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Abstract

At the data-link layer, ATM o�ers a number of features, such as high-bandwidth and

per-connection quality of service (QoS) guarantees, making it particularly attractive to mul-

timedia applications. Unfortunately, many of these features are not visible to applications

because of the inadequacies of existing higher-level protocol architectures. Although a con-

siderable e�ort is underway to tune these protocols for ATM networks, we believe that a

new ATM speci�c protocol stack is essential to e�ectively exploit all the bene�ts of ATM.

In this paper we describe the semantics of such a protocol stack, and discuss its advan-

tages over traditional protocol architectures from the perspective of distributed multimedia

applications. The performance impact of the new protocol architecture is experimentally

demonstrated on a video conferencing testbed built around IBM RS/6000s equipped with

prototype hardware for video/audio processing, and connected via ATM links.
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1 Introduction

At the data-link layer, ATM o�ers a number of features, such as high-bandwidth and per-

connection quality of service (QoS) guarantees, making it particularly attractive to multimedia

applications. Unfortunately, higher layer protocols such as TCP/IP fail to extend these bene�ts

to their applications. Although a considerable e�ort is underway to tune these existing protocols

for ATM networks [5, 8], we believe there is considerable advantage to be gained by a new ATM

speci�c protocol stack to e�ectively exploit all the bene�ts of ATM. In this paper we brie
y

describe the semantics of such a protocol stack and present experimental evidence of its impact

on distributed multimedia applications.

Our design blends in the new protocol stack into the existing protocol structure by employing

the widely used \socket" interface. To alleviate the problem of domain boundary crossing our

design separates control and data 
ows. This design allows an application to control the data


ow while delegating the data path to a more e�cient device-to-device level. Application

transparent data paths are often very useful in establishing device-to-device in-kernel tranfers

in many multimedia applications where devices (e.g. camera and display), rather than processes,

are the real end points of communication. The protocol processing ovehead is minimized by

limiting the functionality of the common case protocol stack, which is explicitly designed to

exploit the speci�c features of ATM networking. It does not duplicate any functionality provided

by the underlying ATM and Adaptation layers. To enhance performance, connection identi�er

based demultiplexing is used to eliminate logical demultiplexing. We use connection speci�c

handlers to complement the basic functionality provided by the common case protocol stack.

These handlers can be registered at the time of connection set up, and can be e�ectively used

to customize protocol processing on a per-connection basis. Connection speci�c processing

provides multimedia applications with data channels customizable to satisfy their diverse service

requirements.

The rest of the paper is organized as follows. In section 2 we describe the semantics of the

protocol stack. In section 3 we present performance results to demonstrate the impact of the

new protocol architecture on a video conferencing testbed. We conclude with section 4.

2 Protocol Architecture

Our network environment consists of hosts (end-stations) connected to a large ATM network.

The network supports the setup of switched virtual connections and permanent virtual con-

nections between end-stations. Our objective is to enable the development of new multimedia

applications, while preserving existing data applications. Hence, it is necessary to support mul-

tiple protocol families on top of the ATM link interface. The traditional protocol families such

as TCP/IP support packet data communication between applications that are not necessarily

aware of the underlying ATM network. On the other hand, the native ATM protocol family

supports the creation of application driven ATM virtual connections (VCs) to carry data with

quality of service requirements. Moreover, the virtual connections may carry di�erent types of

tra�c such as AAL1 circuit emulation, AAL5 sequenced packet, etc.

In this section we de�ne di�erent components of the protocol architecture. Our objectives
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Figure 1: Protocol support for QoS.

are as following:

� Preserve compatibility with the current socket based application interface so that existing

applications can run unchanged. Provide extensions to the interface for speci�cation and

negotiation of quality of service parameters.

� Separate control and data paths. This is particularly useful for data path optimizations

in many continuous media applications.

Our approach is to blend native ATM support into the existing protocol structure as shown

in Fig. 1. This is achieved by employing the widely used \socket" interface and de�ning a new

protocol family speci�c to ATM. The �gure shows two separate protocol paths: (a) the native

ATM family, and (b) the IP protocol family.

