start of
Round Initialization

DC2 = 0 DC2 = 400 DC2 = -100
DC2 = 300

DC2 = 500

Figure 6: Example of SRR Load Sharing. Each channel has a quan-
tum of 500

Figure 6 illustrates the operation of the SRR load sharing algo-
rithm. The load sharing algorithm preserves the same fairness bounds
as the FQ algorithm. Using the terminology of the previous theo-
rem:

Lemma 3.3 Consider any execution of the SRR load sharing algo-
rithm. After any K rounds, the difference between the bytes that
should have been sent on Channel i, i.e., K �Quantumi , and the
bytes actually senton Channel i is boundedbyMax+2�Quantum.

The SRR load sharing scheme has a number of nice properties
that makes it appropriate for use in a practical packet striping algo-
rithm. It divides the bandwidth fairly among output channels even
in the presence of variable length packets. It is extremely simple to
implement, requiring only a few more instructions than the normal
amount of processing needed to send a packet to an output chan-
nel. It is also possible to generalize SRR to handle channelswith dif-
ferent rated bandwidths by assigning larger quantum values to the
higher bandwidth lines — this corresponds to weighted fair queu-
ing.

4 FIFO Delivery using Logical Reception

This section describes techniques for ensuring FIFO delivery at the
receiver. Our main idea is what we call logical reception.

Logical reception combines two separate ideas: buffering at the
receiver to allow physical reception to be distinguished from logical
reception, and receiver simulation of the sender striping algorithm.
Logical reception can be explained very simply using Figure 1. No-
tice that there are per-channel buffers shown between the channel
and the resequencing algorithm. Notice also that if we look at the
picture at the receiver node, it is clear that the receiver is perform-
ing a fair queuing function. But we have already seen a connection
between channel striping and fair queuing schemes. Thus the main
idea is as follows. The receiver can restore the FIFO stream arriving
to the sender if it uses a fair queuing algorithm that is derived from
the channel striping algorithm used at the sender.

Suppose in Figure 1 that the sender sends packets in round robin
order sending packet 1 on Channel 1, packet 2 on Channel 2, . . .
and packet N on Channel N . Packet N + 1 is sent on Channel 1
and so on. The receiver algorithm uses a similar round robin pointer
that is initialized to Channel 1. This is the channel that the receiver
next expects to get a packet on. The main idea is that the receiver
will not move on Channel i + 1 until it is able to remove a packet
from the head of the buffer for Channel i. Thus, suppose Channel1
is much faster than the others and packets 1 andN+1 arrive before
the others at the receiver. The receiver will remove the first packet
from the Channel1 buffer. However, the receiver will block waiting
for a packet from Channel 2 and will not remove packetN+1 until
packet 2 arrives.

In general, if the sender striping algorithm is a transformed ver-
sion of a Causal Fair Queuing (CFQ) algorithm, then the receiver
can run the CFQ algorithm to know the channel over which the next
packet is to arrive from the sender. The receiver then blocks on that
channel, waiting for the next packet to arrive, while buffering pack-
ets that arrive on other channels. The simulation, coupled with the
buffering and receiver blocking, ensures logical FIFO reception, ir-
respective of the nature of the skew presentbetween the various chan-
nels. Formally:

Theorem 4.1 LetB be the load striping algorithm derivedby trans-
forming an CFQ algorithmA. If B is used as a channel striping al-
gorithm at the sender and A is used as the resequencing algorithm
at the receiver,and no packets are lost, then the sequence of packets
output by the receiver is the same as the sequence of packets input
to the sender.

Synchronization between sender and receiver can be lost due to
the loss of a single packet. In the round robin example shown above
if packet1 is lost, the receiver will deliver the packet sequenceN+
1; 2; 3; : : : ;N; 2N+1;N+2;N+3; : : : and permanently reorder
packets. Thus the sender must periodically resynchronize with the
receiver. Such synchronization can be done quite easily as shown
in Section 5. If packets are lost infrequently and periodic synchro-
nization is done quickly, logical reception works well. We discuss
performance simulations in Section 6.

