Sel ecting Sequence Nunbers
Raynmond S. Tom i nson

Bolt Beranek and Newmran | nc.
Canbri dge, Massachusetts

| nt roducti on

A characteristic of alnbst all communication protocols is the
use of unique nunbers to identify individual pieces of data. These
identifiers permt error control through acknow edgenent and
retransm ssion techniques. Usually successive pieces of data are
identified with sequential nunbers and the identifiers are thus
cal | ed sequence nunbers.

Thi s paper di scusses t echni ques for sel ecting and
synchroni zi ng sequence nunbers such that no errors wll occur if
certain network characteristics can be bounded and if adequate data
error detection mneasures are taken. The discussion specifically
focuses on the protocol described by Cerf and Kahn (1. but the
| deas are applicable to other simlar protocols.

The Probl em

One of the problens with the protocol described by Cerf and
Kahn whi ch was brought out by our experinments at BBN is "How do you
identify duplicate packets from a previous use of a particular
connection?". Wat is necessary is a neans for either the receiver
of the late packet to identify the packet as late or a nmeans for
the originator of the packet to tell the receiver that the packet
was | ate.

The protocol as described provides a fine nechanism for
identifying |late packets while data are actively flow ng between
two ports. It would also work fine if hosts never went down and had
| arge amounts of storage. But hosts do go down and have to be
restarted and hosts don’t have an inexhaustible supply of storage.

The Sol ution

The essence of the solution is that sequence nunbers nust be
chosen such that a particular sequence nunber never refers to nore
than one byte at any one tinme and the valid range of sequence
nunbers mnust be positively synchronized whenever a connection is
used. The forner requires careful attention to the nethod used for
selecting initial sequence nunbers. The latter requires a nore
i nvol ved handshake than that provided by the protocol.

@ Cerf, V. G and Kahn, R E., "A Protocol for Packet Network
I ntercommuni cation,"” | EEE Transactions on Communi cati ons, Vol.
COMt 22 #5, May 1974, pp. 637-648.

Positive Synchronization

Achieving positive synchronization requires a three way
handshake for SYN and a two-way handshake for REL. This is
necessary because the passive side of the connection nust have
positive assurance fromthe active side that the packet received is
current. Sinply receiving a packet does not provide this assurance.
Assumi ng one end as the initiator and the other end as responder
t he normal procedure for synchroni zi ng sequence nunbers is:

1) Initiator sends a SYN wth a unique sequence nunber (one that
cannot be outstanding in the net).

2) Responder receives this packet but does not process the data (if
any) because it does not know whether or not the packet is a
| at e dupli cate.

3) Responder returns a packet which ACKs the initiator’s nunber and
SYNs the responder’s uni que sequence nunber.

4) The initiator receives the responder’s SYN and believes it
because it ACKs an appropriate sequence nunmber and SYNs a
previ ously unsynchronized (in that direction) connection. The
initiator now knows that the responder is willing to go ahead
and knows where the responder is going to start but the
responder does not yet know if the initiator was really trying
to synchronize or if the packet received was a | ate duplicate.

5) The initiator sends back a packet which ACKs the responder’s
sequence nunber.

6) The responder receives this packet and believes it because it
ACKs an appropriate sequence nunber and has a sequence nunber of
its owmm which is in the appropriate range. The origi nal packet
and this one may now be processed further, data delivered, RELs
processed etc.

The handshake for REL needs to be only two-way because valid
sequence nunbers have been established and nmay be wused to
acknow edge the REL. Since the need to send a REL nmay occur at
times when there are no data bytes to transmt, a dummy byte which
is not delivered to the user process is sent to provide sonething
to be acknow edged.

A consequence of this need for positive synchronization is
that any data in the initial packet with the SYN nay not be
delivered to the user process until the validity of the packet is
verified. It is wuseful to include data in the initial packet,
however, since that data nmay be acknow edged in the first response
packet elimnating the need for a subsequent packet for
acknow edging the data. A mninmum exchange for data flow in one
direction is four packets. This is illustrated by exanple bel ow

The fourth packet is required to informthe initiator that it may
forget the connection information.

It is also necessary to provide a nechanism to negatively
acknow edge responses to spurious packets. A REJ bit or comand
shoul d be provided for this purpose.

