� EMBED MSWordArt.2 \s ����SYMBOL 183 \f "Symbol"���SYMBOL 183 \f "Symbol"���SYMBOL 183 \f "Symbol"���SYMBOL 183 \f "Symbol"���SYMBOL 183 \f "Symbol"���SYMBOL 183 \f "Symbol"���SYMBOL 183 \f "Symbol"���SYMBOL 183 \f "Symbol"���SYMBOL 183 \f "Symbol"���SYMBOL 183 \f "Symbol"���SYMBOL 183 \f "Symbol"���SYMBOL 183 \f "Symbol"���SYMBOL 183 \f "Symbol"���SYMBOL 183 \f "Symbol"���SYMBOL 183 \f "Symbol"���SYMBOL 183 \f "Symbol"���SYMBOL 183 \f "Symbol"���SYMBOL 183 \f "Symbol"�

Computer�Communication�Review

a c m � INCLUDEPICTURE \\\\MSBSRV1\\ORAN$\\CCR\\SIGCOMM.EPS * MERGEFORMAT ��� s i g c o m m

Highlights �from 25 years�of the �Computer

 Communication� Review

Special Interest�Group on�Data�Communication�The�SIGCOMM�Quarterly�Publication�Volume 25�Number 1��January, 1995��� EMBED MSWordArt.2 \s ���

�Chairman:

A. Lyman Chapin�Bolt Beranek and Newman

10 Moulton Street

Cambridge, MA 02138

+1 617 873 3133

Fax: +1 617 873 3243

Lyman@bbn.com�Vice Chairman:

Prof. Raj Jain

Dept. of Computer & Information Sciences

Ohio State University

2036 Neil Avenue, Bolz 316C

Columbus, OH 43210-1227

+1 614 292 3989

Fax: +1 614 292 2911

Jain@ACM.org�Secretary-Treasurer:

Chris Edmondson-Yurkanan

University of Texas

Computer Sciences Department

Austin, TX 78712-1188

+1 512 471 9546

Fax: +1 512 471 8885

dragon@cs.utexas.edu��Editor:

David Oran

Digital Equipment Corporation

Mail Stop LJO2/G11

30 Porter Road

Littleton, MA 01460

+1 508 486 2164

Fax: +1 508 486 2568

Oran@ljo.dec.com�Information Services Director:

Greg Wetzel

AT&T Bell Laboratories�101 Crawford Corners Road

P.O. Box 3030

Holmdel, NJ 07733-3030

+1 908 949 6630

Infodir_SIGCOMM@acm.org, or�G_F_Wetzel@att.com�SIG Program Director:

Pat McCarren

ACM

1515 Broadway, 17th Floor

New York, NY 10036

+1 212 626 0611

Fax: +1 212 302 5826

mccarren@acm.org��Associate Editor:

Lixia Zhang

Xerox PARC

3333 Coyote Hill Road

Palo Alto, CA 94304

+1 415 812 4415

lixia@parc.xerox.com

�Award Committee Chairman:

David C. Wood

The MITRE Corporation�7525 Colshire Drive�McLean, VA 22102�+1 703 883 6394�Fax: +1 703 883 1279

wood@mitre.org�Executive Committee:

A. Lyman Chapin

Raj Jain

Chris Edmondson-Yurkanan

David Oran

Vinton G. Cerf�Greg Wetzel��ACM SIGCOMM Lecturers:

Raj Jain

Deepinder Sidhu�Ian Akyildiz����Advertising: ACM accepts recruitment advertising under the basic premise that the advertising employer does not discriminate on the basis of age, color, race, religion, gender, sexual preference, or national origin. ACM recognizes, however, that laws on such matters vary from country to country and contian exceptions, inconsistencies or contradictions. This is as true of the laws of the United States of America as it is of other countries. Thus ACM policy requires each advertising employer to state explicitly in the advertisement any employment restrictions that may apply with respect to age, color, race, religion, gender, sexual preference, or national origin. Observance of the legal retirement age in the employer’s country is not considered discrimination under this policy.

For advertising information, please contact Walter Andrzejewski (Advertising Manager) or Tim Bennett (Advertising Coordinator) at ACM, 1515 Broadway, New York, NY 10036 USA: +1 212 869 7440, Fax: +1 212 869 0481��COMPUTER COMMUNICATION REVIEW is a quarterly publication of the ACM Special Interest Group on Data Communication. Its scope of interest includes: data communication systems for computers; data communication technology for computers; reliability, security and integrity of data in data communica-tion systems; problems of interfacing communication systems and �computer systems; computer communication system modelling and analysis.

Items attributed to persons will ordinarily be interpreted as personal rather than organizational opinions. Technical papers appearing in Computer Communication Review are informally reviewed.�A SIGCOMM membership application can be found on the last page of this issue.����COMPUTER COMMUNICATION REVIEW

A Quarterly Publication of ACM SIGCOMM

�Volume � REF volume * MERGEFORMAT �25�, Number � REF number * MERGEFORMAT �1�	� REF month * MERGEFORMAT �January�, � REF year * MERGEFORMAT �1995�

ISSN #: 0146-4833

�Contents

� TOC \t "Frontmatter,1" �Chairman's Message	� GOTOBUTTON _Toc324511200 � PAGEREF _Toc324511200 �4��

Editor’s Message	� GOTOBUTTON _Toc324511201 � PAGEREF _Toc324511201 �5��

The SIGCOMM Newsletter	� GOTOBUTTON _Toc324511202 � PAGEREF _Toc324511202 �6��

Contents of the Computer Communication Review 1970–1994	� GOTOBUTTON _Toc324511203 � PAGEREF _Toc324511203 �9��

�

Papers

�toc \f p�Research Areas in Computer Communication; L. Kleinrock (Vol. 4, No. 3, July 1974)	� GOTOBUTTON _Toc324832909 � PAGEREF _Toc324832909 �33��

Nomadic Computing - An Opportunity; L. Kleinrock	� GOTOBUTTON _Toc324832910 � PAGEREF _Toc324832910 �36��

The ALOHA System; F.F. Kuo (Vol. 4 No. 1, January 1974)	� GOTOBUTTON _Toc324832911 � PAGEREF _Toc324832911 �41��

Selecting Sequence Numbers; R.S. Tomlinson �(Proc. ACM SIGCOMM/SIGOPS Interprocess Communications Workshop, Santa Monica, CA, March 1975)	� GOTOBUTTON _Toc324832912 � PAGEREF _Toc324832912 �45��

An Overview of the New Routing Algorithm for the ARPANET; J.M. McQuillan, I. Richter,E.C. �(Proc. Sixth Data Comm. Symposium, November 1979)	� GOTOBUTTON _Toc324832913 � PAGEREF _Toc324832913 �54��

Congestion Control in IP/TCP Internetworks; J. Nagle (Vol. 14, No. 4, October 1984)	� GOTOBUTTON _Toc324832972 � PAGEREF _Toc324832972 �61��

Improving Round-Trip Time Estimates in Reliable Transport Protocols; P. Karn, C. Partridge �(Proc. SIGCOMM ‘87, Stowe, VT, August 1987)	� GOTOBUTTON _Toc324832973 � PAGEREF _Toc324832973 �66��

Fragmentation Considered Harmful; C.A. Kent, J.C. Mogul (Proc. SIGCOMM ’87, Vol. 17, No. 5, October 1987)	� GOTOBUTTON _Toc324832974 � PAGEREF _Toc324832974 �75��

Multicast Routing in Internetworks and Extended LANs; S. Deering (Proc. SIGCOMM ‘88, Stanford, CA, August 1988)	� GOTOBUTTON _Toc324832975 � PAGEREF _Toc324832975 �88��

The Design Design Philosophy of the DARPA Internet Protocols; D.D. Clark �(Proc. SIGCOMM ‘88, Stanford, CA, August 1988)	� GOTOBUTTON _Toc324832976 � PAGEREF _Toc324832976 �102��

Development of the Domain Name System; P.V. Mockapetris, K.V. Dunlap �(Proc. SIGCOMM ‘88, CCR Vol 18., No. 4, August 1988)	� GOTOBUTTON _Toc324832977 � PAGEREF _Toc324832977 �112��

Measured Capacity of an Ethernet: Myths and Reality; D.R. Boggs, J.C. Mogul, C.A. Kent �(Proc. SIGCOMM ‘88, Stanford, CA, August 1988)	� GOTOBUTTON _Toc324832978 � PAGEREF _Toc324832978 �123��

A Binary Feedback Scheme for Congestion Avoidance in Computer Networks with a Connectionless Network Layer; �K.K. Ramakrishnan, R. Jain (Proc. SIGCOMM ‘88, Stanford, CA, August 1988)	� GOTOBUTTON _Toc324832979 � PAGEREF _Toc324832979 �138��

Congestion Avoidance and Control; V. Jacobson (Proc. SIGCOMM ‘88, Stanford, CA, August 1988)	� GOTOBUTTON _Toc324832980 � PAGEREF _Toc324832980 �157��

A Control-Theoretic Approach to Flow Control; S. Keshav �(Proc. SIGCOMM ‘91, Zürich, Switzerland, September 1991)	� GOTOBUTTON _Toc324832981 � PAGEREF _Toc324832981 �188��

On the Self-Similar Nature of Ethernet Traffic; W.E. Leland, M.S. Taqqu, W. Willinger, D.V. Wilson �(Proc. SIGCOMM ‘93, San Francisco, CA, September 1993)	� GOTOBUTTON _Toc324832982 � PAGEREF _Toc324832982 �202��

�

Features

�toc \f f�In Memory of Walt Kosinski	� GOTOBUTTON _Toc320088335 � PAGEREF _Toc320088335 �214��

Bibliography of Recent Publications in Computer Communication	� GOTOBUTTON _Toc320088336 � PAGEREF _Toc320088336 �215��

SIGCOMM Calendar of Events	� GOTOBUTTON _Toc320088337 � PAGEREF _Toc320088337 �223��

�

Calls for Papers, Conferences, Journals, and other Announcements

�toc \l \f b�SIGCOMM ‘95	� GOTOBUTTON _Toc324832691 � PAGEREF _Toc324832691 �225��

Wireless Networks Journal	� GOTOBUTTON _Toc324832755 � PAGEREF _Toc324832755 �226��

Mobile Computing & Networking 1995	� GOTOBUTTON _Toc324832756 � PAGEREF _Toc324832756 �227��

Application for ACM and SIGCOMM Membership	� GOTOBUTTON _Toc324832757 � PAGEREF _Toc324832757 �228��

��Chairman's Message

SIGCOMM and the Computer Communication Review�Celebrate their 25th Anniversary

With this special “retrospective” issue of the Computer Communication Review, we mark the 25th anniversary of the founding of SIGCOMM in 1969 and of CCR in 1970. The Special Interest Committee on Data Communication (SICCOMM) was established on November 17, 1967, by Walter Kosinski, Larry Hittell, and Joy Nance, who recognized a problem of communication that is still familiar more than 25 years later. The computer science people were off in one corner working on computers and operating systems; the telecommunications people were off in another corner working on transmission systems and signalling; and neither group was spending much time talking with the other. The founders hoped that SICCOMM would bring people from these two disciplines together to discuss the mutually significant issues of computer communication. Announcing its formation in Communications of the ACM, Kosinski said of the new SIC that “its interests range from information theory all the way to the manufacturing of data sets (modems).”

SICCOMM was converted to the Special Interest Group on Data Communication (SIGCOMM) by ACM Council on May 16, 1969. The first officers were Kosinski (chairman), David Farber (vice-chairman), and Nance (secretary). Dues were set at $4 for ACM members and $8 for non-members. Later that year the new SIG co-sponsored, with the IEEE Computer Society, the first of what would be a long and successful series of joint bi-annual Data Communications Symposia, in Pine Mountain, Georgia. Many years later, in his preface to the Proceedings of the 1986 SIGCOMM Conference, Kosinski recalled the original goal of SIGCOMM:

“When I formed SIGCOMM in 1969, it was with the intention that symposia be held to provide a technical interchange between computer and communication scientists. Following discussions with individuals in both laboratories, it was obvious that such a forum was necessary for information science to progress. I have been impressed with the many meetings and the progress that has been made through the SIGCOMM organization.”

The first newsletter was published in December 1970, and is reprinted in its entirety in this issue. The name “Computer Communication Review” debuted with the second (March 1971) issue, which contained the first technical article to be published by SIGCOMM: “The Design of Visual Displays.” Som e things, of course, were different then; the July 1969 issue of Communications of the ACM, for example, carried the following advertisement for a Datapoint terminal (remember terminals?):

“It comes packaged in a handsome totally self-contained unit, comparable in size to an executive typewriter, which blends well with today’s office environment. The female help will love the 3300’s appearance, as well as its ease of usage.”

But other things were remarkably, even eerily, the same then as now. Anyone who is impressed by the “new world” of broadband networking, and the potential for building broadband networks using the television cable plant, should go back and read the report in the March 1971 issue of CCR of the ACM ’70 Conference, which included a presentation by John Lady of the National Cable Television Association entitled “The Broadband Communications Network and the Computer: Partners in the Wired City.”