Why is it necessary for the fair queuing algorithm to be causal?
For the receiver to simulate the sender, it is necessary for it to know
the channel over which the next packet is going to arrive. This de-
cision has to be made based on the current state, which can encode
only the previous arrivals. By definition, this is the property of CFQ
algorithms.

Buffering of packets often does not introduce any extra over-
head because once the packets are read in, they do not have to be
copied for further processing– only pointers to the packets need be
passed, unless the packet has to be copied from one address space to
another (e.g., from the adaptor card to the main memory), in which
case a copy is needed in any case.

Even in the case when sequence numbers can be added to pack-
ets, logical reception can help simplify the resequencing implemen-
tation. Some of the hardware implementations for resequencing,
e.g., [McA93], rely on hardware to sort out of order packets and
modified packet formats. Logical reception can be used to avoid
such sorting. The sequence number inserted by the sender is now
needed only for confirmation, since logical reception suffices for
FIFO delivery. The sequence numbers, however, provide sequenc-
ing of packets even when the sender and receiver lose synchroniza-
tion, and guarantee FIFO reception.

The most important application of logical reception (see goals
listed earlier) is the case when sequence numbers cannot be added.
Unfortunately, in this case we cannot guarantee FIFO delivery al-
ways. We refer to this mode of packet reception, in which the re-
ceiver maintains FIFO delivery, exceptduring periods of loss as quasi-
FIFO reception. This is in contrast to guaranteed FIFO reception.
For quasi-FIFO reception to be of practical significance, we need to
restore synchronization periodically, or the receiver will continue to
deliver packets out of order. We now describe the synchronization
protocol.

5 Synchronization Recovery at the Receiver

The techniquesdescribed below utilize specialmarkerpackets,which
the receiver can distinguish from the normal data packets. We as-
sume that when either the senderor the receivergoes down and comes
up, it reinitializes the channel, thus restoring synchronization. So
the error cases that we have to deal with are channel errors which
cause packet loss, and hardware/software errors at either the sender
or receiver. Sending marker packets does not require modifications
to the data packets, which is one of the desirable properties of a
striping scheme. The only requirement is that the lower level proto-
col provides a distinct codepoint (i.e., demultiplexing information)
for the marker packets, to distinguish markers from normal data pack-
ets. Such codepointsare available for ATM virtual circuits, e.g., OAM

cells or LLC/SNAP encapsulation, and for most existing links. For
example, on Ethernet, codepoints for marker packets are available
simply by using a different packet type field. Note that using a dif-
ferent type field for marker packets doesnot alter ordinary data pack-
ets or link packet formats in any way, as opposed to existing striping
schemes (e.g., MPPP) which require a modified link packet format
for all packets.

We now describe a marker synchronization scheme for the strip-
ing schemeusing the SRR striping algorithm. As previously defined,
a round is a sequence of visits to consecutive channels before re-
turning to the starting channel. In each round, the sender sends data
over all channels. Similarly, in each round, the receiver receives
data from all channels.

The state at the sender can be fully specified by specifying the
current round, and the value of the SRR Deficit Counters (DCs) at
each channel. Similarly, the state at the receiver consists of the cur-
rent receiver round number, and the value of the SRR DCs at each
of the channels as seen by the receiver. In the absenceof packet loss
or corruption, the state at the sender would correspond to the state at

the receiver, modulo the packets in transit, and the receiver would
stay in synchronization. However, if there were a packet loss, then
the two states would differ, and the receiver would run out of step
with the sender.

Intuitively, each packet sent can be implicitly numbered with a
tuple (R;D), whereR is the round number before the packet is sent
and D is the value of the DC before the packet is sent. Similarly,
at the receiver, a received packet can be implicitly numbered by the
round number and DC before the packet is received. If the (im-
plicit) receive and send numbers for each packet are identical, then
the receiver will deliver packets in the correct order.

