
ACM SIGCOMM -1- Computer Communication Review

Congestion Control in IP/TCP Internetworks
John Nagle

Ford Aerospace and Communications Corporation
Palo Alto, California

1. INTRODUCTION

Congestion control is a recognized problem in complex networks. We have discovered that
the Department of Defense’s Internet Protocol (IP), a pure datagram protocol, and
Transmission Control Protocol (TCP), a transport layer protocol, when used together, are
subject to unusual congestion problems caused by interactions between the transport and
datagram layers. In particular, IP gateways are vulnerable to a phenomenon we call
congestion collapse, especially when such gateways connect networks of widely different
bandwidth. We have developed solutions that prevent congestion collapse.

These problems are not generally recognized because these protocols are used most often
on networks built on top of ARPANET IMP technology. ARPANET IMP based networks
traditionally have uniform bandwidth, identical switching nodes, and are sized with
substantial excess capacity. This excess capacity, and the ability of the IMP system to
throttle the transmissions of hosts has for most IP/TCP hosts and networks, been adequate
to handle congestion. With the recent split of the ARPANET into two interconnected
networks and the growth of other networks with differing properties connected to the
ARPANET, however, reliance on the benign properties of the IMP system is no longer
enough to allow hosts to communicate rapidly and reliably. Improved handling of
congestion is now mandatory for successful network operation under load.

Ford Aerospace and Communications Corporation, and its parent company, Ford Motor
Company, operate the only private IP/TCP long-haul network in existence today. This
network connects six facilities (one in Michigan, two in California, one in Colorado, one in
Texas, and one in England) some with extensive local networks. This net is cross-tied to the
ARPANET but uses its own long-haul circuits; traffic between Ford facilities flows over
private leased circuits, including a leased transatlantic satellite connection. All switching
nodes are pure IP datagram switches with no node-to-node flow control, and all hosts run
software either written or heavily modified by Ford or Ford Aerospace. Bandwidth of links
in this network varies widely, from 1200 to 10,000,000 bits per second. In general, we have
not been able to afford the luxury of excess long-haul bandwidth that the ARPANET
possesses, and our long-haul links are heavily loaded during peak periods. Transit times of
several seconds are thus common in our network.

Because of our pure datagram orientation, heavy loading, and wide variation in
bandwidth, we have had to solve problems that the ARPANET/MILNET community is

ACM SIGCOMM -2- Computer Communication Review

just beginning to recognize. Our network is sensitive to suboptimal behavior by host TCP
implementations, both on and off our own net. We have devoted considerable effort to
examining TCP behavior under various conditions, and have solved some widely prevalent
problems with TCP. We present here two problems and their solutions. Many TCP
implementations have these problems; if throughput is worse through an
ARPANET/MILNET gateway for a given TCP implementation than throughput across a
single net, there is a high probability that the TCP implementation has one or both of these
problems.

2. CONGESTION COLLAPSE

Before we proceed with a discussion of the two specific problems and their solutions, a
description of what happens when these problems are not addressed is in order. In heavily
loaded pure datagram networks with end to end retransmission, as switching nodes
become congested, the round trip time through the net increases and the count of
datagrams in transit within the net also increases. This is normal behavior under load. As
long as there is only one copy of each datagram in transit, congestion is under control.
Once retransmission of datagrams not yet delivered begins, there is potential for serious
trouble.

Host TCP implementations are expected to retransmit packets several times at increasing
time intervals until some upper limit on the retransmit interval is reached. Normally, this
mechanism is enough to prevent serious congestion problems. Even with the better
adaptive host retransmission algorithms, though, a sudden load on the net can cause the
round-trip time to rise faster than the sending hosts measurements of round-trip time can
be updated. Such a load occurs when a new bulk transfer, such a file transfer, begins and
starts filling a large window. Should the round-trip time exceed the maximum
retransmission interval for any host, that host will begin to introduce more and more
copies of the same datagrams into the net. The network is now in serious trouble.
Eventually all available buffers in the switching nodes will be full and packets must be
dropped. The round-trip time for packets that are delivered is now at its maximum. Hosts
are sending each packet several times, and eventually some copy of each packet arrives at
its destination. This is congestion collapse.