The SIGCOMM membership elected its officers for the first time in 1979, installing Bob Kahn as chairman, Alex McKenzie as vice-chairman, and Wushow Chou as secretary-treasurer. In 1983, the first SIGCOMM Symposium on Communications Architectures and Protocols was held in Austin, Texas, with Da vid Wood as general chairman and Simon Lam as chairman of the program committee. The 1984 SIGCOMM Symposium was held in Montreal. The ninth and last joint Data Communications Symposium was co-sponsored by SIGCOMM in lieu of a Symposium in 1985, but since 1986 the Symposium (which was called the “Workshop on Frontiers in Computer Communications Technology” in 1987, and since 1991 has been called the “SIGCOMM Conference”) has been an annual event, appearing in Stowe, Vermont (tw ice, in 1986 and 1987), Stanford, Austin, Philadelphia, Zürich, Baltimore, San Francisco, London, and (in 1995) Cambridge, Massachusetts.

 The first student paper awards were presented to Lixia Zhang (now an associate editor of CCR) and Brett Fleisch at the 1986 Symposium. Since then, the program committee has selected one or more papers written entirely or primarily by full-time students to receive this award each year. An annual SIGCOMM Award, for “lifetime achievement in and contribution to the field of data communications”, was created in 1989 to recognize a person whose work, over the course of his or her career, represents a significant contribution to the field and a substantial influence on the work and perceptions of others in the field. The first Award went to Paul Baran, and has in subsequent years honored David Clark, Leonard Kleinrock, Hubert Zimmerman, Sandy Fraser, Bob Kahn, and Paul Green.

SIGCOMM has enjoyed a long history of collaboration with other professional societies, stretching back to the first joint Data Communications Symposium with the IEEE Computer Society shortly after its founding in 1969. In the 1970s SIGCOMM and SIGOPS co-sponsored several conferences and workshops, including the 1975 Interprocess Communications Workshop, at which one of the papers included in this retrospective was presented. The series of Data Communications Symposia came to an end after 1985, when SIGCOMM’s own Symposium became an annual event. In 1991 we began co-sponsoring the annual Computers, Freedom and Privacy conference with SIGCAS (Computers and Society) and SIGSAC (Security, Audit and Control), and in 1993 joined SIGBIO, SIGBIT, SIGCHI, SIGGRAPH, SIGIR, and SIGOIS to launch the ACM Multimedia Conferences. The first International Conference on Mobile Computing and Networking, for which SIGCOMM has teamed with SIGACT, SIGMETRICS, SIGMOD, and SIGOPS, will be held on November 14-15, 1995, and is expected to become a regular annual addition to the ACM conference calendar. We have also joined with the IEEE Computer and Communication Societies to co-publish the IEEE/ACM Transactions on Networking, an immediately successful refereed journal that first appeared in February, 1992.

 In this retrospective issue of CCR, we have reprinted a selection of the most important papers that have appeared in the Computer Communication Review over the past 25 years. This is not so much a “best of CCR” collection as a reminder of the role that SIGCOMM, its conferences, and its news letter have played in the development of our field. As one would expect, most of the papers are from CCR issues containing the Proceedings of the SIGCOMM Symposia and Conferences; the editorial goal of CCR has always been to provide a forum for the timely publication of work in progress, which often turns up later, in a more finished form, at a SIGCOMM conference. The papers reprinted here display the remarkable range and intellectual energy of the SIGCOMM community. We are all honored by association with such a legacy.

At the end of June, SIGCOMM will welcome a full slate of new officers, and I will retire to the much less demanding position of “past chairman”. It has been a great pleasure working with the members of the SIGCOMM community, and I expect to continue to enjoy the opportunities for association and collaboration that SIGCOMM provides. Thank you all for the effort and energy you have invested in SIGCOMM!

Editor’s Message

Error in production of Vol. 24., No. 5 (October 1994)

Due to a production error, the cover and Table of Contents of the previous issue was dated 1995 instead of 1994. We apologize for this unfortunate error.

Extra added attraction!

Len Kleinrock kindly agreed to write an update of his 1974 paper “Research Areas in Computer Communication” which is the very first paper in this retrospective issue. The fascinating update, entitled “Nomadic Computing — An Opportunity”, appears immediately after the original (and thus out of chronological sequence) so you can see how far we have come in 25 years!

�The SIGCOMM Newsletter

VOLUME 1 No. 1	DECEMBER 1970

SIGCOMM Activities

This is the first SIGCOMM newsletter. Its distribution signals a period of intensive activity for the SIG that is intended to be responsive to the needs and desires of the members. I hope that as this activity progresses, this newsletter will play an important continuing role in informing members of planned events and reporting on past events. More ambitiously and in the longer run, the newsletter should evolve into a periodical containing properly refereed reports of technical contributions in computer communications and related fields as well as items of news.

ACM '70 highlighted two problem areas that fall directly within the province of SIGCOMM. The first of these is "poor terminal and I/O interfaces with people and central processors," and the second is "communication networks not keeping pace with digital data transmission needs." The thrust of activities planned for the forthcoming year will be responsive to these problem areas.

Three activities presently are planned for the next twelve-month period. The first of these will take place at the '71 SJCC. A combined business meeting and technical talk is planned for an evening meeting at that conference. The talk is entitled, "The Problem of Poor Terminal and I/O Interfaces with People and Central Processors." The speaker will be Alan Vartabedian, who was chairman of a workshop on the same subject at the SIGCOMM Pine Mountain Symposium in 1969. A brief announcement of the theme of the talk is on page 2.

The second activity is two SIGCOMM-sponsored sessions planned for the '71 National ACM Conference on digital communications for computers. While the final program for the National Conference has not been cast in concrete, a tentative but fairly definite description of these sessions is on page 3.

The last activity is the Second Symposium on Problems in the Optimization of Data Communication Systems. SIGCOMM and the Technical Committee on Computer Communication of the IEEE Computer Society are preparing to submit to their respective parent societies a proposal for a jointly sponsored symposium. The meeting will be held in October 1971 at Stanford University. Current plans are for the symposium to be contiguous with the Third Operating System Symposium at Stanford. Additional information about the symposium is included on page 3 of this newsletter.

SJCC SIGCOMM Meeting

Seven major challenges have been distilled out of the 1970 FJCC as a focus for the 1971 Spring Joint Computer Conference, Atlantic City, New Jersey, May 1971. One of these seven is "The Problem of Poor Terminal and I/O Interfaces with People and Central Processors." The following is an abstract of a talk addressing this problem. The talk will be presented at an evening session sponsored by SIGCOMM (Special Interest Group on Communications).

Despite substantial strides in the field of man-computer interaction, poor I/O interfaces between people and central processors persist. The problem concerns not only hardware - terminals, displays and keyboards �but oftentimes, more importantly, operational procedures involving the software and the environment of an information system. In many cases, improved I/O interfaces can be obtained without an economic penalty and sometimes at even an economic advantage. What is required is a concerned effort directed at this problem, primarily by the system designer, and by the operational users of the system. Resorting to "expert" advice may not be the best way to achieve the desired goal. That goal - improved human performance, happier and less fatigued users - will be well worth the effort involved.

ACM '71 Sessions

Subject to final approval by the Technical Program Committee, arrangements have been made for two SIGCOMM-sponsored sessions at ACM '71.

The first session is entitled "Economic and Regulatory Policy for Advances in Data Communications." The chairman of the panel is Bob LaBlanc, Co-Manager of Stock Research for Salomon Brothers. The other members of the committee to date are Dave Foster, the President of DATRAN and Tom Whitehead, the Director of the President's Office of Telecommunications Planning.

The second session is entitled "Digital Communications for Computer Communications." The chairman of the panel is Ed Fuchs of Bell Telephone Laboratories. The other members presently committed are Ed Berg, Executive Vice President of DATRAN, and Hank McDonald, Assistant Director of Communications Principles Research at Bell Telephone Laboratories.

Symposium on Data Communications

SIGCOMM and the Computer Society of IEEE are organizing a symposium on Problems in the Optimization of Data Communication Systems to be held at Stanford on October 20-22, 1971. The symposium is an outgrowth of the Pine Mountain, Georgia conference held last year.

The data communication symposium will include the presentation of papers, panel discussions, and workshop sessions. The theme of the conference will be "Challenges in Meeting the Burgeoning Demands for Data Communications". The purpose is to bring together people engaged in computer communication system design, analysis, and research. The setting will be one where each participant can engage in a dialogue on problems of interest to him with his colleagues in the computer/ communications professional community.

The symposium program will include the following subjects:

- Advances in Data Communications Networks

¥ Line Switched

¥ Buffered or Message Switched

¥ Loop Switched

- Advances in the Uses of Data Communication Systems

¥ New Applications

¥ New Application Systems

¥ Meeting the Needs of Data Communication Users

- Optimization of On-Line Computer Systems and Communication Networks

¥ Methods

¥ Models

¥ Results

- Legal and Regulatory Considerations

¥ Effects as Seen by Users of Proposed Entry of New Carriers (Point-to-Point and Network)

¥ Effects as Seen by Users of Proposed New Carrier Services

¥ Ramification of the Regulatory Process on the Above

- Software Organization and Standards for Data Communications

¥ Line and Trunk Control

¥ Interfaces

¥ Message Buffering and Transmission

¥ Code Conversion for Multicomputer Networks

- Computer Communications Technology

¥ Preprocessors

¥ Network Processors at Switching Nodes

¥ Multiplexers and Concentrators

¥ Error Control

- Terminal and I/O Interfaces with People

Peter Jackson is chairman of the proposed symposium. If you would like to have a panel discussion or a workshop session on a particular topic, send him your ideas. If you would like to present a paper, describe its subject and content in a letter.

As there is considerable commonality in the interests of the members of SIGCOMM and SIGOPS, the symposium is being scheduled back-to-back with the symposium on operating systems which is scheduled at Stanford during the first half of the week.

Dr. P. E. Jackson

Room 2B-434

Bell Telephone Laboratories

Holmdel, New Jersey 07733

Telephone (201) 949-2231

��INCLUDETEXT \\\\msbsrv1\\oran$\\ccr\\jan95\\contents.doc * MERGEFORMAT �Contents of the Computer Communication Review�1970–1994

�1970–71

Volume 1, Number 1 (December 1970)

•	The first SIGCOMM Newsletter is republished in its entirety in this issue of CCR.

Volume 1, Number 2 (March 1971)

•	The Design of Visual Displays; Allen G. Vartabedian

•	Summation of Important Communication Issues from ACM70

Volume 1, Number 3 (June 1971)

•	International Conference on Computer Communication (ICCC)—Preview

Volume 1, Number 4

•	This issue was never published.

1972

Volume 2, Number 1 (January 1972)

•	Second Symposium on Data Communications—Preview

Volume 2, Number 2

•	This issue was never published.

Volume 2, Number 3

•	This issue was never published.

Volume 2, Number 4

•	This issue was never published.

1973

Volume 3, Numbers 1–4 (October 1973)

•	Third Data Communications Symposium—Preview

1974

Volume 4, Number 1 (January 1974)

•	Problems in the Design of Remote Terminal Computing Networks; R. W. Wilkov

•	The ALOHA System; F. F. Kuo

Volume 4, Number 2 (April 1974)

•	Problems in the Design of Data Communications Networks; W. Chou

Volume 4, Number 3 (July 1974)

•	Research Areas in Computer Communication; L. Kleinrock

•	Highlights of the Third Data Communications Symposium; R. Pickholtz and T. Pyke

Volume 4, Number 4 (October 1974)

•	Loop Transmission Systems for Data; A. G. Fraser

1975

Volume 5, Number 1 (January 1975)

•	Basic Elements of a Network Data Link Control Procedure (NDLC); L. Pouzin

•	Steady State Analysis of a Slotted and Controlled Aloha System with Blocking; B. Metcalfe

•	Political and Economic Issues for Internetwork Connections; F. Kuo

•	Security Problems in Computer Communications Systems; R. Turn

Volume 5, Number 2 (April 1975)

•	Problems in the Design of Control Procedures for Computer Networks; H. Opderbeck

•	The CCITT Studies Packet Switching as Part of Public Data Network Development; H. Bothner-By

•	The Work of IFIP Working Group 6.1; A. Curran and V. Cerf

•	ALOHA Packet System with and without Slots and Capture; L. Roberts

Volume 5, Number 3 (July 1975)

•	The Experimental Packet Switched Service; C. F. Broomfield

•	A European Informatics Network; D. L. A. Barber

Volume 5, Number 4 (October 1975)

•	A Structural Simulation Model for Computer Networks; G. Michael Schneider and William R. Franta

•	Some Linguistical Problems about Colloquies; Fabio A. Schreiber

•	Telenet Inaugurates Service; Stuart L. Mathison

•	Activities in Public Packet Switched Communications

•	U.S. Government Communications Network Activities

1976

Volume 6, Number 1 (January 1976)

•	Highlights of the Fourth Data Communication Symposium; Wesley Chu and Fred Glaves

•	Computer Communications: Network Devices and Functions; W. Chou and P. McGregor

•	Error Control for Data Communication; Andrew J. Viterbi

•	A Network Combining Packet Switching and Circuit Switching in a Common System; Joe de Smet and Ray W. Sanders

•	Proposal for an International End-to-End Protocol; V. Cerf, A. McKenzie, R. Scantlebury, and H. Zimmermann

Volume 6, Number 2 (April 1976)

•	The Codex 6000 Series of Intelligent Network Processors; G. David Forney and James E. Vander Mey

