
ACM SIGCOMM -1- Computer Communication Review

Analysis and Simulation of a Fair Queueing Algorithm

Alan Demers
Srinivasan KeshavÜ

Scott Shenker

Xerox PARC
3333 Coyote Hill Road
Palo Alto, CA 94304

(Originally published in Proceedings SIGCOMM ë89,
CCR Vol. 19, No. 4, Austin, TX, September, 1989, pp. 1-12)

Ü Current Address: University of California at Berkeley

Abstract

We discuss gateway queueing algorithms and their role
in controlling congestion in datagram networks. A fair
queueing algorithm, based on an earlier suggestion by
Nagle, is proposed. Analysis and simulations are used
to compare this algorithm to other congestion control
schemes. We find that fair queueing provides several
important advantages over the usual first-come-first-
serve queueing algorithm: fair allocation of bandwidth,
lower delay for sources using less than their full share
of bandwidth, and protection from ill-behaved sources.

1. Introduction

Datagram networks have long suffered from
performance degradation in the presence of congestion
[Ger80]. The rapid growth, in both use and size, of
computer networks has sparked a renewed interest in
methods of congestion control [DEC87abcd, Jac88a,
Man89, Nag87]. These methods have two points of
implementation. The first is at the source, where flow
control algorithms vary the rate at which the source
sends packets. Of course, flow control algorithms are
designed primarily to ensure the presence of free buffers
at the destination host, but we are more concerned with
their role in limiting the overall network traffic. The
second point of implementation is at the gateway.
Congestion can be controlled at gateways through
routing and queueing algorithms. Adaptive routing, if
properly implemented, lessens congestion by routing
packets away from network bottlenecks. Queueing
algorithms, which control the order in which packets are
sent and the usage of the gatewayís buffer space, do not
affect congestion directly, in that they do not change the
total traffic on the gatewayís outgoing line. Queueing

algorithms do, however, determine the way in which
packets from different sources interact with each other
which, in turn, affects the collective behavior of flow
control algorithms. We shall argue that this effect,
which is often ignored, makes queueing algorithms a
crucial component in effective congestion control.

Queueing algorithms can be thought of as allocating
three nearly independent quantities: bandwidth which
packets get transmitted), promptness (when do those
packets get transmitted), and buffer space (which
packets are discarded by the gateway). Currently, the
most common queueing algorithm is first-come-first-
serve (FCFS). FCFS queueing essentially relegates all
congestion control to the sources, since the order of
arrival completely determines the bandwidth,
promptness, and buffer space allocations. Thus, FCFS
inextricably intertwines these three allocation issues.
There may indeed be flow control algorithms that, when
universally implemented throughout a network with
FCFS gateways, can overcome these limitations and
provide reasonably fair and efficient congestion control.
This point is discussed more fully in Sections 3 and 4,
where several flow control algorithms are compared.
However, with todayís diverse and decentralized
computing environments, it is unrealistic to expect
universal implementation of any given flow control
algorithm. This is not merely a question of standards,
but also one of compliance. Even if a universal standard
such as ISO [ISO86] were adopted, malfunctioning
hardware and software could violate the standard, and
there is always the possibility that individuals would
alter the algorithms on their own machine to improve
their performance at the expense of others.
Consequently, congestion control algorithms should
function well even in the presence of ill-behaved

ACM SIGCOMM -2- Computer Communication Review

sources. Unfortunately, no matter what flow control
algorithm is used by the well-behaved sources, networks
with FCFS gateways do not have this property. A single
source, sending packets to a gateway at a sufficiently
high speed, can capture an arbitrarily high fraction of
the bandwidth of the outgoing line. Thus, FCFS
queueing is not adequate; more discriminating queueing
algorithms must be used in conjunction with source
flow control algorithms to control congestion
effectively in noncooperative environments.

Following a similar line of reasoning, Nagle [Nag87,
Nag85] proposed a fair queueing (FQ) algorithm in
which gateways maintain separate queues for packets
from each individual source. The queues are serviced in
a round-robin manner. This prevents a source from
arbitrarily increasing its share of the bandwidth or the
delay of other sources. In fact, when a source sends
packets too quickly, it merely increases the length of its
own queue. Nagleís algorithm, by changing the way
packets from different sources interact, does not reward,
nor leave others vulnerable to, anti-social behavior. On
the surface, this proposal appears to have considerable
merit, but we are not aware of any published data on the
performance of datagram networks with such fair
queueing gateways. In this paper, we will first describe
a modification of Nagleís algorithm, and then provide
simulation data comparing networks with FQ gateways
and those with FCFS gateways.

The three different components of congestion control
algorithms introduced above, source flow control,
gateway routing, and gateway queueing algorithms,
interact in interesting and complicated ways. It is
impossible to assess the effectiveness of any algorithm
without reference to the other components of congestion
control in operation. We will evaluate our proposed
queueing algorithm in the context of static routing and
several widely used flow control algorithms. The aim is
to find a queueing algorithm that functions well in
current computing environments. The algorithm might,
indeed it should, enable new and improved routing and
flow control algorithms, but it must not require them.

We had three goals in writing this paper. The first was
to describe a new fair queueing algorithm. In Section
2.1, we discuss the design requirements for an effective
queueing algorithm and outline how Nagleís original
proposal fails to meet them. In Section 2.2, we propose
a new fair queueing algorithm which meets these design
requirements. The second goal was to provide some
rigorous understanding of the performance of this
algorithm; this is done in Section 2.3, where we present
a delay-throughput curve given by our fair queueing
algorithm for a specific configuration of sources. The
third goal was to evaluate this new queueing proposal in

the context of real networks. To this end, we discuss
flow control algorithms in Section 3, and then, in
Section 4, we present simulation data comparing several
combinations of flow control and queueing algorithms
on six benchmark networks. Section 5 contains an
overview of our results, a discussion of other proposed
queueing algorithms, and an analysis of some criticisms
of fair queueing.