Applications have transparent access to the ATM network using the PF INET protocol

family. The mapping of IP to the ATM data-link is handled by the ATM network interface

(IF ATM) using the IP over ATM protocol [3]. Applications also have direct access to ATM

services using the ATM protocol family (PF ATM). In the following we explain the application

interface using the PF ATM protocol family. The PF ATM family uses ATM addresses for

identifying endpoints for connections.

Addressing. One of the obstacles in the connection setup phase is the acquisition of ATM

addresses, since it is unreasonable to expect applications and users to deal with 20-byte ATM

NSAP (or E.164) addresses. We propose to exploit the Internet Domain Name Service (DNS)

to provide naming support for applications. The DNS has been extended to support NSAP

Resource Records [4] so that DNS servers can store NSAPs and client DNS resolvers can obtain

the NSAPs by issuing queries based on the host name. Communication between the resolver

and the DNS server will proceed as usual using the normal TCP/IP protocol stack.

Control. In keeping with the architecture of ATM, we have decoupled the control and data

paths. In the traditional socket interface, control and data are handled on the same socket.
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Control parameters are usually passed using ioctl or setsockopt function calls. However,

these calls do not accommodate the upward 
ow of information from the protocol module to the

application. More recently [7], the message structure used in the sendmsg and recvmsg function

calls has been modi�ed to include control �elds, and these calls can be used to pass control

information between the application and the protocol module. However, this multiplexing of

control and data makes it di�cult to construct applications in which the control information is

handled by a di�erent thread. For example, in a tele-conferencing application, the control part

may be handled by the conference control entity, while the data is generated and consumed by

a separate thread or by a hardware device. Therefore, we create a control socket that is distinct

from the socket which handles the data 
ow.

The control socket is connected to the QOS protocol module in the ATM protocol family.

This socket may be used to control one or more data sockets and it permits a bidirectional


ow of information between the application and the QOS module. The QOS module can post

messages to the application on the control socket re
ecting changes in the connection state or

in the network environment.

Datagram Service. Constant or variable bit rate multimedia tra�c may be supported using

a datagram service over AAL5. This service is well-suited for real-time multimedia applications

since these applications are typically error resilient and employ forward error correction tech-

niques. In the rest of this paper, we will focus on the datagram service for the ATM protocol

family.

The ATM datagram socket di�ers from the datagram socket of the IP protocol family. An

IP datagram socket may be used to send datagrams to multiple destinations, and also receive

packets from multiple destinations based on the port number. On the other hand, our ATM

datagram socket is closely associated with the semantics of an ATM virtual connection. Hence,

a point-to-point connection would be bidirectional whereas a point-to-multipoint connection

would be unidirectional. By associating a socket with a single virtual connection, it is possible

to redirect the tra�c on that socket to a device.

The following example illustrates the setup of an ATM datagram connection.

Source Station: The source establishes a data socket and binds it to a local port using

standard system calls. This local port is used as an application identi�er for the ATM connection

setup signaling. As in TCP or UDP, the local port may be well-known (published) or assigned

dynamically by the operating system.

data_sock = socket(AF_ATM,SOCK_DGRAM,0);

bind(data_sock,<local-atm-address,local-port>);

At this point, it uses the control socket to setup an ATM SVC to the destination. The infor-

mation required for this setup are the endstation addresses, the application end-points, and the


ow speci�cation for the forward and reverse connections. The local end-point information is

obtained by passing the data socket as a parameter.
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ctl_sock = socket(AF_ATM,SOCK_QOS,0);

sendmsg(ctl_sock,<SETFLOWSPEC,data_sock,flow-spec,flow-spec-len>);

sendmsg(ctl_sock,<SETUP,data_sock,<dest-atm-address,dst-port>>);

Here, the sendmsg call is used to pass the control information structure since it di�erentiates

between control and data �elds [7]. Alternatively, the information could also be passed using

write or send. The QOS module maintains connection state information for each connection

that has been opened on the control socket. Once the connection is established, the QOS

module registers the virtual connection handle in the data socket and informs the application

by sending it a status message.

