
Selecting Sequence Numbers
Raymond S. Tomlinson

Bolt Beranek and Newman Inc.
Cambridge, Massachusetts

Introduction

A characteristic of almost all communication protocols is the
use of unique numbers to identify individual pieces of data. These
identifiers permit error control through acknowledgement and
retransmission techniques. Usually successive pieces of data are
identified with sequential numbers and the identifiers are thus
called sequence numbers.

This paper discusses techniques for selecting and
synchronizing sequence numbers such that no errors will occur if
certain network characteristics can be bounded and if adequate data
error detection measures are taken. The discussion specifically
focuses on the protocol described by Cerf and Kahn (1), but the
ideas are applicable to other similar protocols.

The Problem

One of the problems with the protocol described by Cerf and
Kahn which was brought out by our experiments at BBN is "How do you
identify duplicate packets from a previous use of a particular
connection?". What is necessary is a means for either the receiver
of the late packet to identify the packet as late or a means for
the originator of the packet to tell the receiver that the packet
was late.

The protocol as described provides a fine mechanism for
identifying late packets while data are actively flowing between
two ports. It would also work fine if hosts never went down and had
large amounts of storage. But hosts do go down and have to be
restarted and hosts don’t have an inexhaustible supply of storage.

The Solution

The essence of the solution is that sequence numbers must be
chosen such that a particular sequence number never refers to more
than one byte at any one time and the valid range of sequence
numbers must be positively synchronized whenever a connection is
used. The former requires careful attention to the method used for
selecting initial sequence numbers. The latter requires a more
involved handshake than that provided by the protocol.

(1) Cerf, V. G. and Kahn, R. E., "A Protocol for Packet Network
Intercommunication," IEEE Transactions on Communications, Vol.
COM-22 #5, May 1974, pp. 637-648.

Positive Synchronization

Achieving positive synchronization requires a three way
handshake for SYN and a two-way handshake for REL. This is
necessary because the passive side of the connection must have
positive assurance from the active side that the packet received is
current. Simply receiving a packet does not provide this assurance.
Assuming one end as the initiator and the other end as responder,
the normal procedure for synchronizing sequence numbers is:

1) Initiator sends a SYN with a unique sequence number (one that
cannot be outstanding in the net).

2) Responder receives this packet but does not process the data (if
any) because it does not know whether or not the packet is a
late duplicate.

3) Responder returns a packet which ACKs the initiator’s number and
SYNs the responder’s unique sequence number.

4) The initiator receives the responder’s SYN and believes it
because it ACKs an appropriate sequence number and SYNs a
previously unsynchronized (in that direction) connection. The
initiator now knows that the responder is willing to go ahead
and knows where the responder is going to start but the
responder does not yet know if the initiator was really trying
to synchronize or if the packet received was a late duplicate.

5) The initiator sends back a packet which ACKs the responder’s
sequence number.

6) The responder receives this packet and believes it because it
ACKs an appropriate sequence number and has a sequence number of
its own which is in the appropriate range. The original packet
and this one may now be processed further, data delivered, RELs
processed etc.

The handshake for REL needs to be only two-way because valid
sequence numbers have been established and may be used to
acknowledge the REL. Since the need to send a REL may occur at
times when there are no data bytes to transmit, a dummy byte which
is not delivered to the user process is sent to provide something
to be acknowledged.

A consequence of this need for positive synchronization is
that any data in the initial packet with the SYN may not be
delivered to the user process until the validity of the packet is
verified. It is useful to include data in the initial packet,
however, since that data may be acknowledged in the first response
packet eliminating the need for a subsequent packet for
acknowledging the data. A minimum exchange for data flow in one
direction is four packets. This is illustrated by example below.

The fourth packet is required to inform the initiator that it may
forget the connection information.

It is also necessary to provide a mechanism to negatively
acknowledge responses to spurious packets. A REJ bit or command
should be provided for this purpose.