In circuit switched networks where there is explicit
buffer reservation and uniform packet sizes, it has been
established that round robin service disciplines allocate
bandwidth fairly [Hah86, Kat87]. Recently Morgan
[Mor89] has examined the role such queueing
algorithms play in controlling congestion in circuit
switched networks; while his application context is
quite different from ours, his conclusions are
qualitatively similar. In other related work, the
DATAKITô queueing algorithm combines round robin
service and FIFO priority service, and has been
analyzed extensively [Lo87, Fra84]. Also, Luan and
Lucantoni present a different form of bandwidth
management policy for circuit switched networks
[Lua88].

Since the completion of this work, we have learned of a
similar Virtual Clock algorithm for gateway resource
allocation proposed by Zhang [Zha89]. Furthermore,
Heybey and Davin [Hey89] have simulated a simplified
version of our fair queueing algorithm.

2. Fair Queueing

2.1. Motivation What are the requirements for a
queueing algorithm that will allow source flow control
algorithms to provide adequate congestion control even
in the presence of ill-behaved sources? We start with
Nagleís observation that such queueing algorithms must
provide protection, so that ill-behaved sources can only
have a limited negative impact on well behaved sources.
Allocating bandwidth and buffer space in a fair manner,
to be defined later, automatically ensures that ill-
behaved sources can get no more than their fair share.
This led us to adopt, as our central design consideration,
the requirement that the queueing algorithm allocate
bandwidth and buffer space fairly. Ability to control the
promptness, or delay, allocation somewhat
independently of the bandwidth and buffer allocation is
also desirable. Finally, we require that the gateway
should provide service that, at least on average, does
not depend discontinuously on a packetís time of arrival
(this continuity condition will become clearer in Section
2.2). This requirement attempts to prevent the efficiency
of source implementations from being overly sensitive
to timing details (timers are the Bermuda Triangle of
flow control algorithms). Nagleís proposal does not
satisfy these requirements. The most obvious flaw is its

ACM SIGCOMM -3- Computer Communication Review

lack of consideration of packet lengths. A source using
long packets gets more bandwidth than one using short
packets, so bandwidth is not allocated fairly. Also, the
proposal has no explicit promptness allocation other
than that provided by the round-robin service discipline.
In addition, the static round robin ordering violates the
continuity requirement. In the following section we
attempt to correct these defects.

In stating our requirements for queueing algorithms, we
have left the term fair undefined. The term fair has a
clear colloquial meaning, but it also has a technical
definition (actually several, but only one is considered
here). Consider, for example, the allocation of a single
resource among N users. Assume there is an amount
µtotal of this resource and that each of the users requests
an amount ρi and, under a particular allocation, receives
an amount µi. What is a fair allocation? The max-min
fairness criterion [Hah86, Gaf84, DEC87d] states that
an allocation is fair if (1) no user receives more than its
request, (2) no other allocation scheme satisfying
condition 1 has a higher minimum allocation, and (3)
condition 2 remains recursively true as we remove the
minimal user and reduce the total resource accordingly,
µtotal ←µtotal ñ µmin. This condition reduces to µi =
MIN(µfair, ρi) in the simple example, with µfair, the fair

share, being set so that µ µιt ot al
i

N

=
=
∑

1
. This concept

of fairness easily generalizes to the multiple resource
case [DEC87d]. Note that implicit in the max-min
definition of fairness is the assumption that the users
have equal rights to the resource.

In our communication application, the bandwidth and
buffer demands are clearly represented by the packets
that arrive at the gateway. (Demands for promptness are
not explicitly communicated, and we will return to this
issue later.) However, it is not clear what constitutes a
user. The user associated with a packet could refer to
the source of the packet, the destination, the source-
destination pair, or even refer to an individual process
running on a source host. Each of these definitions has
limitations. Allocation per source unnaturally restricts
sources such as file servers which typically consume
considerable bandwidth. Ideally the gateways could
know that some sources deserve more bandwidth than
others, but there is no adequate mechanism for
establishing that knowledge in todayís networks.
Allocation per receiver allows a receiverís useful
incoming bandwidth to be reduced by a broken or
malicious source sending unwanted packets to it.
Allocation per process on a host encourages human
users to start several processes communicating simul-
taneously, thereby avoiding the original intent of fair
allocation. Allocation per source-destination pair allows

a malicious source to consume an unlimited amount of
bandwidth by sending many packets all to different
destinations. While this does not allow the malicious
source to do useful work, it can prevent other sources
from obtaining sufficient bandwidth.

Overall, allocation on the basis of source-destination
pairs, or conversations, seems the best tradeoff between
security and efficiency and will be used here. However,
our treatment will apply to any of these interpretations
of user. With our requirements for an adequate
queueing algorithm, coupled with our definitions of
fairness and user, we now turn to the description of our
algorithm.

2.2 Definition of algorithm It is simple to allocate
buffer space fairly by dropping packets, when
necessary, from the conversation with the largest queue.
Allocating bandwidth fairly is less straightforward. Pure
round-robin service provides a fair allocation of
packets-sent but fails to guarantee a fair allocation of
bandwidth because of variations in packet sizes. To see
how this unfairness can be avoided, we first consider a
hypothetical service discipline where transmission
occurs in a bit-by-bit round robin (BR) fashion (as in a
head-of-queue processor sharing discipline). This
service discipline allocates bandwidth fairly since at
every instant in time each conversation is receiving its
fair share. Let R t() denote the number of rounds made

in the round-robin service discipline up to time t
(R t() is a continuous function, with the fractional part

indicating partially completed rounds). Let N tac ()
denote the number of active conversations, i.e. those
that have bits in their queue at time t . Then,

∂
∂

µR

t N tac

=
()

, where µ is the linespeed of the

gatewayís outgoing line (we will, for convenience, work
in units such that µ = 1). A packet of size P whose

first bit gets serviced at time t0 will have its last bit

serviced P rounds later, at time t such that

T t R t P() ()= +0 . Let ti
α be the time that packet i

belonging to conversation α arrives at the gateway, and

define the numbers Si
α and Fi

α as the values of R t()

when the packet started and finished service. With Pi
α

denoting the size of the packet, the following relations

hold: F S Pi i i
α α α= + and

S MAX F R ti i i
α α α= −(, ())1 . Since R t() is a strictly

monotonically increasing function whenever there are

bits at the gateway, the ordering of the Fi
α values is

ACM SIGCOMM -4- Computer Communication Review

the same as the ordering of the finishing times of the
various packets in the BR discipline.