For a point to multipoint call, once a virtual connection has been established, new endpoints

can be added or dropped by sending additional messages on the control socket.

sendmsg(ctl_sock, <ADDPARTY,data_sock,<new-dest-addr,new-dst-port>>);

sendmsg(ctl_sock, <DROPPARTY,data_sock,<dest-addr,dst-port>>);

Destination Station: At the destination, the application creates a listen socket and binds

it to the local application port number. It also creates the control socket, places a request to

listen for incoming call setup requests and waits for messages on the control socket.

listen_sock = socket(AF_ATM,SOCK_DGRAM,0);

bind(listen_sock,<local-atm-address,local-port>);

ctl_sock = socket(AF_ATM,SOCK_QOS,0);

sendmsg(ctl_sock, <SETRCVHANDLE,listen_sock>);

When an incoming call setup request is received, the QOS module posts the setup message

to the appropriate application on the control socket. The application can accept the call using

accept and at this point a new data socket is created for the incoming connection. The accept

operation would involve the QOS module and result in the generation of an appropriate ATM

call-accept message.

data_sock = accept(listen_sock, &remote-endpoint);

On the other hand, the application can reject the call by instructing the QOS module via the

control socket.

sendmsg(ctl_sock, <REJECTSVC, data_sock>);

2.1 Implementation Architecture

Based on the design described above, we will brie
y describe the control and data 
ows and

the architecture for the sharing of the ATM data link between di�erent protocols. Fig. 2 shows

the protocol architecture in the context of the AIX 1 operating system.

1AIX is an UNIX like operating system developed by IBM.
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Figure 2: Control and data 
ows for ATM protocol family.

ATM Network Device. The ATM Network Device interfaces with the ATM hardware and

presents a link-level interface to upper layer users. This device is responsible for maintaining

virtual connections and providing mechanisms for accessing ATM signaling functions.

The ATM device may be opened by one or more entities (kernel or user) and the device is

responsible for appropriate demultiplexing. Moreover, for kernel users, AIX provides an upcall

mechanism whereby the user can register handlers with the ATM device drivers for functions

such as transmit completion, receive message, and status updates. This mechanism can be

exploited to (a) support the native ATM family as well as traditional protocol families, and (b)

provide virtual connection based demultiplexing and connection speci�c data processing.

In the control path, incoming call setup messages are directed to the appropriate user

module based on the BLLI information. Once the connection is established, the user modules

can register connection speci�c handlers with the ATM device.

IP Interface. The IP protocol family is supported using the IF ATM Network Interface

layer. The network interface layer provides a connectionless data-link service to its users and

it demultiplexes incoming data packets based on the logical link control (LLC) information. In

the case of ATM, this interface layer adapts the connectionless LLC service to ATM virtual

connections. For IP tra�c, RFC1577 [3] de�nes a \classical" IP subnet mapping wherein this

adaptation is localized to the data-link layer using a modi�ed ARP mechanism, leaving the

upper layer protocols and applications unchanged. In the �gure, this is re
ected by the absence

of ATM signaling 
ows in the PF INET family.

Native ATM Interface. The PF ATM protocol family is supported directly on top of the

ATM network device and bypasses the network interface layer.

The QOS module opens a signaling connection with the ATM device and establishes a

handler for call setup messages. It directs incoming call setup messages to the appropriate

application using the application port number information contained in the BHLI element of
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the setup messages. If no suitable application is found, the call is automatically rejected. Once

a call has been successfully established, the QOS module inserts the resulting connection handle

into the appropriate data socket maintained by DGRAM. It also installs handlers for transmit

and receive operations for the new connection that point to the DGRAM module. However,

it retains the handler for the status function so that connection control information can be

received and presented to the application on the control socket.