•	Current Research in Computer Networks; Colin Whitby-Strevens

Volume 6, Number 3 (July 1976)

•	Computer Networks in Japan; Yoskimi Teshigawara

•	The Case for a Revision of X.25; Louis Pouzin

Volume 6, Number 4 (October 1976)

•	Virtual Terminal Definition and Protocol; P. Schicker and A. Duenki

•	Strategies for Implementation of Multi-Host Computer Networks; J. M. McQuillan

1977

Volume 7, Number 1 (January 1977)

•	Notes on the Meeting of IFIP WG6.1

•	A Restructuring of X.25 into HDLC; Louis Pouzin

•	Source Routing in Computer Networks; Carl A. Sunshine

Volume 7, Number 2 (April 1977)

•	A Formalised Technique for Expressing Message Generators; A. J. Payne

•	Augmented ASCII Standard—Comments Solicited

•	Graph Theory Applied to Optimal Connectivity in Computer Networks; J. M. McQuillan

Volume 7, Number 3 (July 1977)

•	The Role and Nature of a Virtual Terminal; D. L. A. Barber

•	Proposal for a Scroll Mode Virtual Terminal

•	Symmetry and Attention Handling: Comments on a Virtual Terminal; A. Dunki and P. Schicker

•	A Virtual Terminal Protocol Based on the Use of Zones; D. L. A. Barber

•	An RJE Protocol for a Resource Sharing Network; John Day and Gary R. Grossman

•	The Current Status of Data Communications in Japan

Volume 7, Number 4 (October 1977)

•	SDLC and BSC on Satellite Links: A Performance Comparison; K. C. Traynham and R. F. Steen

•	X.25 Link Access Procedure; Bernard Cosell, Alan Nemeth, and David Walden

•	A Problem with the X.25 Link Access Procedure; Jack Gostl

•	Some Problems with the X.25 Packet Level Protocols; Dag Belsnes and Ejvind Lynning

•	Notes on the X.25 Procedures for Virtual Call Establishment and Clearing; Gregor V. Bochmann

•	USA Position on Datagram Service

1978

Volume 8, Number 1 (January 1978)

•	A Note on Network Symmetry and Call Collision; Anthony Lauck

•	The Implementation of RPCNET on a Minicomputer; Allen Springer, Livio Lazzeri, and Luniano Lenzini

•	Progress Report on the Automatic and Proven Protocol Verifiers; Jan Hajek

•	Results of the ANSI X3S3.7 Survey on Datagram-Interface Standard

•	ISO Position on Datagram Service

Volume 8, Number 2 (April 1978)

•	Interface Communication Processor for Public Packet Switching Networks; Kinji Ono, Yoshitori Urano, Kenji Suzuki, Hiroshi Matsunaga, Yuzo Tanaka, and Shunichi Sakurai

•	Issues Concerning the Frame Mode DTE/DCE (FDTE/DCE) Interface

•	Conference Review: Computer Network Protocols Symposium

Volume 8, Number 3 (July 1978)

•	An Overall Network Architecture Suitable for Implementation with either Datagram or Virtual Circuits Facilities; Yutaka Matsushita, Mikio Sakuma, Hideki Nishigaki, Nobuyoshi Miyazaki, and Isamu Yoshida

•	X.25 Asymmetries and How to Avoid Them; Colin Bradbury

•	Survey of Protocol Definition and Verification Techniques; Carl A. Sunshine

•	Provisional Model of Open-Systems Architecture; ISO/TC 97/SC 16 N34

Volume 8, Number 4 (October 1978)

•	A Simulated Data Communication Network; A. Gaspar and P. Lamm

•	A Survey of End-to-End Retransmission Techniques; S. W. Edge and A. J. Hinchley

•	Telecommunications and Information Agency

•	AT&T’s Advanced Communications Service

1979

Volume 9, Number 1 (January 1979)

•	Measurement of Interactive Response Time (from US Federal Information Processing Standard 5)

•	Further Refinements to the Proposed Datagram Interface [for X.25]; ANSI X3S3.7

•	Protocols Verified by APPROVER; J. Hajek

•	Report on NATO Advanced Study Institute

Volume 9, Number 2 (April 1979)

•	A Bibliography of Local Computer Network Architectures; K. J. Thurber and A. Freeman

•	Message Link Protocol (MLP); Gregor von Bochmann and F. H. Vogt

•	A Table-Driven Approach to Cyclic Redundancy Check Calculations; R. Hill

•	International Symposium on Flow Control in Computer Networks

Volume 9, Number 3 (July 1979)

•	A File Transfer Protocol and Implementation; B. Butscher and W. Heinze

•	Protocols for Intelligent Terminals; D. L. A. Barber

•	A Critical Study of Different Flow Control Methods in Computer Networks; CORNAFION Group

•	Implications of Recommendation X.75 and Proposed Improvements for Public Data Networks; IFIP WG6.1

Volume 9, Number 4 (October 1979)

•	Digital Voice Communication Over Digital Radio Links; D. Minoli

•	A Bibliography on the Formal Specification and Verification of Computer Network Protocols; J. Day and C. Sunshine

•	Remarks on Negotiation Mechanism and Attention Handling; E. Bauwens and F. Magnee

1980

Volume 10, Numbers 1 & 2 (January/April 1980)

•	Transborder Data Flow Issues

•	Virtual Terminal Protocols Transport Service and Session Control; T. Jacobsen, P. Hogh, and I. M. T. Hansen

•	Flow Control for Real Time Communications; D. Cohen

•	CCITT Recommendation X.25 as Part of the Reference Model of Open Systems Interconnection; T. Jacobsen and P. Thisted

•	Draft Revised CCITT Recommendation X.25

Volume 10, Number 3 (July 1980)

•	Updated Bibliography on Local Computer Networks; H. A. Freeman and K. J. Thurber

•	Performance in Contention Bus Local Network Interconnection; W. B. Watson

•	Comments on “Digital Voice Communication over Digital Radio Links”; P. Spilling, N. Shacham, and E. Craighill

Volume 10, Number 4 (October 1980)

•	USPS to Implement E-Com Service

•	Telecommunications Act Rewrite Hits Snag

•	IFIP Working Group 6.1 Report

•	Clarification of Net/One Performance; J. S. Kennedy

•	Protocols for Interconnected Packet Networks; V. G. Cerf

•	DoD Standard Internet Protocol

•	DoD Standard Transmission Control Protocol

1981

Volume 11, Number 1 (January 1981)

•	The OECD Adopts Privacy Guidelines

•	FCC Makes Significant Changes in Computer Inquiry II

•	Notice of Inquiry into Digital Communications Protocols; Federal Communications Commission

•	The Effect of Satellite Lines on the ARPANET Protocols; G. Williams

•	A Communication Concept for Protocol Models; W. L. Bauerfeld

•	Automatic Implementation of Communication Protocols; T. Ideguchi, T. Mizuno, and H. Matsunga

Volume 11, Number 2 (April 1981)

•	Clarifications on “Performance in Contention Bus Local Network Interconnection”; W. B. Watson

•	Overview and Status of the ISO Reference Model of Open System Interconnection; R. desJardins

•	Open System Interconnection—Basic Reference Model (ISO Draft Proposal 7498); ISO TC97/SC16

Volume 11, Number 3 (July 1981)

•	Information Institute Proposed by Rep. Brown

•	Protocol Workshop Report; C. Sunshine

•	Clarification of TCP End of Letter; J. Postel

•	Vulnerabilities of Network Control Protocols: An Example; E. C. Rosen

•	An Introduction to the Ethernet Specification; J. F. Shoch

•	The Ethernet: Data Link Layer and Physical Layer Specifications

Volume 11, Number 4 (October 1981)

Seventh Data Communications Symposium

•	Description of a Planned Federal Information Processing Standard for Transport Protocol; J. F. Heafner and R. P. Blanc

•	Formal Specification and Verification of a Connection Establishment Protocol; D. Schwabe

•	Design Issues of Protocols for Computer Mail; J. J. Garcia�Luna�Aceves and F. F. Kuo

•	Digital Signature Schemes for Computer Communication Networks; H. Meijer and S. Akl

•	SNATCH Opens Manufacturers’ Networks Through Gateways; D. Einert and G. Glas

•	Insights Into the Implementation and Application of Heterogeneous Local Area Networks; W. P. Lidinsky

•	The Great Debate Over Telematics and Employment; E. Rivera and L. Briceno

•	Some Cryptographic Principles of Authentication in Electronic Funds Transfer Systems; C. H. Meyer and S. M. Matyas

•	A Heuristic Method for Optimizing an Intercity Data Transmission Network; R. A. Pazos

•	Modeling and Analysis of Flow Controlled Packet Switching Networks; S. S. Lam and Y. L. Lien

•	A Study of Protocol Analysis for Packet Switched Network; K. Tsukamoto, T. Itoh, M. Nomura, and Y. Tanaka

•	A Versatile Queueing Model for Data Switching; R. V. Laue

•	An Analysis of Link Level Protocols for Error Prone Links; L. J. Miller

•	Demand Assigned Multiple Access Systems Using Collision Type Request Channels: Priority Messages; G. L. Choudhury and S. S. Rappaport

•	Bidirectional Token Flow System; M. E. Ulug, G. M. White, and W. L. Adams

•	A Theoretical Performance Analysis of Polling and Carrier Sense Collision Detection Communication Systems; E. Arthurs and B. W. Stuck

•	A Virtual Circuit Switch as the Basis for Distributed Systems; G. W. R. Luderer, H. Che, and W. T. Marshall

•	TORNET: A Local Area Network; Z. G. Vranesic, V. C. Hamacher, W. M. Loucks, and S. G. Zaky

•	The Cost of Data Replication; H. Garcia Molina and D. Barbara

•	Local Area Networks for the Automated Office—A Survey; A. R. Braun

•	Isolated Word Recognition Based Upon Source Coding Techniques; A. Buzo, H. Martinez, C. Rivera, and A. Jazeilevich

•	Incorporation of Service Classes into a Network Architecture; R. Perlman

•	Why a Ring?; J. H. Saltzer and D. D. Clark

•	Optimal Loop Topologies for Distributed Systems; C. S. Raghavendra and M. Gerla

•	An Overview of BLN: A Bell Laboratories Computing Network; K. E. Coates, D. L. Dvorak, and R. M. Watts

•	X.75 Internetworking of Datapac and Telenet; M. S. Unsoy and T. Shanahan

•	48�bit Absolute Internet and Ethernet Host Numbers; Y. K. Dalal and R. S. Printis

•	Impact of Satellite Technology on Transport Flow Control; R. L. Tenney, G. Falk, and D. H. Hunt

•	An Experiment on High Speed File Transfer Using Satellite Links; C. Huitema and I. Valet

•	HDLC Reliability and the FRBS Method to Improve it; J. Selga and J. Rivera

•	Isolated Word Recognition Based upon Source Coding Techniques; A. Buzo, H. Martinez, C. Rivera, and A. Jazeilevich

1982

Volume 12, Number 1 (January 1982)

•	ACM Standards Committee Seeks Comment on Pending Standards

•	NBS Proposes Electronic Mail Standard

•	Networks and Flow Control; C. Retnadhas

•	A Routing Scheme for Integrated Networks; Chris Sheedy

•	Rules for Synthesizing Correct Communication Protocols; Deepinder Sidhu

Volume 12, Number 2 (April 1982)

•	Comment on “CCITT Recommendation X.25 as Part of the ISO Reference Model of Open Systems Interconnection”; David Grothe

•	FIPNET: A 10 MBPS Fiber Optics Local Network; William F. Giozza and Gerard Noguez

•	Connectionless Data Transmission; A. Lyman Chapin

•	A Note on X.25 Subsetting Possibilities; Alastair Grant and David Hutchison

Volume 12, Numbers 3 & 4 (July/October 1982)

•	Rebuttal to Comments on “CCITT Recommendation X.25 as Part of the ISO Reference Model of Open Systems Interconnection”; T. Jacobsen and P. Thisted

•	The Transport Layer; Keith G. Knightston

•	Information Processing Systems—Open Systems Interconnection—Transport Protocol Specification; ISO/TC97/SC16/WG6

•	The Integrated Services Digital Network: Developments and Regulatory Issues; A. M. Rutkowski and M. J. Marcus

•	Local Area Networks: Bus and Ring vs. Coincident Star; D. C. Lindsay

•	Dragnet—A Local Network with Protection; D. D. Hill

1983

Volume 13, Number 1 (January 1983)

•	Connecting a Minicomputer to an X.25 Network: A Case Study; A. Ciepielewski, T. Jungefeldt, and J. Linnell

•	A Collision Resolution Algorithm for Random-Access Channels with Echo; F. Borgonovo and L. Fratta

Volume 13, Number 2 (March 1983)

SIGCOMM ’83 Symposium

•	Putting Protocols to Work; Vinton Cerf, Louis Pouzin, and John Shoch

•	ISO Open Systems Interconnection Standardization Status Report; Richard desJardins

•	Development of the DoD Protocol Reference Model; Gregory Ennis

•	Evolution of Xerox’s Network Systems Architecture; Lawrence Garlick

•	Higher�Level Protocols Are Not Necessarily End�to�End; Gregor V. Bochmann

•	Analysis of Routing Table Update Activity After Resource Failure in a Distributed Computer Network; Marjory J. Johnson