Sending packets in a bit-by-bit round robin fashion,
while satisfying our requirements for an adequate
queueing algorithm, is obviously unrealistic. We hope
to emulate this impractical algorithm by a practical
packet-by-packet transmission scheme. Note that the

functions R t() and N tac () and the quantities Si
α

and Fi
α depend only on the packet arrival times ti

α

and not on the actual packet transmission times, as long
as we define a conversation to be active whenever

R t Fi() ≤ α for i MAX j t tj= ≤()α . We are thus

free to use these quantities in defining our packet-by-
packet transmission algorithm. A natural way to emulate
the bit-by-bit round-robin algorithm is to let the

quantities Fi
α define the sending order of the packets.

Our packet-by-packet transmission algorithm is simply
defined by the rule that, whenever a packet finishes
transmission, the next packet sent is the one with the

smallest value of Fi
α . In a preemptive version of this

algorithm, newly arriving packets whose finishing

number Fi
α is smaller than that of the packet currently

in transmission preempt the transmitting packet. For
practical reasons, we have implemented the
nonpreemptive version, but the preemptive algorithm
(with resumptive service) is more tractable analytically.
Clearly the preemptive and nonpreemptive packetized
algorithms do not give the same instantaneous
bandwidth allocation as the BR version. However, for
each conversation the total bits sent at a given time by
these three algorithms are always within Pmax of each

other, where Pmax is the maximum packet size (this

emulation discrepancy bound was proved by Greenberg
and Madras [Gree89]). Thus, over sufficiently long
conversations, the packetized algorithms asymptotically
approach the fair bandwidth allocation of the BR
scheme.

Recall that the userís request for promptness is not
made explicit. (The IP [Pos81] protocol does have a
field for type-of-service, but not enough applications
make intelligent use of this option to render it a useful
hint.) Consequently, promptness allocation must be
based solely on data already available at the gateway.
One such allocation strategy is to give more promptness
(less delay) to users who utilize less than their fair share
of bandwidth. Separating the promptness allocation
from the bandwidth allocation can be accomplished by
introducing a nonnegative parameter δ, and defining a

new quantity, the bid Bi
α , via

B P MAX F R ti i i i
α α α α δ= + −−(, ())1 . The

quantities R t() , N tac () , Fi
α , and Si

α remain as

before, but now the sending order is determined by the
Bís, not the Fís. The asymptotic bandwidth allocation is
independent of δ, since the Fís control the bandwidth
allocation, but the algorithm gives slightly faster service
to packets that arrive at an inactive conversation. The
parameter δ controls the extent of this additional

promptness. Note that the bid Bi
α is continuous in ti

α ,

so that the continuity requirement mentioned in Section
2.1 is met.

The role of this term δ can be seen more clearly by
considering the two extreme cases δ = 0 and

δ = ∞ . If an arriving packet has R t Fi i()α α≤ −1 ,

then the conversation α is active (i.e. the corresponding
conversation in the BR algorithm would have bits in the
queue). In this case, the value of δ is irrelevant and the
bid number depends only on the finishing number of the

previous packet. However, if R t Fi i()α α> −1 , so that

the α conversation is inactive, the two cases are quite
different. With δ = 0 , the bid number is given by

B P R ti i i
α α α= + () and is completely independent

of the previous history of user α. With δ = ∞ , the

bid number is B P Fi i i
α α α= + −1 and depends only

the previous packetís finishing number, no matter how
many rounds ago. For intermediate values of δ,
scheduling decisions for packets arriving at inactive
conversations depends on the previous packetís
finishing round as long as it wasnít too long ago, and δ
controls how far back this dependence goes.

Recall that when the queue is full and a new packet
arrives, the last packet from the source currently using
the most buffer space is dropped. We have chosen to

leave the quantities Fi
α and Si

α unchanged when we

drop a packet. This provides a small penalty for ill-
behaved hosts, in that they will be charged for
throughput that, because of their own poor flow control,
they could not use.

2.3 Properties of Fair Queueing The desired
bandwidth and buffer allocations are completely
specified by the definition of fairness, and we have
demonstrated that our algorithm achieves those goals.
However, we have not been able to characterize the
promptness allocation for an arbitrary arrival stream of
packets. To obtain some quantitative results on the
promptness, or delay, performance of a single FQ
gateway, we consider a very restricted class of arrival

ACM SIGCOMM -5- Computer Communication Review

streams in which there are only two types of sources.
There are FTP-like file transfer sources, which always
have ready packets and transmit them whenever
permitted by the source flow control (which, for
simplicity, is taken to be sliding window flow control),
and there are Telnet-like interactive sources, which
produce packets intermittently according to some
unspecified generation process. What are the quantities
of interest? An FTP source is typically transferring a
large file, so the quantity of interest is the transfer time
of the file, which for asymptotically large files depends
only on the bandwidth allocation. Given the
configuration of sources this bandwidth allocation can
be computed a priori by using the fairness property of
FQ gateways. The interesting quantity for Telnet
sources is the average delay of each packet, and it is for
this quantity that we now provide a rather limited result.