SRR
Channel
Striping

Algorithm

SRR
Resequencing

Algorithm

Sender S Receiver R

Channel 1

Channel 2

Figure 7: Configuration to illustrate synchronization recovery

SRR
Channel
Striping

Algorithm

Sender S Channel 1

Channel 2

6 5 4 3 2 1

6

5

4

3

2

1

Round
2

Round
1

Round
3

Figure 8: Sender sends packets

SRR
Resequencing

Algorithm

Receiver RChannel 1

Channel 2

123456

2

1

4

3

6

5

Round
3

Round
2

Round
1

Figure 9: Receiver in synchronization with the sender

A simple example of the illustrating the idea behind synchro-
nization recovery is illustrated in Figures 7 to 13. We consider the
configuration shown in Figure 7. The SRR CFQ algorithm is used
for resequencing at the receiver, while the transformed version of
the algorithm is used as the striping algorithm at the sender. There
are two channelsof equal capacity linking the sender to the receiver.
We assume that all packets are of equal size, and that the quantum
of service for both channels is the same and equal to the packet size.
In such a scenario, SRR reduces to RR.

Figure 8 shows packets arriving at the sender, and being striped
across the two channels. Each packet is numbered in the order of
arrival. As can be seen, packets 1 and 2 are sent in the first round,
packets 3 and 4 in the second round, and so on. Figure 9 shows
the operation of the receiver. In the first round, the receiver picks
one packet from channel 1, followed by one packet from channel
2. Similarly in the second round, the receiver picks packets 3 and
4 from channels 1 and 2 respectively. Thus, the receiver delivers
packets in the same order as the sender receives them.

Figure 10 shows packet 7 being lost in one of the channels. We
assume that any packetcorruption causes the packet to be discarded,
and not handed over to the resequencing algorithm. The effect of
this loss is to cause the state maintained at the receiver to differ from

SRR
Channel
Striping

Algorithm

Sender S Channel 1

Channel 2

12 11 10 9 8 7

12

11

10

9

8

7

Round
6

Round
4

Round
5

Packet 7
lost

Figure 10: A channel loses a packet

SRR
Resequencing

Algorithm

Receiver RChannel 1

Channel 2

981110

8

9

10

11

12

RoundRound
5 4

Figure 11: Receiver out of synchronization

the state maintained at the sender. As can be seen in Figure 11, in
round 4, the receiver expectspacket7 on channel1, but instead picks
up packet9, since packet 7 is lost and packet9 is the next packet sent
on channel 1. This causes the receiver to go out of synchronization
with the sender, and start delivering packets out of order.

The sender periodically sends marker packets on each channel,
containing its state, which in this simple case consists of the round
numberG. As shown in Figure 12, the sender sendsa marker packet
labeled M before round 7, containing the round numberG set to 7.
When the marker packet reaches the receiver, as shownin Figure 13,
the receiver sees that there is a difference between the round num-
ber maintained by the receiver, which is currently 6, and the round
number carried in the marker packet, which is 7. This causes the re-
ceiver to skip this channel in the current round, and proceed to the
next channel. This is because the difference in round numbers is
caused by missing packets, indicating that the receiver has skipped
ahead out of turn on this channel, and therefore needs to wait that
many rounds before visiting that channel again. Hence in round 6,
the receiver skips channel1. By round 7, the receiver is fully in syn-
chronization with the sender, as can be seen in Figure 13.

We now describe the reasoning behind the channelskipping done
by the receiver. Suppose the sender sends packet p on channel c,
before sending packet q on channel c0. Then either q’s send round
number is greater than that of p, or the round numbers will be the
same and c is visited before c0 in the round robin cycle. Thus if
the receiver has the same receive numbers for p and p0 the receiver
will deliver p before p0 as long as receiver delivery meets two con-
ditions: C1: The receiver never delivers a higher round number
packetbefore a lower round number packet. C2: The receiver visits
channels in the same order as the sender in the round robin cycle.