Selecting Unique Sequence Numbers

The assumption that networks may generate duplicate packets
with possibly long lifetimes renders the task of providing for
unique sequence number non-trivial. The period of time over which a
particular sequence number may refer to a particular byte requires
knowing an upper bound on the packet lifetime in the network. This
bound must be moderately tight because, as this bound becomes
looser, either packet overhead must increase due to the need for
more bits of sequence number or transmission rate must be
restricted so that sequence number are not reused before packets
die out in the network. The period during which a particular
sequence number refers to a particular byte is then some small
multiple of this packet lifetime (depending on how many
reverberations the protocol will support). I will use T as a
parameter of the protocol design which designates this small
multiple of the packet lifetime.

The size of the window plays a part in determining whether a
late packet might be confused with current packets. A large window
increases the maximum sequence number the receiver will accept as
valid. The maximum window size is a design parameter of the
protocol and must be specified before the protocol is complete. For
our purposes, the window size can be conveniently thought of as
extending the apparent packet lifetime (T) and will not be
discussed further here.

Also subsumed into the parameter T is the maximum host service
interruption time. If a host stops executing for a period of time
and then resumes with no loss, any packets held in that host during
that period, whether they are data packets or acknowledgement
packets, are effectively delayed by the duration of the service
interruption. This delay is indistinguishable from any delay caused
by the network itself.

Another parameter of the protocol design is the maximum data
rate. The maximum data rate design parameter may be less than or
greater than the data rate achievable by the network and associated
hardware. The design parameter will probably ultimately be less
than the hardware/network limitation as technology improves. If
this is the case, software control will have to be used to limit
the actual data rate.

Given the maximum data rate (R) and the maximum packet
lifetime (T) and the maximum sequence number (M), we can define the
minimum sequence number cycle time (C) as

C = M/R

and state that this must be larger than the maximum packet lifetime

C > T

This inequality must be guaranteed otherwise packets with the same
sequence numbers, but from an earlier cycle, may still exist in the
network.

The selection of values for some of these parameters is
arbitrary. One could select a field width for sequence numbers thus
determining M and compute R from that. T is determined by the
network characteristics. The amount by which C exceeds T must also
be selected. The amount by which C exceeds T determines how
frequently sequence numbers must be resynchronized when activity is
low (see below). Therefore, C should be substantially greater than
T.

Since the choice of sequence numbers is directly under control
of the sender, it is best to place the responsibility for selecting
unique sequence numbers on the sender. The receiver then accepts a
packet on the basis of whether the sequence number falls within the
current window or not. If the receiver has no current window then
the handshake described above is used to establish one.

To prevent reusing a particular sequence number too soon it is
necessary for the sender to have knowledge about when that sequence
number was last used. Figure 1 illustrates the situation when
complete knowledge of this sort is available. The curve of actual
sequence numbers used as a function of time permits a region of
forbidden sequence number vs. time points to be defined. The curve
of actual sequence numbers is not permitted to reenter this region.
Complete knowledge of this kind requires a prohibitive amount of
storage.

Another possibility is to retain a few numbers which permit
the sequence number curve to be bounded. This scheme and the
previous one require a memory which persists at least as long as T
even in the event of system crashes or other memory destroying
events.

The method I will describe uses a time-of-day clock to govern
the selection of sequence numbers. The choice of a time-of-day
clock for this purpose is natural since time is the factor which
determines whether duplicates might still exist. If the time-of-day
clock has its own natural period such as seconds since midnight,
then it is necessary to choose the sequence cycle time (C) such
that the clock period is an integral multiple of C. There are

several mappings of clock to sequence number. The mapping which
maintains maximum resolution is given by the expression

(V mod C)*M/C

where V is the clock value, C is the sequence cycle time in units
of V, and M is the maximum sequence number. The sequence number
equivalent given by this formula is called ISN (initial sequence
number) in the following discussion. ISN is used for the initial
sequence number for establishing or re-establishing a connection in
the absence of other information.

A plot of ISN as a function of time is shown in figure 2. The
step size depends on the resolution of the time-of-day clock and
the range of sequence numbers required. The step size is
exaggerated in the figure. Also on figure 2 are drawn another
staircase preceeding the ISN curve by one step, a staircase delayed
from that by C-T, and a horizontal line labelled "last used seq
no.". These lines delimit a region of allowed sequence numbers. If
packets are never given sequence numbers outside of this region,
there will never be any problem with confusing late arriving
packets with current packets. This is because the sequence number
of a late arriving packet will be outside the allowed region either
because the current sequence numbers have gone beyond it thus
raising the lower boundary or because it is impossible for enough
time to have passed to place it in the allowed region of the next
cycle. Remember that the next cycle will not occur until an amount
of time greater than T has passed and, by definition, the packet
cannot persist for that length of time.