Consider a single FQ gateway with N FTP sources
sending packets of size PF , and allow a single packet

of size PT from a Telnet source to arrive at the gateway

at time t. It will be assigned a bid number
B R t PT= + −() δ ; thus, the dependence of the

queueing delay on the quantities PT and δ is only

through the combination PT − δ . We will denote the

queueing delay of this packet by ϕ()t , which is a

periodic function with period NPF . We are interested

in the average queueing delay ∆

∆ ≡ ∫
1

0NP
t dt

F

NPF

ϕ()

The finishing numbers Fi
α for the N FTPís can be

expressed, after perhaps renumbering the packets, by

F i l Pi F
α α= +() where the lís obey

0 1≤ <lα . The queueing delay of the Telnet
packet depends on the configuration of lís whenever
P PT F< . One can show that the delay is bounded by

the extremal cases of lα = 0 for all α and

l Nα α= for α = −0 1 1, , ,K N . The delay

values for these extremal cases are straightforward to
calculate; for the sake of brevity we omit the derivation
and merely display the result below. The average
queueing delay is given by ∆ = −A PT()δ where

the function A(P), the delay with δ = 0 , is defined
below (with integer k and small constant ε,
0 1≤ <ε , defined via P P k NT F= +()ε .

Preemptive

A P N P
P

P PF
F() ()= − ≥

2
 f or

N P
P

A P
NP

P
P P

P

N
F

F
F

F() () ()− ≤ ≤ ≥ ≥ +
2 2 2

1
12

 f or

()1
2 2 2

1
2

12 2

2
2

1 1

P
N P A P

NP

P

P
P

P

F

P P

F

F
N

F
N

F F+ − ≤ ≤ + ≥ ≥ −



() ()) () for

0
2

1
12

≤ ≤ − ≥A P
NP

P N
P

F

() () f or
P

2
F

Nonpreemptive

A P N P
P

P PF
F() ()= − ≥

2
 f or

N P
P

AP
P

k k P P
P

N
F F

F
F() () ([()] ()− ≤ ≤ + −








≥ ≥ +
2 2

2 1
2

1
12) 1+

1

N
 for ε

P
AP

P

N
k k

P

N
PF F F

2 2
1

1
2 1

2

12≤ ≤ + + −







≥() () [()]ε for (1+)

Now consider a general Telnet packet generation
process (ignoring the effects of flow control) and
characterize this generation process by the function
D PT0 () which denotes the queueing delay of the

Telnet source when it is the sole source at the gateway.
In the BR algorithm, the queueing delay of the Telnet
source in the presence of N FTP sources is merely
D N PT0 1(())+ . For the packetized preemptive

algorithm with δ = 0 , we can express the queueing
delay in the presence of N FTP sources, call it
D PN T() , in terms of D0 via the relation (averaging

over all relative synchronizations between the FTPís
and the Telnet):

D P D N P A PN T T T() (()) ()= + +0 1

where the term A PT() reflects the extra delay incurred

when emulating the BR algorithm by the preemptive
packetized algorithm.

For nonzero values δ, the generation process must be
further characterized by the quantity I P tt0 (,) which,

in a system where the Telnet is the sole source, is the
probability that a packet arrives to a queue which has
been idle for time t. The delay is given by,

.

{ }
D P D N P A P

I N P t A P A P MI N(dt

N T T T

T t T
t
N

() (()) ()

(() ,) () (,))),

= + + −

+ − −
∞

∫

0

0
0

1

1 δ

ACM SIGCOMM -6- Computer Communication Review

where the last term represents the reduction in delay due
the nonzero δ. These expressions for DN , which were

derived for the preemptive case, are also valid for the
nonpreemptive algorithm when P PT F≤ .

What do these forbidding formulae mean? Consider, for
concreteness, a Poisson arrival process with arrival rate
λ, packet sizes P P PT F= ≡ , a linespeed µ = 1,

and an FTP synchronization described by

l Nα α= for α = −0 1 1, , ,K N . Define ρ to

be the average bandwidth of the stream, measured
relative to the fair share of the Telnet;
ρ λ= +P N()1 . Then, for the nonpreemptive

algorithm,

D P

P

N
N

N

N

N

N
MIN

P N

N()

(
()

()

exp
()

(, ())

=
−

+ + −

−
+

×

− −
+

−






































ρ
ρ

ρ
ρ

ρ

ρ δ21 2
1

1

2

1

1
1

1

2
1

1

This is the throughput/delay curve the FQ gateway
offers the Poisson Telnet source (the formulae for
different FTP synchronizations are substantially more
complicated, but have the same qualitative behavior).
This can be contrasted with that offered by the FCFS
gateway, although the FCFS results depend in detail on
the flow control used by the FTP sources and on the
surrounding network environment. Assume that all
other communications speeds are infinitely fast in
relation to the outgoing linespeed of the gateway, and
that the FTPís all have window size W, so there are
always NW FTP packets in the queue or in transmission.
Figure 1 shows the throughput/delay curves for an
FCFS gateway, along with those for a FQ gateway with
δ = 0 and δ = P . For ρ → 0 , FCFS gives a

large queueing delay of ()NW P− 1
2 , whereas FQ

gives a queueing delay of NP 2 for δ = 0 and P/2

for δ = P . This ability to provide a lower delay to
lower throughput sources, completely independent of
the window sizes of the FTPís, is one of the most
important features of fair queueing. Note also that the
FQ queueing delay diverges as ρ → 1 , reflecting

FQís insistence that no conversation gets more than its
fair share. In contrast, the FCFS curve remains finite for
all ρ < +()N 1 , showing that an ill-behaved source

can consume an arbitrarily large fraction of the
bandwidth.

What happens in a network of FQ gateways? There are
few results here, but Hahne [Hah86] has shown that for
strict round robin service gateways and only FTP
sources there is fair allocation of bandwidth (in the

multiple resource sense) when the window sizes are
sufficiently large. She also provides examples where
insufficient window sizes (but much larger than the
communication path) result in unfair allocations. We
believe, but have been unable to prove, that both of
these properties hold for our fair queueing scheme.