•	Path Assignment for Virtual Circuit Routing; Eli M. Gafni and Dimitri P. Bertsekas

•	Optimal Routing in Closed Queueing Networks; Hiroshi Kobayashi and Mario Gerla

•	Mechanical Verification of a Data Transport Protocol; Benedetto L. Di Vito

•	Specification and Verification of an HDLC Protocol with ARM Connection Management and Full�Duplex Data Transfer; A. Udaya Shankar and Simon S. Lam

•	Reachability Analysis of Protocols with FIFO Channels; Son T. Vuong and Donald D. Cowan

•	X.25 Implementation: The Untold Story; Karen L. Cohen and Roger P. Levy

•	A Layered Architecture for a Programmable Shared Data Network; Richard Liu

•	Maximal Progress State Exploration; Mohamed Gouda and Y. T. Yu

•	A Methodology for Verifying Request Processing Protocols; Christos N. Nikolaou, Edmund M. Clarke, Jr., Nissim Francez, and Stephen A. Schuman

•	Proving Safety Properties for a General Communication Protocol; Marty Ossefort

•	Staged Circuit Switching for Network Computers; Mauricio Arango, Hussein Badr, Arthur J. Bernstein, and David Gelernter

•	A Distributed Routing Scheme with Mobility Handling in Stationless Multi�hop Packet Radio Networks; Abdelfettah Belghith and Leonard Kleinrock

•	Mechanisms that Enforce Bounds on Packet Lifetimes; Tansing Sloan

•	Description, Simulation and Implementation of Communication Protocols using PDIL; P. Ansart, V. Chari, M. Neyer, O. Rafiq, and D. Simon

•	Synchronization Issues in Protocol Testing; Behcet Sarikaya and Gregor V. Bochmann

•	Relationship between Performance Parameters for Transport and Network Services; K. S. Raghunathan, J. A. Barchanski, and G. V. Bochmann

•	History and Overview of CSNET; Peter J. Denning, Anthony Hearn, and C. William Kern

•	Architecture of the CSNET Name Server; L. Landweber, M. Litzkow, D. Neuhengen, and M. Solomon

•	CSNET Protocol Software: The IP�to�X.25 Interface; Douglas Comer and John T. Korb

•	Dynamic Route Selection Algorithms for Session Based Communication Networks; Kiyoshi Maruyama and David Shorter

•	Simulation Studies of the Behavior of Multihop Broadcast Networks; M. Y. Elsanadidi and Wesley W. Chu

•	Packet�Voice Communication on an Ethernet Local Computer Network: An Experimental Study; Timothy A. Gonsalves

•	Distributed Co�operating Processes and Transactions; Lui Sha, E. Douglas Jensen, Richard F. Rashid, and J. Duane Northcutt

•	Interprocess Communication System of the MT35 Digital Exchange; G. J. Battarel and H. F. Savary

•	An Interprocess Communication Model for a Distributed Software Testbed; Hideyuki Tokuda and Eric G. Manning

•	Asynchronous Multipak Access Tree Algorithms; Mart L. Molle

•	An Improved Access Protocol for Data Communication Bus Networks with Control Wire; Luigi Fratta

•	Acknowledging DSMA with Priority Scheduling for Local Area Networks; Maneesh Mehta and Jon W. Mark

•	A Gateway for Linking Local Area Networks and X.25 Networks; A. Grant, D. Hutchison, and W. D. Shepherd

•	Portable Implementation of Network Architecture Layers; Warwick S. Ford

•	X.25 Interface to MARKLINK Terminal; K. V. S. Rao

•	A Distributed Approach to the Interconnection of Heterogeneous Computer Networks; R. Braden, R. Cole, P. Higginson, and P. Lloyd

•	A Bang�Bang Principle for Real�Time Transport Protocols; Yechiam Yemini

•	Lookahead Network Priority Protocols; S. I. Marcus and G. J. Lipovski

•	Character Delays in Simple X.3 PAD Devices; Michael K. Molloy

Volume 13, Number 3 (July 1983)

•	Eighth Datacomm Advance Program Summary

•	Proposal for a Connection-Oriented Internetwork Protocol; R. Callon

•	Bus, Ring, Star, and Tree Local Area Networks; P. Boulton and S. Lee

•	Selection of a Local Area Network for the Cronus Distributed Operating System; K. Pogran

Volume 13, Number 4 (October 1983)

Eighth Data Communications Symposium

•	Internetworking between VAX and Apollo Ring Network; N. N. Y. Chu

•	Local Networking and Internetworking in the V-System; D. R. Cheriton

•	Architecture and Protocols of STELLA: A European Experiment on Satellite Interconnection of Local Area Networks; N. Celandroni, E. Ferro, L. Lenzini, B. M. Segal, and K. S. Olofsson

•	Interconnection of Broadband Local Area Networks; C. Sunshine, D. Kaufman, G. Ennis, and K. Biba

•	Office Information and Telecommunications; R. Shurig

•	Beyond Videotex: The Library of Congress Pilot Project in Page Image Retrieval and Transmission Digital Optical Disk; W. Nugent and J. Harding

•	Real-Time Packet Video over Satellite Channels; D. Cohen

•	Identification in Computer Networks; Z.-S. Su

•	Implementing the ISO-OSI Reference Model; R. Popescu-Zeletin

•	Exception Handling in Communication Protocols; M. S. Atkins

•	Controlling Window Protocols for Time-Constrained Communication in a Multiple Access Environment; J. F. Kurose, M. Schwartz, and Y. Yemini

•	Incorporation of Multiaccess Links into a Routing Protocol; R. Perlman

•	Theoretical Performance Analysis of Sliding Window Link Level Flow Control for a Local Area Network; E. Arthurs, G. L. Chesson, and B. W. Stuck

•	A Message Handling System for Public Networks; T. Nakayama, Y. Shimazu, and K. Haruta

•	NOVANET/Communications Network for a Control System; J. R. Hill, J. R. Severyn, and P. J. VanArsdall

•	Access and Communications Controls in an Accounting Information System; A. Rushinek and S. F. Rushinek

•	Commercial Network Security—Does Anyone Care?; E. L. Burke

•	Network Security Considerations in BLN; J. Yao

•	A Methodology for the Design of Reliable Communication Networks in Distributed Processing Systems; H. Besharatian

•	Verification of a Methodology for Designing Reliable Communication Protocols; H.-A. Lin, M. T. Liu, and C. J. Graff

•	Analysis of Reliable Multicast Algorithms for Local Networks; P. V. Mockapetris

•	Analysis of Reliable Broadcast in Local-Area Networks; J. W. Wong and G. Gopal

•	A Decomposition Method for the Analysis and Design of Finite State Protocols; T. Y. Choi and R. E. Miller

•	Dynamic Selection of a Performance-Effective Transmission Sequence for Token-Passing Networks with Mobile Nodes; Y. I. Gold and S. Moran

•	Graceful Preemption for Multi-Link Layer Protocols; M. W. Beckner and T. J. J. Starr

•	Multimedia Computer Mail—Technical Issues and Future Standards; F. F. Kuo, J. J. Garcia-Luna-Aceves, D. P. Deutsch, H. C. Forsdick, N. Naffah, A. Poggio, J. B. Postel, and J. E. White

•	Establishment Communication Systems: LANs or PABXs—Which is Better?; K. Kümmerle

•	A Function Oriented Corporate Network; P. S.-C. Wang and S. R. Kimbleton

•	Filing and Printing Services on a Local-Area Network; P. Janson, L. Svobdova, and E. Maehle

•	Resource Management in a Distributed System; M. Yudkin

•	Interfaces between Protocol Layers on a Multiprocessor System; W. A. Colon-Castro and D. A. Kirkman

•	Prioritizing Packet Transmission in Local Multiaccess Networks; L. M. Ni and X. Li

•	Performance Potential of Communications Interface Processors; C. M. Woodside

Volume 13, Number 5 (January 1984)

•	This issue was published along with Volume 14, Number 1.

1984

Volume 14, Number 1 (April 1984)

•	Modeling Delay in Selective Retransmission Protocol by a FIFO Queue; V. Kumar

•	The ISO Internetwork Protocol Standard; D. Piscitello

•	Information Processing Systems—Data Communications—Protocol for Providing the Connectionless Network Service; ISO/TC 97/SC6

•	Design of an Authentication Service; A. Chung and R. Sherman

•	An Extensive Bibliography on Computer Networks; A. Ananda and B. Srinivasan

Volume 14, Number 2 (June 1984)

SIGCOMM ’84 Symposium

•	The Architecture of the UNIVERSE Network; I. M. Leslie and R. M. Needham

•	Managed File Distribution on the UNIVERSE Network; C. S. Cooper

•	The Satellite Transmission Protocol of the UNIVERSE Network; A. G. Waters and C. J. Adams

•	Serial Link Protocol Design: A Critique of the X.25 Standard, Level 2; J. G. Fletcher

•	A Methodology for Protocol Design and Specification based on an Extended State Transition Model; R. S. Y. Chung

•	An Exercise in Constructing Multi-phase Communication Protocols; C. H. Chow, M. G. Gouda, and S. S. Lam

•	The Use of Broadcast Techniques on the UNIVERSE Network; A. G. Waters, C. J. Adams, I. M. Leslie, and R. M. Needham

•	Datagram Routing for Internet Multicasting; L. Aguilar

•	One-to-many Interprocess Communication in the V-system; D. R. Cheriton and W. Zwaenepoel

•	Petri Nets are Good for Protocols; J. P. Courtiat, J. M. Ayache, and B. Algayres

•	Formal Specification and Validation of ISO Transport Protocol Components using Petri Nets; W. Jürgensen and S. T. Vuong

•	Automated Verification of Connection Management of NBS Class 4 Transport Protocol; D. P. Sidhu and T. P. Blumer

•	Interactive Verification of Communication Software on the Basis of CIL; H. Krumm and O. Drobnik

•	A Method of Automatic Proof for the Specification and Verification of Protocols; A. R. Cavalli

•	A Temporal Ordering Specification of Some Session Services; V. Carchiolo, A. Faro, and G. Scollo

•	Network Factors Affecting the Performance of Distributed Applications; K. A. Lantz, W. I. Nowicki, and M. M. Theimer

•	Interfacing to the 10 Mbps Ethernet: Observations and Conclusions; J. Nabielsky

•	A Performance Model for Hardware/Software Issues in Computer-Aided Design of Protocol Systems; C. M. Woodside, R. Montealegre, and R. J. A. Buhr

•	Automatic Update of Replicated Topology Data Bases; J. M. Jaffe and A. Segall

•	Automated Testing of Protocol Specifications and their Implementations; H. Ural and R. L. Probert

•	Some Operational Tools in an OSI Study Environment; J. P. Ansart, R. Castanet, P. Guitton, and O. Rafiq

•	Analysis of Channel Access Schemes for High Speed LANs; N. N. Pederson and R. Sharp

•	Performance Analysis of an Access Method Suitable for the Integration of Voice and Data; J. P. Behr and U. Killet

•	Twentenet: A LAN with Message Priorities; Design and Performance; I. G. Niemegreers and C. A. Vissers

•	Some Critical Considerations on the ISO/OSI RM from a Network Implementation Point of View; R. Popescu-Zeletin

•	A Minimal Duplex Connection Capability in the Top Three Layers of the OSI Reference Model; M. F. Dolan

•	Communication Primitives Supporting the Execution of Atomic Actions at Remote Sites; K. Rothermel

•	The Derivation of Performance Expressions for Communication Protocols from Timed Petri Net Models; R. R. Razouk

•	An Analysis of Naming Conventions for Distributed Computer Systems; D. B. Terry

•	Analytic Solution of an Integrated Performance Model of a Computer Communication Network with Window Flow Control; A. Thomasian and P. Bay

•	On the Performance of Slotted ALOHA in a Spread Spectrum Environment; P. Economopoulos and M. L. Molle

•	A Class of Tree Algorithms with Variable Message Length; D. P. Gerakoulis, T. N. Saadawi, and D. L. Schilling

•	A Simple Algorithm for Setting an Optimal Timeout for End-to-End Retransmission Across a Packet Switching Network; S. W. Edge

•	Protocol Testing Methodology Development at NBS; R. P. Blanc

•	Some Issues in Protocol Implementation Testing; E. Cerny

•	Physically Dispersing an Operating System; E. D. Jensen

•	Multiprocessors and Computer Networks; M. Solomon

Volume 14, Number 3 (July 1984)

•	Computer Communications Standards; A. Lyman Chapin

Volume 14, Number 4 (October 1984)

•	Encoding CCITT X.409 Presentation Transfer Syntax; A. Pope

•	Congestion Control in IP/TCP Internetworks; J. Nagle

•	The ISO Connectionless Transport Standards; S. Stein

•	ISO DP 8072—Addendum to the Transport Service Definition Covering Connectionless Mode Transmission

•	ISO DP 8602—Connectionless Transport Protocol

1985

Volume 15, Number 1 (January 1985)

•	Announcement of Revision to ADCCP X3.66-1979

•	Verification of Flow Control Protocols; K. Hansen

•	Performance Comparison of Quasi Static Routing Algorithms for Packet-Switched Computer Networks; N. M. A. Ayad, F. A. Mohammed, M. A. Madkour, and M. S. Metwally

Volume 15, Number 2 (April/May 1985)

•	Comments on “Congestion Control in TCP/IP Internetworks”; D. Grossman

•	Executive Summary of the NRC Report on Transport Protocols for Department of Defense Data Networks

•	MAP Application Layer Interface and Application Layer Management Structure, Part I: Management Structure; K. Fong and P. Amaranth

•	An Annotated Bibliography on Computer-Communications Protocols; W. Stallings

Volume 15, Number 3 (July/August 1985)

•	Comments on “Congestion Control in IP/TCP Internetworks”; P. J. Santos, Jr.