The sequence number constraints may be summarized as follows:

a. The current sequence number must not "get ahead" of the ISN
clock by more than one step because packets with those sequence
numbers from the previous sequence number cycle may be left in
the network.

b. The current sequence number must not "fall behind" the ISN clock
by more than C-T-<one clock step> because duplicates of packets
generated with such sequence numbers may appear later and be
confused with the (then current) ISN.

c. Potential sequence numbers must increase monotonically even when
the connection is inactive because there will almost certainly
be a conflict if there are any packets remaining in the network.

Referring to figure 2 again, note that one of the bounds of
the allowed region is the largest (last) used sequence number. This
would seem to require that that number be remembered at least as
long as its reuse might cause confusion (T). This would require
excessive amounts of storage in all except a few special cases. It
is necessary to remember it for a short time because it may exceed
the ISN curve. This could be avoided by moving the ISN curve to the

extreme left edge of the allowed region. Doing this, however, makes
it immediately impossible to use the sequence number selected from
the ISN curve for communication until the next tick of the clock.
This is, in fact, the reason why the ISN curve in figure 2 is shown
displaced from the left edge of the allowed region.

The solution to this possible dilemma is to remember the last
used sequence number if it is greater than ISN until the next clock
tick. At this point the ISN curve will necessarily exceed the last
used sequence number since, when the connection was active, the
sequence numbers would not have been permitted to exceed the ISN
curve by more than one tick since doing so would have placed the
sequence numbers outside of the allowed region. In the event of a
memory destroying event, such as a system restart, it is necessary
to wait for one tick of the ISN because that insures that an
initial sequence number selection will be greater than the sequence
numbers in use just prior to the memory loss. The rules for
selecting initial sequence numbers are as follows:

1. Remember the last used sequence number at least until the next
tick of ISN.

2. Inhibit initial sequence number selection until at least one ISN
tick has occurred following a memory loss (system restart).

3. If the last used sequence number is known, use it (incremented
by 1) for a new initial sequence number.

4. If no last used sequence number is being remembered and rule 2
is satisfied, use ISN for a new initial sequence number.

Once an initial sequence number is selected, packets are given
sequence numbers as specified by the protocol. Sequence numbers so
selected must not equal or exceed ISN plus one step.

If data flows at less than maximum rate for a long enough
time, the current sequence number would cross into the forbidden
region on the right. Packets emitted with these sequence numbers
and delayed by time T would conflict with a later value of ISN.
This must be prevented by resynchronizing the sequence numbers to a
larger value. In order to resynchronize sequence numbers, the
current sequence numbers must be released and then a new sequence
(using sequence number ISN) established.

Examples of Connection Synchronization

The dialogs below illustrate the interchange of letters that
occurs in various situations. Each line of the dialog consists of a
packet label in parentheses followed by the activity at process A
where "<--" signifies the packet being received by A, "-->"
signifies the packet being transmitted by A and "..." signifies
that A is unaware of the packet at that time. Next appears a

description of the packet in the form <SEQ n><control><data>. Next
appears the activity at process B where "-->" signifies the packet
is received by B. "<--" signifies the packet is transmitted by B.
"..." signifies that B is unaware of the packet. The label is a
handle on the packet for illustration purposes. When a packet is
duplicated or retransmitted it will be given the same label. When
the delay between transmission and reception of a packet is
unimportant, the packet will be shown to be transmitted and
received on the same line.

Unidirectional Connection with Sender Initiating

Lbl A Packet B

(1) --> <SEQ O><SYN><> -->
A synchronizes to O.

(2) <-- <SEQ O><SYN, ACK O><> <--
B synchronizes to O and acknowledges
0.

(3) --> <SEQ O><ACK 0><10 Data Bytes> -->
A acknowledges B’s O and sends some
data.

(4) <-- <SEQ O><ACK 10><> <--
B acknowledges A’s data.