3. Flow Control Algorithms

Flow control algorithms are both the benchmarks
against which the congestion control properties of fair
queueing are measured, and also the environment in
which FQ gateways will operate. We already know that,
when combined with FCFS gateways, these flow control
algorithms all suffer from the fundamental problem of
vulnerability to ill-behaving sources. Also, there is no
mechanism for separating the promptness allocation
from the bandwidth and buffer allocation. The
remaining question is then how fairly do these flow

Figure 1: Delay vs. Throughput.

This graph describes the queueing delay of a
single Telnet source with Poisson generation
process of strength λ, sending packets through
a gateway with three FTP conversations. The
packet sizes are P P PT F= ≡ , the

throughput is measured relative to the Telnetís
fair share, ρ λ µ≡ 4 P where µ is the

linespeed. The delay is measured in units of
P µ . The FQ algorithm is nonpreemptive,

and the FCFS case always has 15 FTP packets
in the queue.

ACM SIGCOMM -7- Computer Communication Review

control algorithms allocate bandwidth. Before
proceeding, note that there are really two distinct
problems in controlling congestion. Congestion
recovery allows a system to recover from a badly con-
gested state, whereas congestion avoidance attempts to
prevent the congestion from occurring. In this paper, we
are focusing on congestion avoidance and will not
discuss congestion recovery mechanisms at length.

A generic version of source flow control, as
implemented in XNSís SPP [Xer81] or in TCP
[USC81], has two parts. There is a timeout mechanism,
which provides for congestion recovery, whereby
packets that have not been acknowledged before the
timeout period are retransmitted (and a new timeout
period set). The timeout periods are given by βrtt where
typically β ~ 2 and rtt is the exponentially averaged

estimate of the round trip time (the rtt estimate for
retransmitted packets is the time from their first
transmission to their acknowledgement). The
congestion avoidance part of the algorithm is sliding
window flow control, with some set window size. This
algorithm has a very narrow range of validity, in that it
avoids congestion if the window sizes are small enough,
and provides efficient service if the windows are large
enough, but cannot respond adequately if either of these
conditions is violated.

The second generation of flow control algorithms,
exemplified by Jacobson and Karelsí (JK) modified
TCP [Jac88a] and the original DECbit proposal
[DEC87a-c], are descendants of the above generic
algorithm with the added feature that the window size is
allowed to respond dynamically in response to network
congestion (JK also has, among other changes,
substantial modifications to the timeout calculation
[Jac88a,b, Kar87]). The algorithms use different signals
for congestion; JK uses timeouts whereas DECbit uses a
header bit which is set by the gateway on all packets
whenever the average queue length is greater than one.
These mechanisms allocate window sizes fairly, but the
relation Throughput = Window/RoundTrip implies that
conversations with different paths receive different
bandwidths.

The third generation of flow control algorithms are
similar to the second, except that now the congestion
signals are sent selectively. For instance, the selective
DECbit proposal [DEC87d] has the gateway measure
the flows of the various conversations and only send
congestion signals to those users who are using more
than their fair share of bandwidth. This corrects the
previous unfairness for sources using different paths
(see [DEC87d] and section 4), and appears to offer
reasonably fair and efficient congestion control in many
networks. The DEC algorithm controls the delay by

attempting to keep the average queue size close to one.
However, it does not allow individual users to make
different delay/throughput tradeoffs; the collective
tradeoff is set by the gateway.

4. Simulations

In this section we compare the various congestion
control mechanisms, and try to illustrate the interplay
between the queueing and flow control algorithms. We
simulated these algorithms at the packet level using a
network simulator built on the Nest network simulation
tool [Nes88]. In order to compare the FQ and FCFS
gateway algorithms in a variety of settings, we selected
several different flow control algorithms; the generic
one described above, JK flow control, and the selective
DECbit algorithm. To enable DECbit flow control to
operate with FQ gateways, we developed a bit-setting
FQ algorithm in which the congestion bits are set

whenever the sourceís queue length is greater than 1
3 of

its fair share of buffer space (note that this is a much
simpler bit-setting algorithm than the DEC scheme,
which involves complicated averages; however, the

choice of 1
3 is completely ad hoc). The Jacob-

son/Karels flow control algorithm is defined by the
4.3bsd TCP implementation. This code deals with many
issues unrelated to congestion control. Rather than using
that code directly in our simulations, we have chosen to
model the JK algorithm by adding many of the
congestion control ideas found in that code, such as
adjustable windows, better timeout calculations, and
fast retransmit to our generic flow control algorithm.
The various cases of test algorithms are labeled in table
1.

Label Flow Control Queueing Algorithm
G/FCFS Generic FCFS

G/FQ Generic FQ
JK/FCFS JK FCFS

JK/FQ JK FQ
DEC/DEC DECbit Selective DECbit
DEC/FQbit DECbit FQ with bit setting

Table 1: Algorithm Combinations

Rather than test this set of algorithms on a single
representative network and load, we chose to define a
set of benchmark scenarios, each of which, while some-
what unrealistic in itself, serves to illuminate a different
facet of congestion control. The load on the network
consists of a set of Telnet and FTP conversations. The
Telnet sources generate 40 byte packets by a Poisson
process with a mean interpacket interval of 5 seconds.
The FTPís have an infinite supply of 1000 byte packets
that are sent as fast as flow control allows. Both FTPís
and Telnetís have their maximum window size set to 5,

ACM SIGCOMM -8- Computer Communication Review

and the acknowledgement (ACK) packets sent back
from the receiving sink are 40 bytes. (The small size of
Telnet packets relative to the FTP packets makes the
effect of δ insignificant, so the FQ algorithm was
implemented with δ = 0). The gateways have finite
buffers which, for convenience, are measured in packets
rather than bytes. The system was allowed to stabilize
for the first 1500 seconds, and then data was collected
over the next 500 second interval. For each scenario,
there is a figure depicting the corresponding network
layout, and a table containing the data. There are four
performance measures for each source: total throughput
(number of packets reaching destination), average round
trip time of the packets, the number of packet
retransmissions, and number of dropped packets. We do
not include confidence intervals for the data, but
repetitions of the simulations have consistently
produced results that lead to the same qualitative
conclusions.