Condition C2 can easily be enforced if the receiverand the sender

SRR
Channel
Striping

Algorithm

Sender S Channel 1

Channel 2

18 17 16 15 14 13

18

17

16

15

14

13 M13 G=7

Round
7

Round
8

Round
9

Figure 12: Sender sends a marker packet

SRR
Resequencing

Algorithm

Receiver RChannel 1

Channel 2

13141516

12

15

14

13

16

RoundRound
7 6

MG=7

12

Marker packet received with round number greater than expected, causing
the receiver to skip this channel in this round

Proper resequencing of packets
once synchronization is restored

Round
8

Figure 13: Synchronization restored at receiver

number the channels in the same way, and both visit channels in in-
creasing channelnumber order during a round robin cycle. This can
be guaranteed by having each marker carry the sendernumber of the
channel which can be adopted by the receiver. It remains to ensure
that:

� Eventually all packets have the same send and receive num-
bers after packet loss stops .

� Condition C1 is enforced.

To ensure synchronizationof send and receive numbers, we main-
tain explicit packetnumbers for both senderand receiver. Both sender
and receiver maintain a global round numberG that is incremented
after one round robin scan over the queues. This together with the
DCs provides explicit packetnumbers for each packet, though these
are not carried in packets. The next step is obvious: each periodic
marker packet on a channel c carries the packet number for the next
packet to be sent on channel c. The receiver also maintains a local
round number rc for each channel c. When the receiver receives a
marker packet (r; d) for channel c, it sets rc = r and the DC of
channel c to be d. After packet loss stops, it is obvious that this will
synchronize the packet sender and receiver numbers for all future
packets on channel c.

Finally, to maintain condition C1, the receiver maintains a global
round numberG that is incremented on every round robin scan. When
the receiver reaches a channel whose value of rc > G, it simply
skips that channel in the current round robin scan. The intuition is
that the receiver has lost some earlier packets on channel c and has
arrived “too early” at scanning this channel. Channelcwill continue
to be skipped untilG = rc at which point channel c is serviced with
the usual SRR algorithm. This clearly maintains condition C1.

Assume that for each channel i, Quantumi � Max (i.e., the
quantum assigned to each channel allows the sending of one maxi-
mum sized packet). This assumption prevents channels from being
skipped in the round robin order because their Deficit Counters do
not allow the sending of a packet. Using a formal model, we can
prove that:

Theorem 5.1 Marker Recovery: Let t be the first time after all
channelerrorsstop that a marker is deliveredon everychannel. The
marker algorithm restores FIFO delivery after t.

Thus the algorithm recovers from errors very quickly (time be-
tween sending the marker plus a one-way propagation delay). Note
that in practice, channel errors never stop; the theorem says that if
the errors stop for a period longer than the recovery time, then the
system will be resynchronized. We have implemented this algo-
rithm and found that it works well, by providing quick restoration
of FIFO delivery, even for fairly high error rates. The marker recov-
ery theorem assumes that the only channel error is detectable packet
corruption or packet loss. It is also possible to make the marker al-
gorithm self-stabilizing (i.e., robust against any error in the state)

by periodically running a snapshot [CL85] and then doing a reset
[Var93]. We deal with sender or receiver node crashes by doing a
reset.

The main idea behind the marker recovery protocol is a way of
numbering packets on a channel that depends only on the data sent
or received on a channel. A global numbering scheme such as a
global sequence number appears to require expensive global syn-
chronization across all channels. By using a per-channelnumbering
scheme, that also includes the relevant state (i.e., the DCs) we can
synchronize each channel independently. The only global condition
that needs to enforced is condition C1, which is implemented easily
by skipping channels that have lower round numbers than incoming
marker packets.

6 Implementation and Performance Evaluation

Having looked at the theory underlying the use of CFQ algorithms
for packet striping and resequencing, we now turn to implementa-
tion issues. We propose a model for striping IP packets over multi-
ple data link interfaces in Section 6.1. We implemented our scheme
in the NetBSD kernel and measured its throughputgains when strip-
ing was done over a combination of an ATM and an Ethernet link.
This allowed us to see the effects of SRR versus round robin, and
the effects of using logical reception versus no resequencing at all.
The implementation is discussed in Section 6.2.