Sel ecting Uni que Sequence Numbers

The assunption that networks may generate duplicate packets
with possibly long lifetines renders the task of providing for
uni que sequence nunber non-trivial. The period of tine over which a
particul ar sequence nunber may refer to a particular byte requires
know ng an upper bound on the packet lifetinme in the network. This
bound nust be noderately tight because, as this bound becones
| ooser, either packet overhead nust increase due to the need for
nore bits of sequence nunber or transmssion rate nust be
restricted so that sequence nunber are not reused before packets
die out in the network. The period during which a particular
sequence nunber refers to a particular byte is then sonme snall
multiple of this packet lifetime (depending on how many
reverberations the protocol wll support). | wll use T as a
paraneter of the protocol design which designhates this smal
mul tiple of the packet lifetine.

The size of the window plays a part in determ ning whether a
| at e packet m ght be confused with current packets. A |arge w ndow
I ncreases the maxi num sequence nunber the receiver will accept as
valid. The maximum w ndow size is a design paraneter of the
protocol and nust be specified before the protocol is conplete. For
our purposes, the w ndow size can be conveniently thought of as
extending the apparent packet Ilifetine (T) and wll not be
di scussed further here.

Al so subsumed into the paranmeter T is the maxi mum host service
interruption tine. If a host stops executing for a period of tine
and then resunes with no | oss, any packets held in that host during
that period, whether they are data packets or acknow edgenent
packets, are effectively delayed by the duration of the service
interruption. This delay is indistinguishable from any del ay caused
by the network itself.

Anot her paraneter of the protocol design is the maxi mum data
rate. The maxinmum data rate design paraneter nmay be less than or
greater than the data rate achi evable by the network and associ at ed

hardware. The design paranmeter will probably ultimately be |ess
than the hardware/network limtation as technology inproves. |If
this is the case, software control will have to be used to limt

the actual data rate.

Gven the mxinmum data rate (R) and the nmaximum packet
lifetime (T) and the maxi num sequence nunber (M, we can define the
m ni nrum sequence nunber cycle tinme (C as

C=MR

and state that this nust be larger than the maxi num packet lifetine

C>T
This inequality nust be guaranteed otherw se packets with the sane
sequence nunbers, but froman earlier cycle, may still exist in the
net wor K.

The selection of values for sone of these paraneters is
arbitrary. One could select a field width for sequence nunbers thus
determining M and conpute R from that. T is determned by the
network characteristics. The anobunt by which C exceeds T nust al so
be selected. The anmbunt by which C exceeds T determ nes how
frequently sequence nunbers nmust be resynchroni zed when activity is
| ow (see below). Therefore, C should be substantially greater than
T.

Since the choice of sequence nunbers is directly under control
of the sender, it is best to place the responsibility for selecting
uni que sequence nunbers on the sender. The receiver then accepts a
packet on the basis of whether the sequence nunber falls within the
current window or not. If the receiver has no current w ndow then
t he handshake descri bed above is used to establish one.

To prevent reusing a particular sequence nunber too soon it is
necessary for the sender to have know edge about when that sequence
nunber was last used. Figure 1 illustrates the situation when
conpl ete know edge of this sort is available. The curve of actua
sequence nunbers used as a function of tine permts a region of
forbi dden sequence nunber vs. tinme points to be defined. The curve
of actual sequence nunbers is not permtted to reenter this region.
Conmpl ete knowl edge of this kind requires a prohibitive anmount of
st or age.

Anot her possibility is to retain a few nunbers which permt
the sequence nunber curve to be bounded. This schenme and the
previ ous one require a nmenory which persists at least as long as T
even in the event of system crashes or other nenory destroying
events.

The nethod I w Il describe uses a tinme-of-day clock to govern
the selection of sequence nunbers. The choice of a tine-of-day
clock for this purpose is natural since tinme is the factor which
determ nes whet her duplicates mght still exist. If the tinme-of-day
clock has its own natural period such as seconds since mdnight,
then it is necessary to choose the sequence cycle tinme (C such
that the clock period is an integral multiple of C There are

several mappings of clock to sequence nunber. The mapping which
mai nt ai ns maxi nrumresolution is given by the expression

(V nmod Q*M C

where V is the clock value, C is the sequence cycle time in units
of V, and M is the maxi num sequence nunber. The sequence nunber
equi valent given by this fornula is called ISN (initial sequence
nunber) in the followng discussion. ISN is used for the initial
sequence nunber for establishing or re-establishing a connection in
t he absence of other information.