For an ATM datagram connection the segmentation and reassembly functions for AAL5

are handled, with hardware support, by the ATM network device. For outgoing packets, the

DGRAM module passes the appropriate connection handle along with the packet to direct the

ATM device to send the packet on a particular virtual connection (VC). An incoming data

packet is demultiplexed by the ATM network device based on the VC number and directed

to the DGRAM module along with the connection handle representing the VC. The DGRAM

module then uses the connection handle to place the packet into the appropriate socket bu�er

for the application.

3 Exploiting Native Mode ATM

One of the major bottlenecks in communication performance is the protocol processing over-

head. A large component of this overhead stems from protocol redundancy in the existing

layered protocol architecture, such as the PF INET protocol family. In the PF INET protocol

family ATM is considered to be just another link layer no di�erent from ethernet or token ring.

Hence, to maintain the same interface to all the link layers the PF INET protocol stack ignores

the special features provided by ATM, and many of the functionalities are replicated in higher

layers. The PF ATM protocol family eliminates much of this redundant processing by keeping

the protocol stack simple and exploiting features speci�c to ATM. For example, PF ATM pro-

vides application-to-application direct virtual connections and demultiplexes application PDUs

based on connection identi�ers right at the network interface. This eliminates much of the

demultiplexing stack in common protocol architectures such as PF INET. In PF ATM the

common case protocol stack is limited to segmentation and reassembly functions only. The

rest of the processing, when required, is performed on a per-connection basis using connection

speci�c handlers. The use of a light weight protocol stack allows PF ATM to keep protocol

processing overhead low. Connection speci�c handlers complement the limited functionality

provided by the basic stack using connection speci�c processing. As a result, PF ATM can tai-

lor its services based on the application need. It can provide fast data channels with latencies

and bandwidth close to the physical limitations imposed by the hardware. It is also capable of

providing data channels with sophisticated error control, 
ow control and other mechanisms.

The other major bene�t of the PF ATM interface is the separation of control and data 
ows.

This allows data transfer mechanisms to be fast and dumb, while the control mechanisms can

be as complicated as necessary. We use this feature to establish device-to-device in-kernel data

paths, signi�cantly improving performance of many multimedia applications. The following

experiments on a video conferencing testbed present a proof of the concept.
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3.1 System Architecture

The conferencing system is based on an IBM RS/6000s equipped with an IBM ATM network

interface, and an MMT prototype adapter. The ATM adapter [1] is responsible for performing

the AAL5 functionalities. It features a dedicated i960 processor and a specialized chipset to

handle AAL5 segmentation and reassembly in hardware. The adapter is equipped with 2Mbytes

of on-board bu�er and a DMA master. It can support up to 1024 connections. The MMT

adapter supports full-duplex real-time audio/video compression and decompression at video

frame rates up to 30 frames/second. One video/audio stream is compressed while multiple

audio/video streams (upto 32) may be decompressed simultaneously. The whole system is

controlled by a dedicated DSP2 processor. Further details of hardware architecture can be

found in [6].

The conference software consists of several components: the Conference Interface (CI), the

Multimedia Conference Server (MMS), the Conference Control Unit (CCU), the Video/Audio

Support Unit (VASU), and the shared workspace support. The conference communication

structure consists of control paths between all participants as well as audio, video, and data

paths emanating from each participant to other participants. The connections require reliable

end-to-end delivery, with no stringent end-to-end delay requirements. The video and audio

connections are considerably di�erent. These are constructed as point-to-multipoint connections

with speci�c quality of service (qos) characteristics. Hence, the application may set up the

control connections using a traditional TCP/IP stack, while it would set up the audio and

video connections using the PF ATM extensions. The VASU handles the video/audio devices

and controls the 
ow of multimedia data through the system. Further details of the software

architecture can be found in [2].

3.2 Performance Results

In this section we compare the data path latencies of the PF INET and PF ATM protocol

stacks.