Finally, in Section 6.3, we discuss other experiments and simu-
lations we performed to verify the load sharing and FIFO properties
of our scheme. By implementing the SRR striping protocol above
the transport layer and by simulating packet loss, we were able to
study the effect of packet loss on throughput and various parame-
ters of the marker recovery scheme. We also evaluated the effect
of the quasi-FIFO delivery of our scheme, during losses, on a video
application.

6.1 A Model for Transparent IP Striping on a LAN

We present a simple architectural framework for striping IP packets
over multiple data link interfaces, which can include multi-access
interfaces like Ethernets and Token Rings. The framework is as shown
in figure 14. We create a virtual interface, which we term the strIPe
interface, between IP and the actual data link interfaces which are
to be striped. In this fashion, IP striping can be totally transparent
to both IP and upper level protocols and applications. We refer to
this technique of striping IP packets as the strIPe protocol.

IP

IP
Convergence
Layer

Data Link
IInterface

Layer

Physical Link

Real IP Interface

IP
Convergence
Layer

Data Link
IInterface

Real IP Interface

Virtual IP Interface

strIPe
layer

Physical Link

Figure 14: The position of the strIPe layer. The dotted lines indicate
the data flow between IP and the data link layer via the strIPe layer.

In current protocol stacks, the IP protocol sends and receives
IP packets from multiple IP interfaces, which are composed of IP

convergence layers on top of the data link layers (see Figure 14).
The convergence layer is responsible for mapping IP addresses to
data link addresses, and encapsulating the IP packet in a data link
frame. For example, for Ethernet interfaces, the convergence layer
performs ARP. The strIPe layer becomesone suchconvergence layer
below IP and above the data links that the packets will be striped
over. The strIPe layer implements the sender side striping algorithm
and the receiver side resequencing algorithm. In our case, both al-
gorithms are based on SRR.

Whenever a sending host sees that a packet is to be routed to one
of the IP addressescorresponding to the receiver with multiple chan-
nels, it sends the packets to the strIPe layer. This is accomplished
by modifying the routing table of the sending host. Recall that it is
possible for host specific routes to override network specific routes.
Thus, if the two ethernets are on IP networks Net1 and Net2, and if
the receiving host’s two IP addresses are Net1.B and Net2.B, then
we simply make entries in the sending host’s routing table, asking
it to route packets to Net1.B and Net2.B to interface C, which cor-
responds to the strIPe interface.

At the receiving end, the data link interfaces hand over striped
packets to the strIPe layer for resequencing. This is accomplished
by using a different codepoint in the data link layer headerfor striped
IP packets. The strIPe layer at the receiving end then resequences
the packets before handing them to IP. There are other subtleties
to do with ARP handling and differing MTU sizes that we defer for
lack of space. We do note, however, than our model restricts the
maximum packet size, or the Maximum Transmission Unit MTU of
the strIPe interface to the minimum MTU of the underlying physical
interfaces.

6.2 Performance of the NetBSD Implementation

The strIPe protocol was implemented in the NetBSD/i386 kernel.
Our setup consisted of two Pentium workstations, each with two IP

interfaces. One interface was 10 Mbps Ethernet, and the other was
an ATM interface, which sent IP packets through a Permanent Vir-
tual Circuit (PVC). The bandwidth of the PVC could be modified in
hardware. Figure 15 depicts the performance of our strIPe protocol
when used to stripe IP packets across the Ethernet and ATM inter-
faces. The bandwidth of the PVC used for IP traffic was varied, and
the effect on striping throughout was studied. The throughput mea-
surements were carried out at the application level, using a sending
program which sent a random mixture of small and large packets to
the receiving program on the other workstation over a TCP connec-
tion.