A plot of ISN as a function of tine is shown in figure 2. The
step size depends on the resolution of the tine-of-day clock and
the range of sequence nunbers required. The step size 1is
exaggerated in the figure. Also on figure 2 are drawn another
staircase preceeding the I SN curve by one step, a staircase del ayed

from that by CT, and a horizontal line labelled "last used seq
no.". These lines delimt a region of allowed sequence nunbers. If
packets are never given sequence nunbers outside of this region,
there will never be any problem with confusing late arriving

packets with current packets. This is because the sequence nunber
of a late arriving packet will be outside the allowed region either
because the current sequence nunbers have gone beyond it thus
raising the |ower boundary or because it is inpossible for enough
time to have passed to place it in the allowed region of the next
cycle. Renenber that the next cycle will not occur until an anount
of tinme greater than T has passed and, by definition, the packet
cannot persist for that length of tine.

The sequence nunber constraints may be sunmarized as foll ows:

a. The current sequence nunber nust not "get ahead" of the I SN
cl ock by nore than one step because packets with those sequence
nunbers fromthe previous sequence nunber cycle may be left in
t he networKk.

b. The current sequence nunber nust not "fall behind" the ISN cl ock
by nore than C T-<one cl ock step> because duplicates of packets
generated with such sequence nunbers may appear |ater and be
confused with the (then current) 1SN

c. Potential sequence nunbers nust increase nonotonically even when
the connection is inactive because there will alnost certainly
be a conflict if there are any packets remaining in the network.

Referring to figure 2 again, note that one of the bounds of
the allowed region is the largest (last) used sequence nunber. This
woul d seem to require that that nunber be renenbered at |east as
long as its reuse mght cause confusion (T). This would require
excessive anounts of storage in all except a few special cases. It
is necessary to renenber it for a short time because it nay exceed
the I'SN curve. This could be avoided by noving the I SN curve to the

extrenme | eft edge of the allowed region. Doing this, however, makes
it inmediately inpossible to use the sequence nunber selected from
the 1SN curve for conmmunication until the next tick of the clock
This is, in fact, the reason why the SN curve in figure 2 i s shown
di splaced fromthe |l eft edge of the allowed region.

The solution to this possible dilenma is to renenber the | ast
used sequence nunber if it is greater than 1SN until the next clock
tick. At this point the ISN curve will necessarily exceed the | ast
used sequence nunber since, when the connection was active, the
sequence nunbers would not have been permtted to exceed the |SN
curve by nore than one tick since doing so would have placed the
sequence nunbers outside of the allowed region. In the event of a
menory destroying event, such as a systemrestart, it is necessary
to wait for one tick of the |ISN because that insures that an
initial sequence nunber selection will be greater than the sequence
nunbers in use just prior to the nenory loss. The rules for
selecting initial sequence nunbers are as foll ows:

1. Renenber the | ast used sequence nunber at |east until the next
tick of ISN.

2. Inhibit initial sequence nunber selection until at |east one |ISN
tick has occurred following a nenory |oss (systemrestart).

3. If the | ast used sequence nunber is known, use it (increnented
by 1) for a newinitial sequence nunber.

4. If no |ast used sequence nunber is being remenbered and rule 2
is satisfied, use ISN for a new initial sequence nunber.

Once an initial sequence nunber is selected, packets are given
sequence nunbers as specified by the protocol. Sequence nunbers so
sel ected must not equal or exceed I SN plus one step.

If data flows at less than nmaximum rate for a |ong enough
time, the current sequence nunber would cross into the forbidden
region on the right. Packets enmtted with these sequence nunbers
and delayed by time T would conflict with a later value of 1SN
This nmust be prevented by resynchroni zing the sequence nunbers to a
| arger value. In order to resynchronize sequence nunbers, the
current sequence nunbers mnust be released and then a new sequence
(using sequence nunber | SN) established.

Exanpl es of Connecti on Synchroni zati on

The dialogs below illustrate the interchange of letters that
occurs in various situations. Each line of the dialog consists of a
packet |abel in parentheses followed by the activity at process A
where "<--" signifies the packet being received by A "-->"
signifies the packet being transmtted by A and " " signifies
that A is unaware of the packet at that tine. Next appears a

description of the packet in the form <SEQ n><control ><data>. Next

appears the activity at process B where "-->" signifies the packet
IS received by B. "<--" signifies the packet is transmtted by B.
"..." signifies that B is unaware of the packet. The |abel is a
handl e on the packet for illustration purposes. \Wen a packet is
duplicated or retransmtted it will be given the sane |abel. Wen
the delay between transmssion and reception of a packet 1is
uni nportant, the packet wll be shown to be transmtted and

recei ved on the sane |line.