This condition is stable. Once the saturation point has been reached, if the algorithm for
selecting packets to be dropped is fair, the network will continue to operate in a degraded
condition. In this condition every packet is being transmitted several times and throughput
is reduced to a small fraction of normal. We have pushed our network into this condition
experimentally and observed its stability. It is possible for round-trip time to become so
large that connections are broken because the hosts involved time out.

Congestion collapse and pathological congestion are not normally seen in the ARPANET/
MILNET system only because these networks have substantial excess capacity. Where

ACM SIGCOMM -3- Computer Communication Review

connections do not pass through IP gateways, the IMP-to-host flow control mechanisms
prevent congestion collapse, especially since TCP implementations tend to be well adjusted
for the time constants associated with the pure ARPANET case. However, other than ICMP
Source Quench messages, nothing prevents congestion collapse when TCP is run over the
ARPANET/MILNET and packets are being dropped at gateways. Worth noting is that a
few badly-behaved hosts can by themselves congest the gateways and prevent other hosts
from passing traffic. We have observed this problem repeatedly with certain hosts (with
whose administrators we have communicated privately) on the ARPANET.

Adding additional memory to the gateways will not solve the problem. The more memory
added, the longer round-trip times must become before packets are dropped. Thus, the
onset of congestion collapse will be delayed, but when collapse occurs a larger fraction of
the packets in the net will be duplicates and throughput will be worse.

3. THE TWO PROBLEMS

Two key problems with the engineering of TCP implementations have been observed; we
call these the small-packet problem and the source-quench problem. The second is being
addressed by several implementors; the first is generally believed (incorrectly) to be solved.
We have discovered that once the small-packet problem has been solved, the sourcequench
problem becomes much more tractable. We thus present the small-packet problem and our
solution to it first.

4. THE SMALL-PACKET PROBLEM

There is a special problem associated with small packets. When TCP is used for the
transmission of single-character messages originating at a keyboard, the typical result is
that 41 byte packets (one byte of data, 40 bytes of header) are transmitted for each byte of
useful data. This 400070 overhead is annoying but tolerable on lightly loaded networks. On
heavily loaded networks, however, the congestion resulting from this overhead can result
in lost datagrams and retransmissions, as well as excessive propagation time caused by
congestion in switching nodes and gateways. In practice, throughput may drop so low that
TCP connections are aborted.

This classic problem is well-known and was first addressed in the Tymnet network in the
late 1960s. The solution used there was to impose a limit on the count of datagrams
generated per unit time. This limit was enforced by delaying transmission of small packets
until a short (200-500ms) time had elapsed, in hope that another character or two would
become available for addition to the same packet before the timer ran out. An additional
feature to enhance user acceptability was to inhibit the time delay when a control character,
such as a carriage return, was received.

ACM SIGCOMM -4- Computer Communication Review

This technique has been used in NCP Telnet, X.25 PADs, and TCP Telnet. It has the
advantage of being well-understood, and is not too difficult to implement. Its flaw is that it
is hard to come up with a time limit that will satisfy everyone. A time limit short enough to
provide highly responsive service over a 10M bits per second Ethernet will be too short to
prevent congestion collapse over a heavily loaded net with a five second round-trip time;
and conversely, a time limit long enough to handle the heavily loaded net will produce
user frustration on the Ethernet.

5. THE SOLUTION TO THE SMALL-PACKET PROBLEM

Clearly an adaptive approach is desirable. One would expect a proposal for an adaptive
inter-packet time limit based on the round-trip delay observed by TCP. While such a
mechanism could certainly be implemented, it is unnecessary. A simple and elegant
solution has been discovered.

The solution is to inhibit the sending of new TCP segments when new outgoing data
arrives from the user if any previously transmitted data on the connection remains
unacknowledged. This inhibition is to be unconditional; no timers, tests for size of data
received, or other conditions are required. Implementation typically requires one or two
lines inside a TCP program.