Besides the throughput of our strIPe protocol, we also imple-
mented and measured the performance of four other striping vari-
ants to gain insight into the advantages of SRR versus round robin,
and logical reception versus no resequencing. We first measured the
throughput of the ATM and Ethernet interfaces separately, for each
value of PVC bandwidth, and calculated the sum of the individual
throughputs: clearly this is an upper bound on striping performance.
Note that in this case, only one interface is used for sending data at
a time, as opposed to the striping case, in which two interfaces are
used. Second, we replaced SRR by generalized round robin (GRR),
which allocates packets to interfaces based on the closest integer ra-
tio of their bandwidths. Third, we implemented GRR without logi-
cal reception — i.e., no resequencing is done. Finally, we imple-
mented ordinary round robin (RR), which just alternates between
channels. Thus, besides the throughput of our strIPe protocol, in
Figure 15 we have a throughput upper bound, as well as four vari-
ants of strIPe with one or more of its features disabled.

The throughput upper bound was measured by sending packets
separately over the Ethernet and ATM interfaces, and by adding the

3.8 13.8 23.8
ATM channel capacity (Mbps)

0.0

5.0

10.0

15.0

20.0

25.0

30.0

A
pp

lic
at

io
n

le
ve

l t
hr

ou
gh

pu
t (

M
bp

s)

Sum of Ethernet and ATM throughputs
SRR , logical reception
SRR, no logical reception
GRR, logical reception
GRR, no logical reception
RR, logical reception
RR, no logical reception

Figure 15: Performance of SRR as the capacity of the ATM PVC is
varied

individual throughputs. The packet sizes were kept the same for
both interfaces. We observe that the throughput upper bound in-
creases linearly before starting to fall, as the CPU cannot keep up
with the network at higher speeds with the selected range of packet
sizes. The throughput with strIPe (SRR + logical reception) is ap-
proximately equal to the throughput of the sum of the ATM and Eth-
ernet interfaces till the ATM PVC bandwidth is set to 14 Mbps, af-
ter which it starts flattening. This is because the workstation has to
service more interrupts in the striping case. Note that in measuring
the upper bound, only one interface is used at a time. With a sin-
gle interface under heavy load, multiple packets can be received in
a single interrupt routine. This effect is less pronounced with strip-
ing, where interrupts are received from multiple interfaces. Conse-
quently, there is a significant increase in the number of interrupts,
and correspondingly in the processing overhead. Note that the bot-
tleneck is in the interrupt driver processing, as opposed to the strip-
ing overhead.

The throughput of strIPe is consistently better than the variants
that disable features. Its throughput is better than the variant that
uses GRR, and better than the variant that disables logical reception.
We note that the throughput of GRR is higher than that of GRR with-
out resequencing. RR is consistently worse than the other variants:
as the throughput of the ATM interface increases, RR performance
is still limited by the slowest speed (i.e., Ethernet) interface. Thus,
increasing the speedof the ATM interface does not improve through-
put beyond a critical point. The initial increase in RR throughput is
due to the fact that at those points, the rate of the ATM PVC is less
than that of Ethernet. Note that RR is commonly used in existing
striping protocols, as discussed in Section 2.1.

There is a throughput gain using SRR over GRR, although the
difference is not marked in Figure 15. This is because roughly the
same amount of data is carried over both interfaces, and TCP is able
to keep the transmit queues of both interfaces full. The advantage
of SRR over GRR, of course, is that it is always possible to con-
struct a worst case sequencewhich will cause GRR to perform badly,
while SRR does not have any such drawback. To show that GRR

does not work well in all situations, the following experiment was
conducted. The rate of the PVC was set to 7.6 Mbps, so that the

ATM interface gave the same throughput as the Ethernet (6 Mbps).
Note that in this case GRR reduces to RR. Then packets were sent
in deterministic fashion, with the bigger (1000 bytes) packets al-
ternating with the smaller (200 bytes) ones. With SRR, the packet
arrival sequence did not have any effect on throughput, yielding a
striped throughput of 11.2 Mbps. With GRR, the bigger packets are
all sent on one interface, and the smaller packets on the other, so the
throughput drops dramatically to 6.8 Mbps.