•	On Naming Considerations for Networks; M. S. Madan

•	MAP Application Layer Interface and Application Layer Management Structure, Part II: Application Program View; K. Fong and P. Amaranth

•	Bifurcated Routing in Computer Networks; Wai Sum Lai

•	Standards for the Evolving ISDN—Progress and Challenges: A Road Map; Bryan S. Whittle

Volume 15, Number 4 (September 1985)

Ninth Data Communications Symposium

•	Development of a TCP/IP for the IBM/370; R. K. Brandriff, C. A. Lynch, and M. H. Needleman

•	Performance Improvements for ISO Transport; R. Colella, R. Aronoff, and K. Mills

•	An Internodal Protocol for Packet Switched Data Networks; D. Drynan and D. Baker

•	Protocols for Large Data Transfers over Local Networks; W. Zwaenepoel

•	A New Technique for Generating Protocol Tests; K. Sabnani and A. Dahbura

•	An Algorithm for Distributed Computation of a Spanning Tree in an Extended LAN; R. Perlman

•	Modeling Physical Layer Protocols using Communicating Finite State Machines; M. G. Gouda and K.-S. The

•	A Grammar-Based Methodology for Protocol Specification and Implementation; D. P. Anderson and L. H. Landweber

•	Domain Names: Hierarchy in Need of Organization; D. E. Comer

•	Domain Names: More Questions Than Answers; L. L. Peterson

•	Datapac; A. Dobson

•	Line Operations Network Growth Issues; G. D. White

•	Technology for Managing Large Packet Switching Networks; D. Jeannes

•	Operations Considerations in a Large Private Packet Switching Network; R. Stubbs II, L. D. Swymer, and T. L. Quinn

•	Solving Growth Problems in a Rapidly Expanding PDN; S. C. Poppe

•	Window Selection in Flow Controlled Networks; M. Gerla and H. W. Chan

•	Strategies for Optimal Capacity Allocations in DAMA Satellite Communication Systems; K. Wong and N. D. Georganas

•	Integrating Satellite Links into a Land-Based Packet Network; M. Chu, D. Drynan, and L. R. Benning

•	An Integrated Test Center for SL-10 Packet Networks; M. W. A. Hornbeek

•	A New Method for Topological Design in Large, Traffic-Laden Packet Switched Networks; K.-J. Chen, J. F. Stach, and T.-H. Wu

•	Design of an Integrated Services Packet Network; J. S. Turner

•	Mixing Traffic in a Buffered Banyan Network; L. T. Wu

•	A Resilient Communication Structure for Local Area Networks; A. El Abbadi and T. Räuchle

•	ALPHA Transport; B. Enshayan

•	Issues in Using DARPA Domain Names for Computer Mail; D. E. Comer and L. L. Peterson

•	A Path-Oriented Routing Strategy for Packet Switching Networks with End-to-End Protocols; R. Aubin and P. Ng

•	Host Groups: A Multicast Extension for Datagram Internetworks; D. R. Cheriton and S. E. Deering

•	An Approach for Interconnecting SNA and XNS Networks; K. O. Zoline and W. P. Lidinsky

•	CNMGRAF—Graphic Presentation Services for Network Management; R. S. Gilbert and W. B. Kleinöder

•	ISDN Architecture: A Basis for New Services; D. J. Eigen

Volume 15, Number 5 (October/November 1985)

•	Comments on “Comments on ‘Congestion Control in TCP/IP Internetworks’ ”; M. Rose

•	An Architecture for Routing in the ISO Connectionless Internet; S. Zakon

•	A Model of Message Flow Control; S. Kille and D. H. Brink

•	An Annotated Bibliography on Local Networks; W. Stallings

1986

Volume 16, Number 1 (January/February 1986)

•	A Multiply-and-Accumulate Selection Algorithm for Dynamic Entropy Coding; D. Irwin

•	A Proposal for an Improved Network Layer of a LAN; G. Rossi and C. Garavaglia

•	An Annotated Bibliography on ISDN; W. Stallings

Volume 16, Number 2 (April/May 1986)

•	Moving from DoD to OSI Protocols: A First Step; M. Witt

•	An Extended X.400 Architectural Model; M. Medina, T. Maude, and H. Smith

Volume 16, Number 3 (August 1986)

SIGCOMM ’86 Symposium

•	The Current Status of MAP; J. S. Foley and Y. Weon�Yoon

•	The State of the Art in Protocol Engineering; T. F. Piatkowski

•	Protocol Conversion—Correctness Problems; Simon S. Lam

•	A Formal Protocol Conversion Method; K. Okumura

•	A Model for Evaluating Demand Assignment Protocols with Arbitrary Workloads; Z. Koren, I. Chlamtac, and A. Ganz

•	Implementing Priorities in Multiaccess Protocols for Optical Fiber�Based Local Area Networks; T. Vo�Dai

•	Real�Time Voice Communications Over a Token�Passing Ring Local Area Network; E. Friedman and C. Ziegler

•	A Comparison of Two Token�Passing Bus Protocols; V. Rego and H. D. Hughes

•	Command Execution in a Heterogeneous Environment; J. T. Korb and C. E. Wills

•	Prediction of Transport Protocol Performance Through Simulation; K. Mills, M. Wheatley, and S. Heatley

•	A Verified Sliding Window Protocol with Variable Flow Control; A. U. Shankar

•	Modeling a Transport Layer Protocol Using First�Order Logic; H. P. Lin

•	Voice Transmission in a Priority CSMA/CD LAN: An Efficient Protocol Using Hybrid Switching; J. van de Lagemaat, J. M. A. Daemen, and I. G. Niemegeers

•	A Framed Movable�Boundary Protocol for Integrated Voice/Data in a LAN; S. M. Sharrock, K. J. Maly, S. Ghanta, and H. C. Du

•	Voice and Data Performance Measurements in L�Express Net; F. Borgonovo, E. Cadorin, L. Fratta, and M. Pezze

•	An Architecture for a Multimedia Teleconferencing System; L. Aguilar, J. J. Garcia�Luna�Aceves, D. Moran, E. Craighill, and R. Brungardt

•	Tier Automation Representation of Communication Protocols; Z. Bavel, J. Grzymala�Busse, Y. Hsia, and R. Mancisidor�Landa

•	Deriving Protocol Specifications from Service Specifications; G. von Bochmann and R. Gotzhein

•	A Petri Net Reduction Algorithm for Protocol Analysis; C. V. Ramamoorthy and Y. Yaw

•	Structure of a LOTOS Interpreter; J. P. Briand, M. C. Fehri, L. Logrippo, and A. Obaid

•	Frequency�Time Controlled (FTC) Networks for High Speed Communication; I. Chlamtac and A. Ganz

•	Performance Analysis of a Satellite Communications Backchannel Architecture; D. Baum

•	The Butterfly Satellite IMP for the Wideband Packet Satellite Network; W. Edmond, S. Blumenthal, A. Echenique, S. Storch, T. Calderwood, and T. Rees

•	A Closer Look at Noahnet; D. J. Farber and G. M. Parulkar

•	Conformity Analysis for Communication Protocols; N. Liu and M. T. Liu

•	Synthesis of Two�Party Error�Recoverable Protocols; C. V. Ramamoorthy, Y. Yaw, R. Aggarwal, J. Song, and W. T. Tsai

•	Formal Specification�Based Conformance Testing; B. Sarikaya, G. v. Bochmann, M. Maksud, and J. M. Serre

•	An Interactive Test Sequence Generator; H. Ural and R. Short

•	Inter�Organization Networks: Implications of Access Control Requirements for Interconnection Protocols; D. Estrin

•	Extending a Capability Based System into a Network Environment; R. D. Sansom, D. P. Julin, and R. F. Rashid

•	Communication Services under EMCON; B. Nguyen and R. Rom

•	Access Control for Network Directory Systems; M. Goodwin and K. J. McDonell

•	A Selective Repeat ARQ Scheme for Point�to�Multipoint Communications and Its Throughput Analysis; S. R. Chandran and S. Lin

•	Control Procedures for Slotted Aloha Systems that Achieve Stability; L. P. Clare

•	A Two�Bit Contention�Based TDMA Technique for Data Transmissions; D. Tsai and J. Chang

•	A Reliable Datagram Protocol on Local Area Networks; D. Lee, K. Chon, and C. Chung

•	A Message�Based Fault Diagnosis Procedure; J. R. Agre

•	A Model of File Server Performance for a Heterogeneous Distributed System; K. K. Ramakrishnan and J. S. Emer

•	A Study of Dynamic Load Balancing in a Distributed System; A. Hac and T. Johnson

•	A Resilient Distributed Protocol for Network Synchronization; I. A. Cimet and P. R. Srikanta Kumar

•	A Tunable Protocol for Symmetric Surveillance in Distributed Systems; B. Walter

•	Local Distributed Deadlock Detection by Knot Detection; I. Cidon, J. M. Jaffe, and M. Sidi

•	Distributed System V IPC in LOCUS: A Design and Implementation Retrospective; B. D. Fleisch

•	Why TCP Timers Don’t Work Well; L. Zhang

•	VMTP: A Transport Protocol for the Next Generation of Communication Systems; D. Cheriton

Volume 16, Number 4 (July/August 1986)

•	Specification versus Implementation based on Estelle; L. Kovacs and A. Ercsenyi

•	Experimental Testing of Transport Protocol; O. Rafiq, C. Chraibi, and R. Castanet

•	Hints for the Interpretation of the ISO Session Layer; F. Caneschi

Volume 16, Number 5 (October/November 1986)

•	Waiting Times in a Transport Protocol Entity Scheduler; J. Vinyes-Sanz and J. Riera-Garcia

1987

Volume 17, Numbers 1 & 2 (January/April 1987)

•	Some Thoughts on the Packet Network Architecture; Lixia Zhang

•	The Burroughs Integrated Adaptive Routing System (BIAS™); S. Gruchevsky and D. Piscitello

•	Some Observations on the Performance of a 56 Kbit Internet Link; D. Farber and L. Cassel

•	OSI Service Specification: SAP and CMEP Modeling; J. G. Tomas, J. Pavon, and O. Pereda

•	Notable Abbreviations in Telecommunications; H. W. Barz

Volume 17, Number 3 (July/August 1987)

•	A Comment on Current Source Routing Techniques; M. Witt

•	OSI Addressing Strategies; K. Jakobs

•	Efficient Implementation of the OSI Transport Protocol Checksum Algorithm Using 8/16-Bit Arithmetic; A. Cockburn

•	Netbios for ISO Networks; S. Thomas

•	A Model to Order the Encryption Algorithms According to their Quality; A. R. Prieto and J. G. Comas

•	Address Resolution for an Intelligent Filtering Bridge Running on a Subnetted Ethernet System; G. Parr

Volume 17, Number 4 (October/November 1987)

•	The CSNET Information Server: Automatic Document Distribution using Electronic Mail; C. Partridge, C. Mooers, and M. Laubach

•	A Dynamic Naming Protocol for ISO Networks; S. Thomas

•	An Introduction to the Transmission Performance Capabilities of IEEE 802.5 Token-Ring Networks; D. Irvin

Volume 17, Number 5 (August 1987)

SIGCOMM ’87 Workshop

•	Improving Round�Trip Time Estimates in Reliable Transport Protocols; P. Karn and C. Partridge

•	Internet Protocol Implementation Experiences in PC�NFS; G. Arnold

•	The Kiewit Network: A Large AppleTalk Internetwork; R. Brown

•	Supercomputers on the Internet: A Case Study; C. Kline

•	Performance Modeling of the Orwell Basic Access Mechanism; M. Zafirovic and I. Niemegeers

•	Efficient Point�to�Point and Point�to�Multipoint Selective�Repeat ARQ Schemes with Multiple Retransmissions: A Throughput Analysis; S. Mohan, J. Qian, and N. Rao

•	Performance of Priorities on an 802.6 Token Ring; L. J. Peden and A. Weaver

•	Researches in Network Development on JUNET; J. Murai and A. Kato

•	Computer Networking for Large Computers in Universities; F. J. Matsukata

•	The SIGMA Network; F. K. Saito

•	An Overview of the Andrew Message System; J. Rosenberg, C. Everhart, and N. Borenstein

•	A Verified Connection Management Protocol for the Transport Layer; S. Murphy and A. U. Shankar

•	Protocol Verification Using Reachability Analysis: The State Space Explosion Problem and Relief Strategies; F. Lin, P. Chu, and M. Liu

•	New Communication Protocols from Old; Z. Bavel, J. Grzymala�Buse, and Y. Hsia

•	An Exercise in Deriving Protocol Conversion; K. Calvert and S. Lam

•	Modeling, Analysis, and Optimal Routing of Flow�Controlled Communication Networks; S. Lam and C. Hsieh

•	Adaptive Routing in Burroughs Network Architecture; J. Rosenberg, S. Gruchevsky, and D. Piscitello