At first glance, this solution seems to imply drastic changes in the behavior of TCP. This is
not so. It all works out right in the end. Let us see why this is so.

When a user process writes to a TCP connection, TCP receives some data. It may hold that
data for future sending or may send a packet immediately. If it refrains from sending now,
it will typically send the data later when an incoming packet arrives and changes the state
of the system. The state changes in one of two ways; the incoming packet acknowledges old
data the distant host has received, or announces the availability of buffer space in the
distant host for new data. (This last is referred to as "updating the window"). Each time
data arrives on a connection, TCP must reexamine its current state and perhaps send some
packets out. Thus, when we omit sending data on arrival from the user, we are simply
deferring its transmission until the next message arrives from the distant host. A message
must always arrive soon unless the connection was previously idle or communications
with the other end have been lost. In the first case, the idle connection, our scheme will
result in a packet being sent whenever the user writes to the TCP connection. Thus we do
not deadlock in the idle condition. In the second case, where the distant host has failed,
sending more data is futile anyway. Note that we have done nothing to inhibit normal TCP
retransmission logic, so lost messages are not a problem.

Examination of the behavior of this scheme under various conditions demonstrates that the
scheme does work in all cases. The first case to examine is the one we wanted to solve, that
of the character-oriented Telnet connection. Let us suppose that the user is sending TCP a

ACM SIGCOMM -5- Computer Communication Review

new character every 200ms, and that the connection is via an Ethernet with a round-trip
time including software processing of 50ms. Without any mechanism to prevent
small-packet congestion, one packet will be sent for each character, and response will be
optimal. Overhead will be 4000%, but this is acceptable on an Ethernet. The classic timer
scheme, with a limit of 2 packets per second, will cause two or three characters to be sent
per packet. Response will thus be degraded even though on a high-bandwidth Ethernet
this is unnecessary. Overhead will drop to 1500%, but on an Ethernet this is a bad tradeoff.
With our scheme, every character the user types will find TCP with an idle connection, and
the character will be sent at once, just as in the no-control case. The user will see no visible
delay. Thus, our scheme performs as well as the no-control scheme and provides better
responsiveness than the timer scheme.

The second case to examine is the same Telnet test but over a long-haul link with a 5second
round trip time. Without any mechanism to prevent small-packet congestion, 25 new
packets would be sent in 5 seconds1. Overhead here is 4000%. With the classic timer
scheme, and the same limit of 2 packets per second, there would still be 10 packets
outstanding and contributing to congestion. Round-trip time will not be improved by
sending many packets, of course; in general it will be worse since the packets will contend
for line time. Overhead now drops to 1500%. With our scheme, however, the first character
from the user would find an idle TCP connection and would be sent immediately. The next
24 characters, arriving from the user at 200ms intervals, would be held pending a message
from the distant host. When an ACK arrived for the first packet at the end of 5 seconds, a
single packet with the 24 queued characters would be sent. Our scheme thus results in an
overhead reduction to 320% with no penalty in response time. Response time will usually be
improved with our scheme because packet overhead is reduced, here by a factor of 4.7 over
the classic timer scheme. Congestion will be reduced by this factor and round-trip delay
will decrease sharply. For this case, our scheme has a striking advantage over either of the
other approaches.

We use our scheme for all TCP connections, not just Telnet connections. Let us see what
happens for a file transfer data connection using our technique. The two extreme cases will
again be considered.

As before, we first consider the Ethernet case. The user is now writing data to TCP in 512
byte blocks as fast as TCP will accept them. The user’s first write to TCP will start things
going; our first datagram will be 512+40 bytes or 552 bytes long. The user’s second write to
TCP will not cause a send but will cause the block to be buffered. Assume that the user fills
up TCP’s outgoing buffer area before the first ACK comes back. Then, when the ACK
comes in, all queued data up to the window size will be sent. From then on, the window
will be kept full, as each ACK initiates a sending cycle and queued data is sent out. Thus,
after a one round-trip time initial period when only one block is sent, our scheme settles

1. This problem is not seen in the pure ARPANET case because the IMPs will block the host when the count of packets outstanding

becomes excessive, but in the case where a pure datagram local net [such as an Ethernet) or a pure datagram gateway (such as an
ARPANET/MILNET gateway) is involved, it is possible to have large numbers of tiny packets outstanding.