We note that the throughput on the single ATM interface can be
improved considerably by using a large MTU size for the ATM inter-
face. For example, we obtain throughputs in excessof 70 Mbps over
an ATM interface using 8 KB sized packets. However, our striping
algorithm restricts the MTU size used for a collection of links to be
the smallest MTU size, which in this case is that of the Ethernet in-
terface. This problem does not appear to be specific to our scheme,
but seems to apply to any striping algorithm that does not internally
fragment and reassemble packets. Since the overall throughput is
considerably dependent on MTU size, we recommend that striping
be done on links with similar MTU sizes. Our experiments should be
viewed as a validation of our algorithms; they do not indicate that
striping across an ATM and an Ethernet interface is a good idea.

6.3 Transport Layer Simulations and Experiments

In addition to implementing the strIPe protocol in the NetBSD ker-
nel, a striping protocol was also implemented at the transport layer
by striping packetsacross multiple application socketsusing the same
SRR striping and resequencing algorithm. The aim of this experi-
ment was to study the effect of marker position and frequency on
synchronization recovery, and to study the effect of packet loss on
applications, using quasi-FIFO delivery of packets at the receiver.

The main findings of our experiments were as follows:

� For arbitrary levels of packet loss (measured up to 80%), the
marker based resynchronization scheme was able to restore
FIFO delivery once packet losses stopped.

� For a given loss rate, increasing the frequency of marker pack-
ets decreased the occurence of out of order delivery of pack-
ets.

� For a given loss rate, the position of the marker packet within
a round had an effect on the number of out of order deliveries,
with the minimum number of out of order deliveries occuring
when the marker was sent either at the beginning or end of the
round.

� For channels not providing flow control, e.g., UDP channels,
a simple credit based flow control scheme proposed by Kung
et. al. [KC93] proved very effective in eliminating packet loss
due to channelcongestion. This scheme was particularly well
suited to our striping scheme, since the credits could be pig-
gybacked on the periodic marker packets.

� To see the tolerance of real world applications to possiblepacket
reordering introduced by quasi-FIFO delivery, video traces sent
by the NV video conferencing application were captured. The
stored traces were then striped over multiple UDP channels
with a controlled amount of loss. The received traces, with
some reordered packets, were fed to the NV application. Only
at packet loss levels of 40% and above were any percepti-
ble differences found in the NV playback, as compared to the
original packet stream. Incidentally, pure packet loss of 40%
(without any reordering), produced the same qualitative dif-
ference, suggesting that the effect of packet reordering was
insignificant compared to the effect of packet loss.

7 Conclusion

This paperdescribesa family of efficient channel striping algorithms
that solve both the variable packet size and the FIFO delivery prob-
lems for a fairly general class of channels. The channels can lose
packets and have dynamically varying skews. Thus, our schemes
can be applied not only at the physical layer, but also at higher lay-
ers.

We solve the variable packet size problem by transforming a class
of fair queuing algorithms called Causal Fair Queuing (CFQ) algo-
rithms into load sharing algorithms. This transformation also pro-
vides load sharing for channelshaving different capacities. We solve
the FIFO problem using logical reception, which combines the two
ideas of receiver buffering and receiver simulation of the sender al-
gorithm. It is important to note that in order for receiver simula-
tion to work it is only necessary that the sender algorithm be causal,
which is guaranteed by our fair load sharing schemes.

Logical reception must be augmented with periodic resynchro-
nization to handle packet losses. We havedescribed an elegant resyn-
chronization schemethat restores synchronizationquickly in approx-
imately a one-way propagation delay, as opposed to a conventional
reset based scheme which would have taken a round-trip delay. We
have formally proved our protocol correct. We have implemented
and simulated this protocol for various values of error rates. We
found that the scheme works well for error rates up to 80%. We also
found by experiment that the best position to place a marker was at
the end of a round.

We implemented the basic ideas at the transport level, and then
developeda framework to transparently incorporate them into the IP
protocol stack. We then implemented this protocol, that we called
strIPe, in the NetBSD kernel. Our experiments indicate that strIPe
is capable of providing nearly linear speedup with dissimilar links.
We also confirmed that the use of SRR was better than RR because
of the guaranteed performance improvement. The performance im-
provement for resequencing data packets is sensitive to whether the
receiver is a bottleneck: for fast receivers, the cost of dealing with
out-of-order data packets may not be an issue. However, for appli-
cations that require in-order packet delivery, e.g., MPEG video, re-
sequencing is crucial.