•	An Architecture for Network�Layer Routing in OSI; P. Tsuchiya

•	The NSFNET Backbone Network; D. Mills and H. Braun

•	Algorithms for the Reduction of Timed Finite State Graphs; G. Masapati and G. White

•	Extensions to Hoare’s Communicating Sequential Processes to Allow Protocol Performance Specification; J. Zic

•	The IC* System for Protocol Development; D. Cohen and T. Guinther

•	A Yellow�Pages Service for a Local Area Network; L. Peterson

•	Resource Management in the Cronus Distributed Operating System; R. Schantz, K. Schroeder, and P. Neves

•	Strategies for Decentralized Resource Management; Michael Stumm

•	Resource Management in a Distributed Internetwork Environment; G. Skinner, J. Wrabets, and L. Schreier

•	A Network Environment for Computer Supported Collaborative Work; J. Whitescarver, P. Mukherji, and M. Turoff

•	Integrating X.400 Message Handling into the IBM VM/SP Environment; K. Fischer and W. Racke

•	Laboratory for Emulation and Study of Integrated and Coordinated Media Communication; L. Ludwig and D. Dunn

•	Telescience and Advanced Technologies; B. Leiner

•	Models of a Very Large Distributed Database; M. Blakey

•	A Threaded/Flow Approach to Service Primitives Architectures; L. Ludwig

•	Distributed Shared Memory in a Loosely Coupled Distributed System; B. Fleisch

•	Resource Management Schemes in Distributed Environment; O. Nakamura and N. Saito

•	Receiver�Initiated Busy�Tone Multiple Access in Packet Radio Networks; C. Wu and V. O. K. Li

•	A Reliable and Efficient Multicast Protocol for Broadband Broadcast Networks; A. Erramilli and R. Singh

•	NETBLT: A High Throughput Transport Protocol; D. Clark, M. Lambert, and L. Zhang

•	Measurement Management Service; P. Amer and L. Cassel

•	LAN�HUB: An Ethernet Compatible Low Cost/High Performance Communication; I. Chlamtac and A. Herman

•	Transparent Interconnection of Incompatible Local Area Networks Using Bridges; G. Varghese and R. Perlman

•	Fragmentation Considered Harmful; C. Kent and J. Mogul

•	A Case for Packet Switching in High�Speed Wide�Area Networks; Z. Haas and D. Cheriton

1988

Volume 18, Numbers 1 & 2 (January/April 1988)

•	Implications of Fragmentation and Dynamic Routing for Internet Datagram Authentication; G. Tsudik

•	Timer Description in CCS (Milner), LOTOS (ISO) and Timed LOTOS (Quemada-Fernandez)—A Case Analysis; G. T’Hooft

•	OSI Service Specification with CCITT-SDL; D. Hogrefe

•	Error Propagation and Error Disappearance in CCITT R.111 System; Y. Zeng-qian

Volume 18, Number 3 (May/June 1988)

•	The Federal Research Internet Committee and the National Research Network; G. M. Vaudreuil

•	Software Products Framework for Diagnosing Network Problems; Alan MacInnes

•	Efficient Encoding of Application Layer PDUs for Fieldbus Networks; J. R. Pimentel

•	The IC* Model of Parallel Computation and Programming Environment; E. J. Cameron, D. M. Cohen, B. Gopinath, W. M. Keese II, L. Ness, P. Uppaluru, and J. R. Vollaro

Volume 18, Number 4 (August 1988)

SIGCOMM ’88 Symposium

•	Topological Analysis of Local-Area Internetworks; G. Trewitt

•	Dynamic Bandwidth Allocation in a Network; K. Maly, C. Overstreet, X. Qiu, and D. Tang

•	Optical Interconnection Using ShuffleNet Multihop Networks in Multi-Connected Ring Topologies; M. J. Karol

•	The Landmark Hierarchy: A New Hierarchy for Routing in Very Large Networks; P. F. Tsuchiya

•	Pitfalls in the Design of Distributed Routing Algorithms; R. Perlman and G. Varghese

•	Multicast Routing in Internetworks and Extended LANs; S. E. Deering

•	Design of the x-Kernel; N. Hutchinson and L. Peterson

•	Exploiting Recursion to Simplify RPC Communication Architectures; D. R. Cheriton

•	Service Specification and Protocol Construction for the Transport Layer; S. L. Murphy and A. U. Shankar

•	A Network Management Language for OSI Networks; U. Warrier, P. Relan, O. Berry, and J. Bannister

•	The Design Philosophy of the DARPA Internet Protocols; D. Clark

•	The Fuzzball; D. L. Mills

•	Development of the Domain Name System; P. Mockapetris and K. J. Dunlap

•	Optimizing Bulk Data Transfer Performance: A Packet Train Model; C. Song and L. H. Landweber

•	A Mesh/Token Ring Hybrid-Architecture LAN; C. Kang and J. Herzog

•	Tree LANs with Collision Avoidance: Protocol, Switch Architecture, and Simulated Performance; T. Suda, S. Morris, and T. Nguyen

•	An Analysis of Memnet—An Experiment in High-Speed Shared-Memory Local Networking; G. Delp, A. Sethi, and D. Farber

•	The VMP Network Adapter Board (NAB): High-Performance Network Communication for Multiprocessors; H. Kanakia and D. Cheriton

•	Circuit Switching in Multi-Hop Lightwave Networks; I. Chlamtac, A. Ganz, and G. Karmi

•	A Pseudo-Machine for Packet Monitoring and Statistics; R. T. Braden

•	Knowledge-Based Monitoring and Control: An Approach to Understanding the Behavior of TCP/IP Network Protocols; B. L. Hitson

•	Measured Capacity of an Ethernet: Myths and Reality; D. R. Boggs, J. C. Mogul, and C. A. Kent

•	Distributed Testing and Measurement across the Atlantic Packet Satellite Network (SATNET); K. Seo, J. Crowcroft, P. Spilling, J. Laws, and J. Leddy

•	A Multicast Transport Protocol; J. Crowcroft and K. Paliwoda

•	Experience with Test Generation for Real Protocols; D. Sidhu and T. Leung

•	Performance Models for Noahnet; G. M. Parulkar, A. S. Sethi, and D. J. Farber

•	A High Performance Broadcast File Transfer Protocol; J. S. J. Daka and A. G. Waters

•	Specification and Verification of Collision-Free Broadcast Networks; P. Jain and S. S. Lam

•	Delivery and Discrimination: The Seine Protocol; M. Gouda, N. Maxemchuk, U. Mukherji, and K. Sabnani

•	A Binary Feedback Scheme for Congestion Avoidance in Computer Networks with a Connectionless Network Layer; K. K. Ramakrishnan and R. Jain

•	Congestion Avoidance and Control; V. Jacobson

•	A Protocol to Maintain a Minimum Spanning Tree in a Dynamic Topology; C. Cheng, I. Cimet, and S. Kumar

Volume 18, Number 5 (October 1988)

•	Slides from SIGCOMM 88 Keynote Address; Donald Nielsen

•	Status of OSI (and related) Standards; Lyman Chapin

•	Some Limitations of Adjacency Matrices in Computer Network Analysis; E. L. Witzke and S. D. Frese

•	Corporation for Open Systems Profile Specification, Version 1.1

•	Fletcher’s Error Detection Algorithm: How to implement it efficiently and how to avoid the most common pitfalls; Anastase Nakassis

1989

Volume 19, Number 1 (January 1989)

•	INTEROP™ 88—A Landmark Event in Internetworking; Dan Lynch

•	Case Diagrams: A First Step to Diagrammed Management Information Bases; Jeffrey D. Case and Craig Partridge

•	The Internet Worm Program: An Analysis; Eugene H. Spafford

•	The Experimental Literature of the Internet: An Annotated Bibliography; Jeffrey C. Mogul

•	Network and Nodal Architectures for the Internetworking between Frame Relaying Services; Wai Sum Lai

•	Wiretap: An Experimental Multiple-Path Routing Algorithm; David L. Mills

Volume 19, Number 2 (April 1989)

•	Errata for “Measured Capacity of an Ethernet: Myths and Reality”; David R. Boggs, Jeffrey C. Mogul, and Christopher A. Kent

•	Implementing TCP/IP on a Cray Computer; David A. Borman

•	Transport Issues in the Network File System; Bill Nowicki

•	An Overview of UNP; Larry L. Peterson

•	Security Problems in the TCP/IP Protocol Suite; S. M. Bellovin

•	Status of OSI Standards; A. Lyman Chapin

•	Notable Abbreviations in Telecommunications—Second Edition; Hans W. Barz

•	Computing the Internet Checksum; R. Braden, D. Borman, and C. Partridge

•	IEN-45: TCP Checksum Function Design; William W. Plummer

Volume 19, Number 3 (July 1989)

•	SIGCOMM Bylaws

•	Comments on “Security Problems in the TCP/IP Protocol Suite”; Stephen Kent

•	Development of an OSI Application Layer Protocol Interface; Kester Fong and Jim Reinstedler

•	Bibliography on Network Management; Adarshpal S. Sethi

•	A Colored Petri Net Model for Connection Management Services in MMS; Fei-Yue Wang, Kevin Gildea, and Alan Rubenstein

•	Status of OSI Standards; A. Lyman Chapin

Volume 19, Number 4 (September 1989)

SIGCOMM ’89 Symposium

•	Analysis and Simulation of a Fair Queueing Algorithm; Alan Demers, Srinivasan Keshav, and Scott Shenker

•	Connection Caching of Traffic Adaptive Dynamic Virtual Circuits; Per Jomer

•	A Hierarchical Solution for Application Level Store-and-Forward Deadlock Prevention; Barry J. Brachman and Samuel T. Chanson

•	Specification and Verification of Network Managers for Large Internets; David L. Cohrs and Barton P. Miller

•	The Revised ARPANET Routing Metric; Atul Khanna and John Zinky

•	A Routing Architecture for Very Large Networks Undergoing Rapid Configuration; Joel M. Snyder

•	Descriptive Names in X.500; Gerald W. Neufeld

•	X-Net: A Dual Bus Fiber-Optic LAN using Active Switches; Ahmed E. Kamal and Bandula W. Abeysundara

•	AMp: A Highly Parallel Atomic Multicast Protocol; Paulo Veríssimo, Luís Rodrigues, and Mário Baptista

•	Traffic Placement Policies for a Multi-Band Network; K. J. Maly, E. C. Foudriat, D. Game, R. Mukkamala, and C. M. Overstreet

•	REXDC—A Remote Execution Mechanism; Chi-ching Chang

•	A Top Down Unification of Minimum Cost Spanning Tree Algorithms; Susan M. Merritt

•	Block Acknowledgment: Redesigning the Window Protocol; Geoffrey M. Brown, Mohamed G. Gouda, and Raymond E. Miller

•	New Results on Deriving Protocol Specifications from Service Specifications; Ferhat Khendek, Gregor von Bochmann, and Christian Kant

•	A High Speed Transport Protocol for Datagram/Virtual Circuit Networks; Krishan K. Sabnani and Arun N. Netravali

•	Sirpent™: A High-Performance Internetworking Approach; David R. Cheriton

•	Group Communication in Multichannel Networks with Staircase Interconnection Topologies; Philip K. McKinley and Jane W. S. Liu

•	A Testbed for Wide Area ATM Research; David L. Tennenhouse and Ian M. Leslie

•	Flexible Aggregation of Channel Bandwidth in Primary Rate ISDN; John W. Burren

•	Dynamic Bandwidth Management of Primary ISDN to Support ATM Access; Bhaskar R. Harita and Ian M. Leslie

•	A Unified Approach to Loop-Free Routing using Distance Vectors or Link States; J. J. Garcia-Luna-Aceves

•	A Loop-Free Extended Bellman-Ford Routing Protocol Without Bouncing Effect; Chunhsiang Cheng, Ralph Riley, Srikanta P. R. Kumar, and J. J. Garcia-Luna-Aceves

•	A New Responsive Distributed Shortest-Path Routing Algorithm; Balasubramanian Rajagopalan and Michael Faiman

•	Deriving a Protocol Converter: A Top-Down Method; Kenneth L. Calvert and Simon S. Lam

•	A Protocol Conversion Software Toolkit; Joshua Auerbach

•	Internet Routing; Thomas Narten

•	An Improved Protocol Test Generation Procedure Based on UIOS; Wendy Y. L. Chan, Son T. Vuong, and M. Robert Ito

•	Probabilistic Testing of Protocols; Deepinder P. Sidhu and Chun-Shi Chang

•	Protocol Validation in Complex Systems; Colin H. West

Volume 19, Number 5 (October 1989)

•	Using One-Way Functions for Authentication; Li Gong

•	A Connectionless Congestion Control Algorithm; Gregory G. Finn

•	Improving the Efficiency of the OSI Checksum Calculation; Keith Sklower

•	Defining Faster Transfer Syntaxes for the OSI Presentation Protocol; Christian Huitema and Assem Doghri

•	A Delay-Based Approach for Congestion Avoidance in Interconnected Heterogeneous Computer Networks; Raj Jain

•	A Loop-Detect Packet Based Self Stabilizing Bridge Protocol for Extended LANs; Piotr Bielkowicz and Gerard Parr

•	Status of OSI Standards; A. Lyman Chapin

1990

Volume 20, Number 1 (January 1990)