ACM SIGCOMM -6- Computer Communication Review

down into a maximum-throughput condition. The delay in startup is only 50ms on the
Ethernet, so the startup transient is insignificant. All three schemes provide equivalent
performance for this case.

Finally, let us look at a file transfer over the 5-second round trip time connection. Again,
only one packet will be sent until the first ACK comes back; the window will then be filled
and kept full. Since the round-trip time is 5 seconds, only 512 bytes of data are transmitted
in the first 5 seconds. Assuming a 2K window, once the first ACK comes in, 2K of data will
be sent and a steady rate of 2K per 5 seconds will be maintained thereafter. Only for this
case is our scheme inferior to the timer scheme, and the difference is only in the startup
transient; steady-state throughput is identical. The naive scheme and the timer scheme
would both take 250 seconds to transmit a 100K byte file under the above conditions and
our scheme would take 254 seconds, a difference of 1.6%.

Thus, for all cases examined, our scheme provides at least 98% of the performance of both
other schemes, and provides a dramatic improvement in Telnet performance over paths
with long round trip times. We use our scheme in the Ford Aerospace Software
Engineering Network, and are able to run screen editors over Ethernet and talk to distant
TOPS-20 hosts with improved performance in both cases.

6. CONGESTION CONTROL WITH ICMP

Having solved the small-packet congestion problem and with it the problem of excessive
small-packet congestion within our own network, we turned our attention to the problem
of general congestion control. Since our own network is pure datagram with no node-to-
node flow control, the only mechanism available to us under the IP standard was the ICMP
Source Quench message. With careful handling, we find this adequate to prevent serious
congestion problems. We do find it necessary to be careful about the behavior of our hosts
and switching nodes regarding Source Quench messages.

7. WHEN TO SEND AN ICMP SOURCE QUENCH

The present ICMP standard2 specifies that an ICMP Source Quench message should be sent
whenever a packet is dropped, and additionally may be sent when a gateway finds itself
becoming short of resources. There is some ambiguity here but clearly it is a violation of the
standard to drop a packet without sending an ICMP message.

Our basic assumption is that packets ought not to be dropped during normal network
operation. We therefore want to throttle senders back before they overload switching nodes

2. ARPANET RFC 792 is the present standard. We are advised by the Defense Communications Agency that the description of ICMP

in MIL-STD-1777 is incomplete and will be deleted from future revision of that standard.

ACM SIGCOMM -7- Computer Communication Review

and gateways. All our switching nodes send ICMP Source Quench messages well before
buffer space is exhausted; they do not wait until it is necessary to drop a message before
sending an ICMP Source Quench. As demonstrated in our analysis of the smallpacket
problem, merely providing large amounts of buffering is not a solution. In general, our
experience is that Source Quench should be sent when about half the buffering space is
exhausted; this is not based on extensive experimentation but appears to be a reasonable
engineering decision. One could argue for an adaptive scheme that adjusted the quench
generation threshold based on recent experience; we have not found this necessary as yet.

There exist other gateway implementations-that generate Source Quenches only after more
than one packet has been discarded. We consider this approach undesirable since any
system for controlling congestion based on the discarding of packets is wasteful of
bandwidth and may be susceptible to congestion collapse under heavy load. Our
understanding is that the decision to generate Source Quenches with great reluctance stems
from a fear that acknowledge traffic will be quenched and that this will result in connection
failure. As will be shown below, appropriate handling of Source Quench in host
implementations eliminates this possibility.