We first considered several single-gateway networks.
The first scenario has two FTP sources and two Telnet
sources sending to a sink through a single bottleneck
gateway. Note that, in this underloaded case, all of the
algorithms provide fair bandwidth allocation, but the
cases with FQ provide much lower Telnet delay than
those with FCFS. The selective DECbit gives an
intermediate value for the Telnet delay, since the flow
control is designed to keep the average queue length
small.

Scenario 1: Underloaded Gateway

Scenario 2 involves 6 FTP sources and 2 Telnet sources
again sending through a single gateway. The gateway,
with a buffer size of only 15, is substantially
overloaded. This scenario probes the behavior of the
algorithms in the presence of severe congestion.

When FCFS gateways are paired with generic flow
control, the sources segregate into winners, who

ACM SIGCOMM -9- Computer Communication Review

consume a large amount of bandwidth, and losers, who
consume very little. This phenomenon develops because
the queue is almost always full. The ACK packets
received by the winners serve as a signal that a buffer
space has just been freed, so their packets are rarely
dropped. The losers are usually retransmitting, at
essentially random times, and thus have most of their
packets dropped. This analysis is due to Jacobson
[Jac88b], and the segregation effect was first pointed
out to us in this context by Sturgis [Stu88]. The
combination of JK flow control with FCFS gateways
produces fair bandwidth allocation among the FTP
sources, but the Telnet sources are almost completely
shut out. This is because the JK algorithm ensures that
the gatewayís buffer is usually full, causing most of the
Telnet packets to be dropped.

Scenario 2: Overloaded Gateway

When generic flow control is combined with FQ, the
strict segregation disappears. However, the bandwidth
allocation is still rather uneven, and the useful
bandwidth (rate of nonduplicate packets) is 12% below
optimal. Both of these facts are due to the inflexibility
of the generic flow control, which is unable to reduce its
load enough to prevent dropped packets. This not only
necessitates retransmissions but also, because of the
crudeness of the timeout congestion recovery
mechanism, prevents FTPís from using their fair share
of bandwidth. In contrast, JK flow control combined
with FQ produced reasonably fair and efficient alloca-
tion of the bandwidth. The lesson here is that fair
queueing gateways by themselves do not provide ade-
quate congestion control; they must be combined with
intelligent flow control algorithms at the sources.

Scenario 3 : Ill-Behaved Sources

ACM SIGCOMM -10- Computer Communication Review

The selective DECbit algorithm manages to keep the
bandwidth allocation perfectly fair, and there are no
dropped packets or retransmissions. The addition of FQ
to the DECbit algorithm retains the fair bandwidth
allocation and, in addition, lowers the Telnet delay by a
factor of 9. Thus, for each of the three flow control
algorithms, replacing FCFS gateways with FQ gateways
generally improved the FTP performance and
dramatically improved the Telnet performance of this
extremely overloaded network.

In scenario 3 there is a single FTP and a single Telnet
competing with an ill-behaved source. This ill-behaved
source has no flow control and is sending packets at
twice the rate of the gatewayís outgoing line. With
FCFS, the FTP and Telnet are essentially shut out by
the ill-behaved source. With FQ, they obtain their fair
share of bandwidth. Moreover, the ill-behaved host gets
much less than its fair share, since when it has its
packets dropped it is still charged for that throughput.
Thus, FQ gateways are effective firewalls that can
protect users, and the rest of the network, from being
damaged by ill-behaved sources.

Scenario 4: Mixed Protocols

We have argued for the importance of considering a
heterogeneous set of flow control mechanisms. Scenario

4 has single gateway with two pairs of FTP sources,
employing generic and JK flow control respectively.
With a FCFS gateway, the generic flow controlled pair
has higher throughput than the JK pair. However, with a
FQ gateway, the situation is reversed (and the generic
sources have segregated). Note that the FQ gateway has
provided incentive for sources to implement JK or some
other intelligent flow control, whereas the FCFS
gateway makes such a move sacrificial.

Certainly not all of the relevant behavior of these
algorithms can be gleaned from single gateway net-
works. Scenario 5 has a multinode network with four
FTP sources using different network paths. Three of the
sources have short nonoverlapping conversations and
the fourth source has a long path that intersects each of
the short paths. When FCFS gateways are used with
generic or JK flow control, the conversation with the
long path receives less than 60% of its fair share. With
FQ gateways, it receives its full fair share. Furthermore,
the selective DECbit algorithm, in keeping the average
queue size small, wastes roughly 10% of the bandwidth
(and the conversation with the long path, which should
be helped by any attempt at fairness, ends up with less
bandwidth than in the generic/FCFS case).

ACM SIGCOMM -11- Computer Communication Review

Scenario 5: Multihop Path

Scenario 6 involves a more complicated network,
combining lines of several different bandwidths. None
of the gateways are overloaded so all combinations of
flow control and queueing algorithms function
smoothly. With FCFS, sources 4 and 8 are not limited
by the available bandwidth, but by the delay their ACK
packets incur waiting behind FTP packets. The total
throughput increases when the FQ gateways are used
because the small ACK packets are given priority.

Scenario 6: Complicated Network

For the sake of clarity and brevity, we have presented a
fairly clean and uncomplicated view of network
dynamics. We want to emphasize that there are many
other scenarios, not presented here, where the simula-
tion results are confusing and apparently involve
complicated dynamic effects. These results do not call
into question the efficacy and desirability of fair
queueing, but they do challenge our understanding of
the collective behavior of flow control algorithms in
networks.

ACM SIGCOMM -12- Computer Communication Review

5. Discussion

In an FCFS gateway, the queueing delay of packets is,
on average, uniform across all sources and directly
proportional to the total queue size. Thus, achieving
ambitious performance goals, such as low delay for
Telnet-like sources, or even mundane ones, such as
avoiding dropped packets, requires coordination among
all sources to control the queue size. Having to rely on
source flow control algorithms to solve this control
problem, which is extremely difficult in a maximally
cooperative environment and impossible in a
noncooperative one, merely reflects the inability of
FCFS gateways to distinguish between users and to
allocate bandwidth, promptness, and buffer space
independently.