Uni di rectional Connection with Sender Initiating

Lbl A Packet B
(1) --> <SEQ O<SYN><> S
A synchroni zes to O
(2) <-- <SEQ O><SYN, ACK O<> <--
B synchroni zes to O and acknow edges
0.
(3) --> <SEQ O><ACK 0><10 Data Bytes> -->
A acknow edges B's O and sends sone
dat a.
(4) <-- <SEQ O><ACK 10><> <--
B acknowl edges A s dat a.
(5) --> <SEQ 10><ACK 0><6 Data Bytes> -->
(6) <-- <SEQ O><ACK 16><> <--
(7) --> <SEQ 16><ACK 0, REL><20 Data Bytes> -->

A sends | ast data bytes and REL.

(8) <-- <SEQ O<ACK 36, REL, CTL><Dummy Byte> <--
B acknow edges all A's data (and the
REL) and sends its own REL.

(9) --> <SEQ 36><ACK 1><> o>
A acknow edges B's REL.

Unidirectional wth Receiver Initiating

(1) --> <SEQ O<SYN><> S
A synchroni zes to O.

(2) <-- <SEQ O><SYN, ACK 0><14 Data Bytes> <--
B synchronizes to 0, acknow edges A,

(3)

(4)
(5)
(6)
(7)
(8)

M ni mal

(1)

(2)

(3)

(4)

Late Duplicate

(1)

(2)

(3)

and sends dat a.

<SEQ O><ACK 14><>
A acknow edges B s data.

<SEQ 14><ACK 0><10 Data Bytes>

<SEQ O><ACK 24><>

<SEQ 24><ACK 0, REL><5 Data Bytes>
<SEQ O><ACK 29, CTL, REL><Dunmy Byte>
<SEQ 29><ACK 1><>

Exchange Sender Initiating

-->

<- -

<- -

<SEQ O><SYN><21 Data Bytes>
A synchroni zes to O and sends dat a.

<SEQ O><SYN, ACK 21><>

B acknowl edges A's data and SYN s its
own sequence nunber. Data is not yet
delivered to user process.

<SEQ 21><REL, ACK O><>

A acknow edges B's sequence nunber and
REL’ s the connection. B delivers data
to user process.

<SEQ 22><ACK 1>

A acknow edges B's REL and drops the
connection. Note that if this final
ACK gets lost, Bwll resend its REL
and Awill respond wth an error
reply. B nust interpret this as

equi valent to the ACK

SYN

<SEQ x><SYN><23 Dat a Bytes>
B receives a | ate duplicate packet.

<SEQ O><SYN, ACK x+23><>

B responds synchronizing its own
sequence nunbers. A is not aware of
t he connecti on.

<SEQ x+23><REJ, ACK O><>

A rejects the response. B throws away
t he data and resets the connecti on.

Late Duplicate SYN Plus Late Response

(1)

(2)

(3)

(4)

<SEQ x><SYN><22 Data Bytes>
B receives the late duplicate packet
cont ai ni ng SYN.

<-- <SEQ O><SYN, ACK x+22><>
B responds.

<SEQ x+22><ACK y><31 Data Bytes>

B receives a duplicate of the origina
response to the response to packet
(1). Note that it ACKs y which is
outside B' s current sequence nunbers.
The packet is rejected since A's
sequence nunbers have not been
verified and the ACK is out of range.

--> <SEQ x+22><REJ, ACK O><>
A rejects the response as in the
previ ous exanpl e.

Si nmul t aneous I nitiation

(1)

(2)

(1)

(3)

(2)

(4)

(3)

--> <SEQ O><SYN><15 Data Bytes>
A synchroni zes to O.

<SEQ O><SYN><>
Meanwhi | e, B synchroni zes too.

<SEQ O><SYN><15 Data Byt es>
A's packet arrives.

<SEQ O><SYN, ACK O><>

B acknowl edges A’ s sequence nunber and
resynchroni zes its own since it has not

yet received verification fromA.

<-- <SEQ O><SYN><>
B s original packet arrives at A

--> <SEQ O><SYN, ACK 0><15 Data Bytes>
A sends its first packet again but this
ti me acknowl edges B' s sequence nunber.
B is now conpletely synchronized.

<-- <SEQ O><SYN, ACK O><>

-->

B's first response arrives at AA. A is
now conpl etely synchroni zed. This
continues as in the above cases.

Concl usi on

The nethods described above for nmanaging use of sequence
nunbers on a connection assure that each byte of information is
uniquely identified in spite of packet duplication and |ong del ay
in the network, and in spite of service disruptions or conplete
menory | oss by either or both communicating hosts. It is our belief
that any | esser schenmes will lead to unreliable network perfornance
and are, therefore, unsatisfactory.