•	The Cuckoo’s Egg by Cliff Stoll; reviewed by Jon Postel

•	Internet Architecture Workshop: Future of the Internet System Architecture and TCP/IP Protocols; David L. Mills, Paul Schragger, and Michael Davis

•	The Next Generation of lnternetworking; Gurudatta M. Parulkar

•	How Slow is One Gigabit Per Second?; Craig Partridge

•	A Survey of Fast Packet Switches; Andrew R. Jacob

•	Measured Performance of the Network Time Protocol in the DARPA/NSF Internet System; David L. Mills

•	Congestion Control in BBN Packet-Switched Networks; John Robinson, Dan Friedman, and Martha Steenstrup

Volume 20, Number 2 (April 1990)

•	UNIX Network Programming by W. Richard Stevens; reviewed by Thomas Narten

•	Workshop Report: Workshop on Experiences with Building Distributed and Multiprocessor Systems; Chuck Koelbel, Gene Spafford, and George Leach

•	4BSD Header Prediction (slides); Van Jacobson

•	An ISO TP4-TP0 Gateway; Lawrence H. Landweber and Mitchell Tasman

•	A Critique of Z39.50 Based on Implementation Experience; Martin L. Schoffstall and Wengyik Yeong

•	Security Defects in CCITT Recommendation X.5O9—The Directory Authentication Framework; Colin I’Anson and Chris Mitchell

•	Dynamical Behavior of Rate-Based Flow Control Mechanisms; Jean-Chrysostome Bolot and A. Udaya Shankar

•	AXON: Network Virtual Storage Design; James P. G. Sterbenz and Gurudatta M. Parulkar

•	Defense Data Network Security Architecture; Robert W. Shirey

•	X.400 MHS: First Steps Toward an EDI Communication Standard; Guy Genilloud

•	Network Management Capabilities for Switched Multi-megabit Data Service; David Piscitello and Patrick Sher

Volume 20, Number 3 (July 1990)

•	Addendum to Landweber and Tasman, “An ISO TP4-TPO Gateway”

•	Reviews of Network Computing Architecture, by L. Zahn, et. al, and Network Computing System Reference Manual, by M. Kong, et. al.; Tony Mason

•	Letter regarding “A Critique of Z39.50”; Henriette Avram

•	Response to Avram; Wengyik Yeong and Martin Schoffstall

•	FDDI: A LAN Among MANs; Floyd Ross, James R. Hamstra, and Robert L. Fink

•	The Use of Connectionless Network Layer Protocols over FDDI Networks; David Katz

•	Access to a Public Switched Multi-megabit Data Service Offering; Frances R. Dix, Mary Kelly, and R. W. Klessig

•	Internetworking Using Switched Multi-megabit Data Services in TCP/IP Environments; Michael Kramer and David M. Piscitello

•	Connecting Remote FDDI Installations with Single-mode Fiber, Dedicated Lines, or SMDS; Lawrence J. Lang and James Watson

Volume 20, Number 4 (September 1990)

SIGCOMM ’90 Symposium

•	Random Drop Congestion Control; A. Mankin

•	A Stop-and-Go Queueing Framework for Congestion Management; S. J. Golestani

•	Virtual Clock: A New Traffic Control Algorithm for Packet Switching Networks; L. Zhang

•	Dynamic Adaptive Windows for High Speed Data Networks: Theory and Simulations; D. Mitra and J. B. Seery

•	Efficient At-Most-Once Messages Based on Synchronized Clocks; B. Liskov, L. Shrira, and J. Wroclawski

•	Uniform Access to Internet Directory Services; D. Comer and R. E. Droms

•	A Data Processing Performance Model for the OSI Application Layer Protocols; T. Shiroshita

•	A Simple Multiple Access Protocol for Metropolitan Area Networks; J. O. Limb

•	The DARPA Wideband Network Protocol; W. Edmond, K. Seo, M. Leib, and C. Topolcic

•	Machnet: A Simple Access Protocol for High Speed or Long Haul Communications; P. Jacquet and P. Muhlethaler

•	Mechanisms for Integrated Voice and Data Conferencing; C. Ziegler and G. Weiss

•	Link Access Blocking in Very Large Multi-Media Networks; J.-F. Labourdette and G. Hart

•	Protocol Conformance Test Generation Using Multiple UIO Sequences with Overlapping; B. Yang and H. Ural

•	Gauss: A Simple High Performance Switch Architecture for ATM; R. J. F. de Vries

•	Protocol Implementation on the Nectar Communication Processor; E. C. Cooper, P. A. Steenkiste, R. D. Sansom, and B. D. Zill

•	Pulsar: Non-Blocking Packet Switching with Shift-Register Rings; G. J. Murakami, R. H. Campbell, and M. Faiman

•	A Theoretical Analysis of Feedback Flow Control; S. Shenker

•	Shortest Path First with Emergency Exits; Z. Wang and J. Crowcroft

•	Shortest Paths and Loop-Free Routing in Dynamic Networks; B. Awerbuch

•	Transport Protocol Processing at GBPS Rates; N. Jain, M. Schwartz, and T. Bashkow

•	Architectural Considerations for a New Generation of Protocols; D. D. Clark and D. L. Tennenhouse

•	Multiplexing Issues in Communication System Design; D. C. Feldmeier

•	Avoiding Name Resolution Loops and Duplications in Group Communications; L. Liang, G. W. Neufeld, and S. T. Chanson

•	Design of Inter-Administrative Domain Routing Protocols; L. Breslau and D. Estrin

•	Topology Distribution Cost vs. Efficient Routing in Large Networks; A. Bar-Noy and M. Gopal

•	Efficient Use of Workstations for Passive Monitoring of Local Area Networks; J. Mogul

•	Performance Analysis of FDDI Token Ring Networks: Effect of Parameters and Guidelines for Setting TTRT; R. Jain

•	Frame Content Independent Stripping for Token Rings; H. Yang and K. K. Ramakrishnan

•	Fast Connection Establishment in High Speed Networks; I. Cidon, I. Gopal, and A. Segall

•	Reliable Broadband Communication Using a Burst Erasure Correcting Code; A. J. McAuley

•	An Inclusive Session Level Protocol for Distributed Applications; V. S. Sunderam

Volume 20, Number 5 (October 1990)

•	The Simple Book by M. T. Rose; reviewed by Greg Satz

•	Managing an Ethernet Installation: Case Studies from the Front Lines; Chris Johnson

•	A Note on the Modified CRC; T. G. Berry

•	A Note on Redundancy in Encrypted Messages; Li Gong

•	A Simulation Study of Fair Queueing and Policy Enforcement; James R. Davin and Andrew T. Heybey

•	Some Observations on the Dynamics of a Congestion Control Algorithm; Scott Shenker, Lixia Zhang, and David D. Clark

•	An Improved Persistent CSMA Algorithm Without Collision Detection; Claudio Salati

•	The Defense Message System; Robert W. Shirey

•	Design Considerations for Usage Accounting and Feedback in Internetworks; Deborah Estrin and Lixia Zhang

•	The Xpress Transfer Protocol (XTP)—A Tutorial; Robert M. Sanders and Alfred C. Weaver

•	Selected Arpanet Maps 1969–1990; V. Cerf and R. Kahn

•	Estimating Disperse Network Queues: The Queue Inference Engine; Rainer Gawlick

•	Limitations of the Kerberos Authentication System; S. M. Bellovin and M. Merritt

1991

Volume 21, Number 1 (January 1991)

•	Correction to “An Improved Persistent CSMA Algorithm Without Collision Detection”; Claudio Salati

•	A Review of Telecommunications: Protocols and Design by John D. Spragins, et al.; Victor T. Norman

•	A Review of The Art of Computer System Performance Analysis by Raj Jain; Craig Partridge

•	Report from IFIP 6.6 International Workshop on Distributed Systems: Operations and Management; Branislav Meandzija

•	Generating Burstiness in Networks: A Simulation Study of Correlation Effects in Networks of Queues; Antonio DeSimone

•	A New Congestion Control Scheme: Slow Start and Search (Tri-S); Zheng Wang and Jon Crowcroft

•	Constructing Intra-AS Path Segments for an Inter-AS Path; Yakov Rekhter

•	The Z39.50 Information Retrieval Protocol: An Overview and Status Report; Clifford A. Lynch

•	Inter Domain Policy Routing: Overview of Architecture and Protocols; Deborah Estrin and Martha Steenstrup

•	A Strategy for Synchronising Simplex Message Streams; J. M. McCaig

•	High Speed Networking at Cray Research; A. Nicholson, J. Golio, D. A. Borman, J. Young, and Wayne Roiger

Volume 21, Number 2 (April 1991)

•	Review of Abstract Syntax Notation One (ASN.1) by Douglas Steedman; Craig Partridge

•	Review of Design and Validation of Computer Protocols by Gerard J. Holzman; Lars-åke Fredlund

•	FDDI Follow-On; Robert L. Fink and Floyd Ross

•	Report from the Joint SIGGRAPH/SIGCOMM Workshop on Graphics and Networking; R. Droms, B. Haber, F. Gong, and C. Mazda

•	Traffic Phase Effects in Packet-Switched Gateways; S. Floyd and V. Jacobson

•	Dynamics of Congestion Control and Avoidance of Two-Way Traffic in an OSI Testbed; R. Wilder, K. K. Ramakrishnan, and A. Mankin

•	A Carrier Sense Multiple Access Protocol for High Data Rate Ring Networks; E. C. Foudriat, K. Maly, C. M. Overstreet, S. Khanna, and F. Paterra

•	A Study of Preemptable vs. Non-Preemptable Token Reservation Access Protocols; W. T. Strayer

•	Experience with Formal Methods in Protocol Development; D. Sidhu, A. Chung, and T. P. Blumer

Volume 21, Number 3 (July 1991)

•	Getting the Most for Your Megabit; M. H. Comer, M. W. Condry, S. Cattanach, and R. Campbell

•	Performance Analysis of Indoor Multipath Infrared Packet Radios at the Presence of Capture Effect; M. T. Tang and J.-H. Wen

•	Ring-Connected Ring (RCR) Topology for High-Speed Networking: An Analysis and Implementation; A. De and N. Prithviraj

•	The Metrobridge: A Backbone Network Distributed Switch; K. Zielinksi, M. Chopping, D. Milway, A. Hopper, and B. Robertson

•	Managing Data Derived from Multiple Sources in an X.500 Directory; P. Barker

Volume 21, Number 4 (September 1991)

SIGCOMM ’91 Symposium

•	A Control�Theoretic Approach to Flow Control; Srinivasan Keshav

•	Loss�Load Curves: Support for Rate�based Congestion Control in High�speed Datagram Networks; Carey L. Williamson and David R. Cheriton

•	Dynamics of Distributed Shortest�Path Routing Algorithms; William T. Zaumen and J. J. Garcia�Luna-Aceves

•	Finding Disjoint Paths in Networks; Deepinder P. Sidhu, Raj Nair, and Shukri Abdallah

•	Efficient and Robust Policy Routing Using Multiple Hierarchical Addresses; Paul F. Tsuchiya

•	GSPN Models of Random, Cyclic, and Optimal 1�Limited Multiserver Multiqueue Systems; Marco Ajmone Marsan, S. Donatelli, F. Neri, and U. Rubino

•	Queueing Analysis of a Statistical Multiplexer with Multiple Slow Terminals; Zhensheng Zhang

•	Efficient Gateway Synthesis from Formal Specifications; D. M. Kristol, D. Lee, A. N. Netravali, and K. Sabnani

•	Characteristics of Wide�Area TCP/IP Conversations; Ramon Caceres, Peter B. Danzig, Sugih Jamin, and Danny J. Mitzel

•	Comparison of Rate�Based Service Disciplines; Hui Zhang and Srinivasan Keshav

•	A Study of Priority Pricing in Multiple Service Class Networks; Ron Cocchi, Deborah Estrin, Scott Shenker, and Lixia Zhang

•	Observations on the Dynamics of a Congestion Control Algorithm: The Effects of Two�Way Traffic; Lixia Zhang, Scott Shenker, and David D. Clark

•	Performance Analysis of a Feedback Congestion Control Policy Under Non�Negligible Propagation Delay; Y. T. Wang and B. Sengupta

•	Analysis of Dynamic Congestion Control Protocols—A Fokker�Plank Approximation; Amarnath Mukherjee and John C. Strikwerda

•	Design of an ATM�FDDI Gateway; Sanjay Kapoor and Gurudatta M. Parulkar

•	Nomenclator Descriptive Query Optimization for Large X.500 Environments; Joann J. Ordille and Barton P. Miller

•	Flexible Protocol Stacks; Christian Tschudin

•	A Network Architecture Providing Host Migration Transparency; Fumio Teraoka, Yasuhiko Yokote, and Mario Tokoro

•	Concurrent Online Tracking of Mobile Users; Baruch Awerbuch and L. David Peleg

•	IP�based Protocols for Mobile Internetworking; John Ioannidis, Dan Duchamp, and Gerald Q. Maguire, Jr.