In the design of the fair queueing algorithm, we have
attempted to address these issues. The algorithm does
allocate the three quantities separately. Moreover, the
promptness allocation is not uniform across users and is
somewhat tunable through the parameter δ. Most
importantly, fair queueing creates a firewall that pro-
tects well-behaved sources from their uncouth brethren.
Not only does this allow the current generation of flow
control algorithms to function more effectively, but it
creates an environment where users are rewarded for
devising more sophisticated and responsive algorithms.
The game-theoretic issue first raised by Nagle, that one
must change the rules of the gatewayís game so that
good source behavior is encouraged, is crucial in the
design of gateway algorithms. A formal game-theoretic
analysis of a simple gateway model (an exponential
server with N Poisson sources) suggests that fair
queueing algorithms make self-optimizing source
behavior result in fair, protective, nonmanipulable, and
stable networks; in fact, they may be the only
reasonable queueing algorithms to do so [She89a].

Our calculations show that the fair queueing algorithm
is able to deliver low delay to sources using less than
their fair share of bandwidth, and that this delay is
insensitive to the window sizes being used by the FTP
sources. Furthermore, simulations indicate that, when
combined with currently available flow control
algorithms, FQ delivers satisfactory congestion control
in a wide variety of network scenarios. The combination
of FQ gateways and DECbit flow control was
particularly effective. However, these limited tests are
in no way conclusive. We hope, in the future, to
investigate the performance of FQ under more realistic
load conditions, on larger networks, and interacting
with routing algorithms. Also, we hope to explore new
source flow control algorithms that are more attuned to
the properties of FQ gateways.

In this paper we have compared our fair queueing
algorithm with only the standard first-come-first-serve
queueing algorithm. We know of three other widely
known queueing algorithm proposals. The first two
were not intended as general purpose congestion control
algorithms. Prue and Postel [Pru87] have proposed a
type-of-service priority queueing algorithm, but
allocation is not made on a user-by-user basis, so
fairness issues are not addressed. There is also the
Fuzzball selective preemption algorithm [Mill87,88]
whereby the gateways allocate buffers fairly (on a
source basis, over all of the gatewayís outgoing
buffers). This is very similar to our buffer allocation
policy, and so can be considered a subset of our FQ
algorithm. The Fuzzballs also had a form of type-of-
service priority queueing but, as with the Prue and
Postel algorithm, allocations were not made on a user-
by-user basis. The third policy is the Random-Dropping
(RD) buffer management policy in which, when the
buffer is overloaded, the packet to be dropped is chosen
at random [Per89, Jac88ab]. This algorithm greatly
alleviates the problem of segregation. However, it is
now generally agreed that the RD algorithm does not
provide fair bandwidth allocation, is vulnerable to ill-
behaved sources, and is unable to provide reduced delay
to conversations using less than their fair share of
bandwidth [She89b, Zha89, Has89].

There are two objections that have been raised in
conjunction with fair queueing. The first is that some
source-destination pairs, such as file server or mail
server pairs, need more than their fair share of
bandwidth. There are several responses to this. First,
FQ is no worse than the status quo. FCFS gateways
already limit well-behaved hosts, using the same path
and having only one stream per source destination pair,
to their fair share of bandwidth. Some current band-
width hogs achieve their desired level of service by
opening up many streams, since FCFS gateways
implicitly define streams as the unit of user. Note that
that there are no controls over this mechanism of
gaining more bandwidth, leaving the network
vulnerable to abuse. If desired, however, this same trick
can be introduced into fair queueing by merely
changing the notion of user. This would violate
layering, which is admittedly a serious drawback. A
better approach is to confront the issue of allocation
directly by generalizing the algorithm to allow for
arbitrary bandwidth priorities. Assign each pair a
number nα which represents how many queue slots

that conversation gets in the bit-by-bit round robin. The

new relationships are N nac = ∑ α with the sum over

all active conversations, and Pi
α is set to be 1 nα

ACM SIGCOMM -13- Computer Communication Review

times the true packet length. Of course, the truly vexing
problem is the politics of assigning the priorities nα .

Note that while we have described an extension that
provides for different relative shares of bandwidth, one
could also define these shares as absolute fractions of
the bandwidth of the outgoing line. This would
guarantee a minimum level of service for these sources,
and is very similar to the Virtual Clock algorithm of
Zhang [Zha89].

The other objection is that fair queueing requires the
gateways to be smart and fast. There is technological
question of whether or not one can build FQ gateways
that can match the bandwidth of fibers. If so, are these
gateways economically feasible? We have no answers
to these questions, and they do indeed seem to hold the
key to the future of fair queueing.

6. Acknowledgements

The authors gratefully acknowledge H. Murrayís
important role in designing an earlier version of the fair
queueing algorithm. We wish to thank A. Dupuy for
assistance with the Nest simulator. Fruitful discussions
with J. Nagle, E. Hahne, A. Greenberg, S. Morgan, K.
K. Ramakrishnan, V. Jacobson, M. Karels, D. Greene
and the End-to-End Task Force are also appreciated. In
addition, we are indebted to H. Sturgis for bringing the
segregation result in section 4 to our attention, and to
him and R. Hagmann and C. Hauser for the related
lively discussions. We also wish to thank the group at
MIT for freely sharing their insights: L. Zhang, D.
Clark, A. Heybey, C. Davin, and E. Hashem.

7. References

 [DEC87a] R. Jain and K. K. Ramakrishnan,
ìCongestion Avoidance in Computer
Networks with a Connectionless Network
Layer, Part I-Concepts, Goals, and
Alternativesî, DEC Technical Report TR-
507, Digital Equipment Corporation, April
1987.