(5) --> <SEQ 10><ACK 0><6 Data Bytes> -->

(6) <-- <SEQ O><ACK 16><> <--

(7) --> <SEQ 16><ACK 0, REL><20 Data Bytes> -->
A sends last data bytes and REL.

(8) <-- <SEQ O><ACK 36, REL, CTL><Dummy Byte> <--
B acknowledges all A’s data (and the
REL) and sends its own REL.

(9) --> <SEQ 36><ACK 1><> -->
A acknowledges B’s REL.

Unidirectional with Receiver Initiating

(1) --> <SEQ O><SYN><> -->
A synchronizes to 0.

(2) <-- <SEQ O><SYN, ACK 0><14 Data Bytes> <--
B synchronizes to 0, acknowledges A,

and sends data.

(3) --> <SEQ O><ACK 14><> -->
A acknowledges B’s data.

(4) <-- <SEQ 14><ACK 0><10 Data Bytes> <--

(5) --> <SEQ O><ACK 24><> -->

(6) <-- <SEQ 24><ACK 0, REL><5 Data Bytes> <--

(7) --> <SEQ O><ACK 29, CTL, REL><Dummy Byte> -->

(8) <-- <SEQ 29><ACK 1><> <--

Minimal Exchange Sender Initiating

(1) --> <SEQ O><SYN><21 Data Bytes> -->
A synchronizes to O and sends data.

(2) <-- <SEQ O><SYN, ACK 21><> <--
B acknowledges A’s data and SYN’s its
own sequence number. Data is not yet
delivered to user process.

(3) --> <SEQ 21><REL, ACK O><> -->
A acknowledges B’s sequence number and
REL’s the connection. B delivers data
to user process.

(4) --> <SEQ 22><ACK 1> -->
A acknowledges B’s REL and drops the
connection. Note that if this final
ACK gets lost, B will resend its REL
and A will respond with an error
reply. B must interpret this as
equivalent to the ACK.

Late Duplicate SYN

(1) ... <SEQ x><SYN><23 Data Bytes> -->
B receives a late duplicate packet.

(2) <-- <SEQ O><SYN, ACK x+23><> <--
B responds synchronizing its own
sequence numbers. A is not aware of
the connection.

(3) --> <SEQ x+23><REJ, ACK O><> -->

A rejects the response. B throws away
the data and resets the connection.

Late Duplicate SYN Plus Late Response

(1) ... <SEQ x><SYN><22 Data Bytes> -->
B receives the late duplicate packet

containing SYN.

(2) <-- <SEQ O><SYN, ACK x+22><> <--
B responds.

(3) ... <SEQ x+22><ACK y><31 Data Bytes> -->
B receives a duplicate of the original
response to the response to packet
(1). Note that it ACK’s y which is
outside B’s current sequence numbers.
The packet is rejected since A’s
sequence numbers have not been
verified and the ACK is out of range.

(4) --> <SEQ x+22><REJ, ACK O><> -->
A rejects the response as in the
previous example.

Simultaneous Initiation

(1) --> <SEQ O><SYN><15 Data Bytes> ...
A synchronizes to 0.

(2) ... <SEQ O><SYN><> <--
Meanwhile, B synchronizes too.

(1) ... <SEQ O><SYN><15 Data Bytes> -->
A’s packet arrives.

(3) ... <SEQ O><SYN, ACK O><> <--
B acknowledges A’s sequence number and

resynchronizes its own since it has not
yet received verification from A.

(2) <-- <SEQ O><SYN><> ...
B’s original packet arrives at A.

(4) --> <SEQ O><SYN, ACK 0><15 Data Bytes> -->
A sends its first packet again but this
time acknowledges B’s sequence number.
B is now completely synchronized.

(3) <-- <SEQ O><SYN, ACK O><> ...

B’s first response arrives at A. A is
now completely synchronized. This
continues as in the above cases.

Conclusion

The methods described above for managing use of sequence
numbers on a connection assure that each byte of information is
uniquely identified in spite of packet duplication and long delay
in the network, and in spite of service disruptions or complete
memory loss by either or both communicating hosts. It is our belief
that any lesser schemes will lead to unreliable network performance
and are, therefore, unsatisfactory.