In our �rst prototype implementation (�gure 3) VASUs exchange video and audio data using

UDP/IP (PF INET) running over AAL5. On the transmitting side, audio and video data is

captured, digitized and compressed by the MMT. Compressed data is packetized by the DSP

and an interrupt is sent to the driver indicating that data is ready to be read. The driver, in

turn, sends a signal to the VASU. The VASU, upon receipt of the signal, reads the data and

sends it over the UDP/IP socket connection to its peer. Likewise, on the receive side the VASU

receives data on the UDP socket. Once data is received from the network interface, the VASU

writes it into the MMT bu�er using the write system call provided by the MMT driver. In

this mode of communication, exchanging one data packet requires two system calls (read from

MMT and send to socket) on the transmitting side and two more system calls (receive from

socket and write to MMT) on the receiving side.

In our second implementation, this time on PF ATM stack (see Fig. 3), we separated the

control and data paths. The VASUs still exercise control over the data transfer, but without

2DSP stands for Digital Signal Processor.
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Figure 3: Control and Data Paths.

being directly involved in moving data. The data path connects the peer MMT adapters directly,

and data transfers occur in-kernel in almost autonomous fashion. Now, in the send path, when

the MMT card has data to send, it copies it directly into the bu�er on the ATM adapter. On

the receive side, whenever an (AAL5) packet is completely received on a VC terminating at

the MMT, it is DMAed into an mbuf chain in the main memory. It is then copied into the

dual-port bu�er on MMT.

To establish the data path, VASUs �rst open data connections among themselves using the

socket interface. The end point of the connection is then redirected to the MMT adapter by

splicing the ATM upcall handlers for the VC opened by VASU with the MMT device handler.

This requires, among other things, modi�cations and extensions to the MMT drivers. We

extended the MMT driver to open and close ATM connections. The processing of incoming

and outgoing MMT datagrams is then handled by connection speci�c handlers.

Separation of control and data enables application transparent data transfers. The in-

kernel data data eliminates the system calls, and consequently both i) the overhead due to

data copying across domain boundaries and ii) the cost of context switching. The latencies in

the optimized data path re
ects the cost of moving data from the MMT adapter to the ATM

interface. Figures 4 and 5 compare the transmit and receive side latencies over PF INET and

PF ATM stacks. These measurements have been taken on an RS/6000 Model 530H with a 32

Mbyte memory and a 33 MHz processor. The measurements were made using the system's

real-time clock which is an integral part of the RS/6000 architecture. The results speak for

themselves.

Note, that the gain on the transmit side is more than the gain on the receive side. This

di�erence can be attributed to the asymmetry in the send and receive data paths in the PF ATM

based system. On the transmit side, data generated by MMT is copied directly into the network

interface bu�er. On the other hand, on the receive side, datagrams destined to MMT are �rst
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Figure 5: Receive Side Latency (in microseconds).

copied into the system's main memory and then to the bu�er on MMT. The reason behind

this asymmetry is the lack of bu�ering on MMT. When MMT generates data, it can be moved

directly to the ATM adapter since it has 2Mbytes of on board bu�er. On the other side,

when data is to be delivered to MMT it needs to be bu�ered in the main memory �rst, since

the 4Kbytes receive bu�er on MMT is often not large enough. This example illustrates the

e�ectiveness of connection speci�c handlers in optimizing data paths in a fashion most suitable

for the device/application.

Besides substantial improvements in throughput, there are other bene�ts of the PF ATM

protocol stack. It provides a simple interface to setup point to multipiont connections, a feature

particularly useful to the conferencing application. It also helps establish a 
exible end-to-end

quality of service architecture. The socket based interface allows applications to negotiate

QoS parameters and alter tra�c contracts and service requirements during the lifetime of a

connection. When completely implemented, this will be a very attractive feature for the video-

conferencing application, operating in an interactive and highly dynamic environment.
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4 Concluding Remarks

We have proposed a new protocol architecture tailored to ATM networks which is particularly

suitable for multimedia applications. Our design is based on three basic principles { separation

of control and data 
ows, minimal overhead and duplication of function, and application access

to ATM level QoS guarantees. The performance gains of the new protocol architecture has

been demonstrated on a video-conferencing testbed.
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