 [DEC87b] K. K. Ramakrishnan and R. Jain,
ìCongestion Avoidance in Computer
Networks with a Connectionless Network
Layer, Part II-An Explicit Binary Feedback
Schemeî, DEC Technical Report TR-508,
Digital Equipment Corporation, April
1987.

 [DEC87c] D.-M. Chiu and R. Jain, ìCongestion
Avoidance in Computer Networks with a
Connectionless Network Layer, Part III-
Analysis of Increase and Decrease
Algorithmsî, DEC Technical Report TR-

509, Digital Equipment Corporation, April
1987.

 [DEC87d] K. K. Ramakrishnan, D.-M. Chiu, and R.
Jain ìCongestion Avoidance in Computer
Networks with a Connectionless Network
Layer, Part IV-A Selective Binary
Feedback Scheme for General Topologiesî,
DEC Technical Report TR-510, Digital
Equipment Corporation, November 1987.

 [Fra84] A. Fraser and S. Morgan, ìQueueing and
Framing Disciplines for a Mixture of Data
Traffic Typesî, AT&T Bell Laboratories
Technical Journal,Volume 63, No. 6, pp
1061-1087, 1984.

 [Gaf84] E. Gafni and D. Bertsekas, ìDynamic
Control of Session Input Rates in
Communication Networksî, IEEE Transac-
tions on Automatic Control, Volume 29,
No. 10, pp 1009-1016, 1984.

 [Ger80] M. Gerla and L. Kleinrock, ìFlow Control:
A Comparative Surveyî, IEEE Transactions
on Communications, Volume 28, pp 553-
574, 1980.

 [Gre89] A. Greenberg and N. Madras, private
communication, 1989.

 [Hah86] E. Hahne, ìRound Robin Scheduling for
Fair Flow Control in Data Communication
Networksî, Report LIDS-TH-1631,
Laboratory for Information and Decision
Systems, Massachusetts Institute of
Technology, Cambridge, Massachusetts,
December, 1986.

 [Has89] E. Hashem, private communication, 1989.

 [Hey89] A. Heybey and C. Davin, private
communication, 1989.

 [ISO86] International Organization for
Standardization (ISO), ìProtocol for
Providing the Connectionless Mode
Network Serviceî, Draft International
Standard 8473, 1986.

 [Jac88a] V. Jacobson, ìCongestion Avoidance and
Controlî, ACM SigComm Proceedings, pp
314-329, 1988.

 [Jac88b] V. Jacobson, private communication, 1988.

 [Jai86] R. Jain, ìDivergence of Timeout
Algorithms for Packet Retransmissionî,
Proceedings of the Fifth Annual
International Phoenix Conference on

ACM SIGCOMM -14- Computer Communication Review

Computers and Communications, pp 1162-
1167, 1987.

 [Kar87] P. Karn and C. Partridge, ìImproving
Round-Trip Time Estimates in Reliable
Transport Protocolsî, ACM SigComm
Proceedings,pp 2-7, 1987.

 [Kat87] M. Katevenis, ìFast Switching and Fair
Control of Congested Flow in Broadband
Networksî, IEEE Journal on Selected Areas
in Communications,Volume 5, No. 8, pp
1315-1327, 1987.

 [Lo87] C.-Y. Lo, ìPerformance Analysis and
Application of a Two-Priority Packet
Queueî, AT&T Technical Journal,Volume
66, No. 3, pp 83-99, 1987.

 [Lua88] D. Luan and D. Lucantoni, ìThroughput
Analysis of an Adaptive Window-Based
Flow Control Subject to Bandwidth
Managementî, Proceedings of the
International Teletraffic Conference, 1988.

 [Man89] A. Mankin and K. Thompson, ìLimiting
Factors in the Performance of the Slo-start
TCP Algorithmsî, preprint.

 [Mor89] S. Morgan, ìQueueing Disciplines and
Passive Congestion Control in Byte-Stream
Networksî, IEEE INFOCOM ë89
Proceedings, pp 711-720, 1989.

 [Mil87] D. Mills and W.-W. Braun, ìThe NSFNET
Backbone Networkî, ACM SigComm
Proceedings,pp 191-196, 1987.

 [Mil88] D. Mills, ìThe Fuzzballî, ACM SigComm
Proceedings,pp 115-122, 1988.

 [Nag84] J. Nagle, ìCongestion Control in IP/TCP
Networks, Computer Communication
Review, Vol 14, No. 4,pp 11-17, 1984.

 [Nag85] J. Nagle, ìOn Packet Switches with Infinite
Storageî, RFC 896 1985.

 [Nag87] J. Nagle, ìOn Packet Switches with Infinite
Storageî, IEEE Transactions
onCommunications,Volume 35, pp 435-
438, 1987.

 [Nes88] D. Bacon, A. Dupuy, J. Schwartz, and Y.
Yemini, ìNest: A Network Simulation
andPrototyping Toolî, Dallas Winter 1988
Usenix Conference Proceedings, pp.71-78,
1988.

 [Per89] IETF Performance and Congestion Control
Working Group, ìGateway Congestion
Control Policiesî, draft, 1989.

 [Pos81] J. Postel, ìInternet Protocolî, RFC 791
1981.

 [Pru88] W. Prue and J. Postel, ìA Queueing
Algorithm to Provide Type-of-Service for
IP Linksî, RFC1046, 1988.

 [She89a] S. Shenker, ìGame-Theoretic Analysis of
Gateway Algorithmsî, in preparation, 1989.

 [She89b] S. Shenker, ìComments on the IETF
Performance and Congestion Control
Working Group Draft on Gateway
Congestion Control Policiesî, unpublished,
1989.

 [Stu88] H. Sturgis, private communication, 1988.

 [USC81] USC Information Science Institute,
ìTransmission Control Protocolî, RFC 793,
1981.

 [Xer81] Xerox Corporation, ìInternet Transport
Protocolsî, XSIS 028112, 1981.

 [Zha89] L. Zhang, ìA New Architecture for Packet
Switching Network Protocolsî, MIT Ph. D.
Thesis, forthcoming, 1989.