We have also described and defended the notion of quasi-FIFO
reception. Without the addition of sequencing information, the re-
ceiver can only provide quasi-FIFO delivery. We believe that quasi-
FIFO performance is adequate for most datagram applications and
even for ATM, especially in cases where adding a sequence number
to each packet is either not possible, or is expensive to implement.

We believe that striping on physical links and striping across vir-
tual circuits are the most important applications of our techniques.
For an ATM virtual circuit, it appears feasible to implement markers
using OAM cells that are sent on the same Virtual Circuit that imple-
ments the channel. When striping end-to-end across ATM circuits,
it seems advisable to stripe at the packet layer. Striping cells across
channels would mean that AAL boundaries are unavailable within
the ATM networks; however, these boundaries are needed in order
to implement early discard policies [RF94].

We believe the strIPe protocol based on SRR, logical reception,
and periodic resynchronization is suitable for practical implemen-
tation, even in hardware. SRR requires only a few extra instructions
to increment the Deficit Counter and do a comparison; the marker
based synchronization protocol is also simple since it only involves
keeping a counter and sending a marker containing the counter.

References

[Bay95] Bay Networks Web Page.
http://www.wellfleet.com/Products/Routers/Protocols/Traffic2.html,
1995.

[CL85] K. Mani Chandy and Leslie Lamport. Distributed Snapshots: De-
termining Global States of a Distributed System. ACM Transac-
tions on Computer Systems, pages 63–75, February 1985.

[DKS89] A. Demers, S. Keshav, and S. Shenker. Analysis and Simulation
of a Fair Queueing Algorithm. In Proceedings of the ACM SIG-
COMM, pages 3–12, 1989.

[DP94] Peter Druschel and Larry L. Peterson. Experiences with a High-
Speed Network Adaptor: A software Perspective. In Proceedings
of the ACM SIGCOMM, 1994.

[Dun94] Jay Duncanson. Inverse Multiplexing. IEEE Communications
Magazine, 32(4), April 1994.

[Flo93] Sally Floyd. Notes on Guaranteed Service in Resource Manage-
ment. Unpublished Note, 1993.

[Fre94] Paul H. Fredette. The Past, Present and Future of Inverse Multi-
plexing. IEEE Communications Magazine, 32(4), April 1994.

[Gro92] Bandwidth ON Demand INteroperability Group. Interoperability
Requirements for Nx56/64 kbit/s Calls, September 1992.

[JD93] W. St. John and D. DuBois. CASA Gigabit Testbed Annual Re-
port. Technical report, 1993.

[Joh95] C. Johnston. Presentation at CNRI Gigabit Testbed Workshop ,
June 1993, June 1995.

[KC93] H.T. Kung and Alan Chapman. The FCVC (Flow Controlled Vir-
tual Channel) proposal for ATM networks. In Proceedings of the
International Conference on Network Protocols, October 1993.

[McA93] A. J. McAuley. Parallel Assembly for Broadband Networks,
1993.

[RF94] Allyn Romanov and Sally Floyd. Dynamics of TCP Traffic over
ATM Networks. In Proceedings of the ACM SIGCOMM, pages
79–88, 1994.

[SV94] M. Shreedhar and G. Varghese. Efficient Fair Queueing by Deficit
Round Robin. Technical Report WU94-17, Washington Univer-
sity, 1994.

[TG93] V. Theoharakis and R. Guerin. SONET OC-12Interface for Vari-
able Length Packets. In Proceedings of the Second International
Conference on Computer Communications and Networks, pages
21–25, June 28-30,1993.

[TS95] C. Brendan S. Traw and Jonathan Smith. Striping within the Net-
work Subsystem . IEEE Network, pages 22–29, 1995.

[Var93] George Varghese. Self-stabilization by local checking and correc-
tion. Ph.D. Thesis MIT/LCS/TR-583, Massachusetts Institute of
Technology, 1993.