8. WHAT TO DO WHEN AN ICMP SOURCE QUENCH IS RECEIVED

We inform TCP or any other protocol at that layer when ICMP receives a Source Quench.
The basic action of our TCP implementations is to reduce the amount of data outstanding
on connections to the host mentioned in the Source Quench. This control is applied by
causing the sending TCP to behave as if the distant host’s window size has been reduced.
Our first implementation was simplistic but effective; once a Source Quench has been
received our TCP behaves as if the window size is zero whenever the window isn’t empty.
This behavior continues until some number (at present 10) of ACKs have been received, at
that time TCP returns to normal operation3. David Mills of Linkabit Corporation has since
implemented a similar but more elaborate throttle on the count of outstanding packets in
his DCN systems. The additional sophistication seems to produce a modest gain in
throughput, but we have not made formal tests. Both implementations effectively prevent
congestion collapse in switching nodes.

Source Quench thus has the effect of limiting the connection to a limited number (perhaps
one) of outstanding messages. Thus, communication can continue but at a reduced rate,
that is exactly the effect desired.

This scheme has the important property that Source Quench doesn’t inhibit the sending of
acknowledges or retransmissions. Implementations of Source Quench entirely within the IP
layer are usually unsuccessful because IP lacks enough information to throttle a connection
properly. Holding back acknowledges tends to produce retransmissions and thus

3. This follows the control engineering dictum Griever bother with proportional control unless bang-bang doesn’t worked

ACM SIGCOMM -8- Computer Communication Review

unnecessary traffic. Holding back retransmissions may cause loss of a connection by a
retransmission timeout. Our scheme will keep connections alive under severe overload but
at reduced bandwidth per connection.

Other protocols at the same layer as TCP should also be responsive to Source Quench. In
each case we would suggest that new traffic should be throttled but acknowledges should
be treated normally. The only serious problem comes from the User Datagram Protocol, not
normally a major traffic generator. We have not implemented any throttling in these
protocols as yet; all are passed Source Quench messages by ICMP but ignore them.

9. SELF-DEFENSE FOR GATEWAYS

As we have shown, gateways are vulnerable to host mismanagement of congestion. Host
misbehavior by excessive traffic generation can prevent not only the host’s own traffic from
getting through, but can interfere with other unrelated traffic. The problem can be dealt
with at the host level but since one malfunctioning host can interfere with others, future
gateways should be capable of defending themselves against such behavior by obnoxious
or malicious hosts. We offer some basic self-defense techniques.

On one occasion in late 1983, a TCP bug in an ARPANET host caused the host to frantically
generate retransmissions of the same datagram as fast as the ARPANET would accept
them. The gateway that connected our net with the ARPANET was saturated and little
useful traffic could get through, since the gateway had more bandwidth to the ARPANET
than to our net. The gateway busily sent ICMP Source Quench messages but the
malfunctioning host ignored them. This continued for several hours, until the
malfunctioning host crashed. During this period, our network was effectively disconnected
from the ARPANET.

When a gateway is forced to discard a packet, the packet is selected at the discretion of the
gateway. Classic techniques for making this decision are to discard the most recently
received packet, or the packet at the end of the longest outgoing queue. We suggest that a
worthwhile practical measure is to discard the latest packet from the host that originated
the most packets currently queued within the gateway. This strategy will tend to balance
throughput amongst the hosts using the gateway. We have not yet tried this strategy, but it
seems a reasonable starting point for gateway self-protection.

Another strategy is to discard a newly arrived packet if the packet duplicates a packet
already in the queue. The computational load for this check is not a problem if hashing
techniques are used. This check will not protect against malicious hosts but will provide
some protection against TCP implementations with poor retransmission control. Gateways
between fast local networks and slower long-haul networks may find this check valuable if
the local hosts are tuned to work well with the local network.

ACM SIGCOMM -9- Computer Communication Review

Ideally the gateway should detect malfunctioning hosts and squelch them; such detection is
difficult in a pure datagram system. Failure to respond to an ICMP Source Quench
message, though, should be regarded as grounds for action by a gateway to disconnect a
host. Detecting such failure is non-trivial but is a worthwhile area for further research.

10. CONCLUSION

The congestion control problems associated with pure datagram networks are difficult, but
effective solutions exist. If IP/TCP networks are to be operated under heavy load, TCP
implementations must address several key issues in ways at least as effective as the ones
described here.