•	The LAMS�DLC ARQ Protocol; Christopher Ward and Cheong Choi

•	Hardware Flooding; Ajei Gopal, Inder Gopal, and Shay Kutten

•	Network Locality at the Scale of Processes; Jeffrey C. Mogul

•	MARS: The Magnet II Real�Time Scheduling Algorithm; E. Jay Hyman, Aurel A. Lazar, and Giovanni Pacifici

•	About Maximum Transfer Rates for Fast Packet Switching Networks; L. Jean�Yves Le Boudec

•	A Host�Network Interface Architecture for ATM; Bruce S. Davie

•	A High Performance Host Interface for ATM Networks; C. Brendan, S. Traw, and Jonathan M. Smith

•	Fairisle: An ATM Network for the Local Area; Van Leslie and Derek R. McAuley

Volume 21, Number 5 (October 1991)

•	On the Chronometry and Metrology of Computer Network Timescales and their Application to the Network Time Protocol; David L. Mills

•	An Integration of Network Communication with Workstation Architecture; Gregory G. Finn

•	Connections with Multiple Congested Gateways in Packet-Switched Networks, Part 1—One-way Traffic; Sally Floyd

•	Bridge Channel Access Algorithms for Integrated Services Ethernets; Jim M. Ng and Edward Chan

•	Adaptive Admission Congestion Control; Zygmunt Haas

•	Computer Communication Standards; A. Lyman Chapin

1992

Volume 22, Number 1 (January 1992)

•	Injecting Inter-Autonomous System Routes into Intra-Autonomous System Routing: A Performance Analysis; Y. Rekhter and B. Chinoy

•	Detection of Pathological TCP Connections Using a Segment Trace Filter; T. D. Mendez

•	A Simulation Study of Forward Error Correction in ATM Networks; E. W. Biersack

•	A Simple TCP Extension for High-Speed Paths; Z. Wang, J. Crowcroft, and I. Wakeman

•	Computer Networking Courses at the University of Wisconsin at Madison; L. Landweber

•	An Introductory Course in Computer Communication and Networks; T. Narten and R. Yavatkar

•	The Department of Defense Communications in the 21st Century; L. M. Paoletti

•	MaRS—A Routing Testbed; C. Alaettinoglu, K. Dussa-Zieger, I. Matta, A. Shankar, and O. Gudmundsson

Volume 22, Number 2 (April 1992)

•	Eliminating Periodic Packet Losses in the 4.3-Tahoe BSD TCP Congestion Control Algorithm; Z. Wang and J. Crowcroft

•	IDRP Protocol Analysis: Storage Complexity; Y. Rekhter

•	The Q-bit Scheme: Congestion Avoidance using Rate Adaptation; O. Rose

•	SE-OSI: A Prototype Support Environment for Open Systems Interconnection; O. Newnan

•	Analysis of Shortest-Path Routing Algorithms in a Dynamic Network Environment; Z. Wang and J. Crowcroft

Volume 22, Number 3 (July 1992)

•	Extended Abstracts from Multimedia 92

•	First IETF Internet Audiocast; S. Casner and S. Deering

•	Definition of a More Efficient Transfer Syntax for Application Layer PDUs in Field Bus Applications; A. Cardoso and E. Tovar

•	Rate Controls in Standard Transport Layer Protocols; C.A. Eldridge

Volume 22, Number 4 (October 1992)

SIGCOMM ’92 Symposium

•	An Efficient Communication Protocol For High�Speed Packet�Switched Multichannel Networks; Pierre A. Humblet, Rajiv Ramaswami, and Kumar N. Sivarajan

•	Supporting Real�Time Applications in an Integrated Services Packet Network Architecture and Mechanism; David D. Clark, Scott Shenker, and Lixia Zhang

•	A Language�Based Approach to Protocol Implementation; Mark B. Abbott and Larry L. Peterson

•	Scalable Inter�Domain Routing Architecture; Deborah Estrin, Yakov Rekhter, and Steve Hotz

•	Dynamic Multi�path Routing and How it Compares with Other Dynamic Routing Algorithms for High Speed Wide Area Networks; Saewoong Bahk and Magda El Zarki

•	Internet Routing Over Large Public Data Networks Using Shortcuts; Paul F. Tsuchiya

•	Architecture Design for Regulating and Scheduling User’s Traffic in ATM Networks; H. Jonathan Chao

•	Continuous Media Communication with Dynamic QOS Control Using ARTS with an FDDI Network; K. Hidoyuki Tokuda, Yoshito Tobe, Stephen T.�C. Chou, and José M. F. Moura

•	A Continuous Media Transport and Orchestration Service; Andrew Campbell, Geoffrey Coulson, Francisco García, and David Hutchison

•	A Hop by Hop Rate�based Congestion Control Scheme; Partho P. Mishra and Hemant Kanakia

•	Dynamic Time Windows: Packet Admission Control with Feedback; Theodore Faber, Lawrence H. Landweber, and Amarnath Mukherjee

•	Analysis of a Rate�Based Control Strategy with Delayed Feedback; Kerry W. Fendick, Manoel A. Rodrigues, and Alan Weiss

•	Performance Analysis of an Asynchronous Multi�rate Crossbar with Bursty Traffic; Paul Stirpe and Eugene Pinsky

•	An Effective Scheme for Pre�Emptive Priorities in Dual Bus Metropolitan Area Networks; Jorg Liebeherr, Ian F. Akyildiz, and Asser N. Tantawi

•	A Labeling Algorithm for Just�in�Time Scheduling in TDMA Networks; Charles G. Boncelet, Jr. and David L. Mills

•	An Evaluation Framework for Multicast Ordering Protocols; Erwin Mayer

•	Reliability and Scaling Issues in Multicast Communication; Bala Rajagopalan

•	Analyzing Communication Latency using the Nectar Communication Processor; Peter Steenkiste

•	Scheduling Algorithms for Multihop Radio Networks; S. Ramanathan and Errol L. Lloyd

•	Joint Scheduling and Admission Control for ATS�based Switching Nodes; Jay Hyman, Aurel A. Lazar, and Giovanni Pacifici

•	Pre�Allocation Media Access Control Protocols for Multiple Access WDM Photonic Networks; Krishna M. Sivalingam, Kalyani Bogineni, and Patrick W. Dowd

•	Performance Evaluation of Forward Error Correction in ATM Networks; Ernst W. Biersack

•	Image Transfer: An End�to�End Design; Charles J. Turner and Larry L. Peterson

•	Efficient Demultiplexing of Incoming TCP Packets; Paul E. McKenney and Ken F. Dove

•	An Analysis of Wide�Area Name Server Traffic; Peter B. Danzig, Katie Obraczka, and Anant Kumar

•	Visualizing Packet Traces; John A. Zinky and Fredric M. White

•	Observing TCP Dynamics in Real Networks; Jeffrey C. Mogul

Volume 22, Number 5 (October 1992)

•	Self Assessment Procedures—A Letter from Gene Spafford

•	A Bibliography on Performance Issues in ATM Networks; I. Nikolaidis and R. O. Onvural

•	A Unix Network Protocol Security Study: Network Information Service; D. K. Hess, D. R. Safford, and U. W. Pooch

•	Message Authentication with One-Way Hash Functions; G. Tsudik

•	Performance Comparison of Routing Protocols under Dynamic and Static File Transfer Connections; A. U. Shankar, C. Alaettinoglu, K. Dussa-Zieger, and I. Matta

•	Transmission Facilities for Computer Communications; A. G. Fraser and P. S. Henry

•	Trends in Telecommunications Management and Configurations; P.-J. Carlson and J. C. Wetherbe

•	Report on the Workshop on Quality of Service Issues in High Speed Networks; S. Keshav

1993

Volume 23, Number 1 (January 1993)

•	Open Issues and Challenges in Providing Quality of Service Guarantees in High-Speed Networks; J. Kurose

•	Extending the IP Internet Through Address Reuse; P. F. Tsuchiya and T. Eng

•	A Simple Encoder for Fieldbus Applications; R. Prasad and U. Gonzalo

•	Host Migration Transparency in IP Networks: The VIP Approach; F. Teraoka and M. Tokoro

•	Forwarding Database Overhead for Inter-Domain Routing; Y. Rekhter

Volume 23, Number 2 (April 1993)

•	Effect of Packet Losses on End-User Cost in Internetworks with Usage Based Charging; B. Kumar

•	A Survey of X Protocol Multiplexors; J. E. Baldeschwieler, T. Gutekunst, and B. Plattner

•	Multicast Channels for Collaborative Applications: Design and Performance Evaluation; M. O. Pendergast

•	Internet Protocol Traffic Analysis with Applications for ATM Switch Design; A. Schmidt and R. Campbell

Volume 23, Number 3 (July 1993)

•	Reserved Bandwidth and Reservationless Traffic in Rate Allocating Servers; G. M. Bernstein

•	Packets Found on an Internet; S. Bellovin

•	The Use of Message-Based Multicomputer Components to Construct Gigabit Networks; D. Cohen and G. G. Finn

•	Estimation of the Optimal Performance of ASN.1/BER Transfer Syntax; H.-A. Lin

•	The Architecture of a Gb/s Multimedia Protocol Adapter; E. Ruetsche

•	Analysis of Polling Protocols for Fieldbus Networks; P. Raja, G. Noubir, J. Hernandez, and J.-D. Decotignie

•	Guest Column—Microkernel UNIX: Ready to Revolutionize Telecommunications; Hubert Zimmerman

Volume 23, Number 4 (October 1993)

SIGCOMM ’93 Symposium

•	On Per�Session End�to�End Delay Distributions and the Call Admission Problem for Real�Time Applications with QOS Requirements; David Yates, James Kurose, Don Towsley, and Michael G. Hluchyj

•	Analysis of Burstiness and Jitter in Real�Time Communications; Zheng Wang and Jon Crowcroft

•	An Adaptive Congestion Control Scheme for Real�Time Packet Video Transport; Hemant Kanakia, Partho P. Misra, and Amy Reibman

•	The Synchronization of Periodic Routing Messages; Sally Floyd and Van Jacobson

•	Dynamics of Internet Routing Information; Bilal Chinoy

•	Open Shortest Path First (OSPF) Routing Protocol Simulation; Deepinder Sidhu, Tayang Fu, Shukri Abdallah, Raj Nair, and Rob Coltun

•	Implementing Network Protocols at User Level; Chandramohan A. Thekkath, Thu D. Nguyen, Evelyn Moy, and Edward D. Lazowska

•	Locking Effects in Multiprocessor Implementation of Protocols; Mats Björkman and Per Gunningberg

•	Core Based Trees (CBT): An Architecture for Scalable Inter�Domain Multicast Routing; Tony Ballardie, Paul Francis, and Jon Crowcroft

•	Routing Reserved Bandwidth Multi�point Connections; Dinesh C. Verma and P. M. Gopal

•	Causal Ordering in Reliable Group Communications; Rosario Aiello, Elena Pagani, and Gian Paolo Rossi

•	Optimizing File Transfer Response Time Using the Loss�Load Curve Congestion Control Mechanism; Carey L. Williamson

•	An Adaptive Framework for Dynamic Access to Bandwidth at High Speed; Kerry W. Fendick and Manoel A. Rodrigues

•	Warp Control: A Dynamically Stable Congestion Protocol and its Analysis; Kihong Park

•	Control Handling in Real�Time Communication Protocols; Atsushi Shionozaki and Mario Tokoro

•	Structural Complexity and Execution Efficiency of Distributed Application Protocols; K. Ravindran and X. T. Lin

•	A Data Labelling Technique for High�Performance Protocol Processing and its Consequences; David C. Feldmeier

•	On the Self�Similar Nature of Ethernet Traffic; Will E. Leland, Murad S. Taqqu, Walter Willinger, and Daniel V. Wilson

•	Application of Sampling Methodologies to Network Traffic Characterization; Kimberly C. Claffy, George C. Polyzos, and Hans�Werner Braun

•	ATM Scheduling with Queueing Delay Predictions; Daniel B. Schwartz

•	HAP: A New Model for Packet Arrivals; Ying�Dar Jason Lin, Tzu�Chieh Tsai, San�Chiao Huang, and Mario Gerla

•	Management of Virtual Private Networks for Integrated Broadband Communication; J. M. Schneider, T. Preuß, and P. S. Nielsen

•	A Case for Caching File Objects Inside Internetworks; Peter B. Danzig, Richard S. Halland, and Michael F. Schwartz

•	Linear Recursive Networks and Their Applications in Topological Design and Data Routing; Hsu Wen Jing, Amitabha Das, and Moon Jung Chung

•	The Importance of Non�Data Touching Processing Overheads in TCP/IP; Jonathon Kay and Joseph Pasquale

•	A Distributed Queueing Random Access Protocol for a Broadcast Channel; Wenxin Xu and Graham Campbell

•	Fault Detection in an Ethernet Network Using Anomaly Signature Matching; Frank Feather, Dan Siewiorek, and Roy Maxion

•	End�to�End Packet Delay and Loss Behavior in the Internet; Jean�Chrysostome Bolot

Volume 23, Number 5 (October 1993)

•	A Distributed System Security Architecture: Applying the Transport Layer Security Protocol; M. Mirhakkak

•	Security Protocol for Frame Relay; P. Katsavos and V. Varadharajan

•	Integrating Security in Inter-Domain Routing Protocols; B. Kumar and J. Crowcroft

•	The Design of a Transceiver for Packet Video Communication on an Integrated Services Network; A. S. Andreatos, E. N. Protonotarios, and G. De Grandi

1994

Volume 24, Number 1 (January 1994)

•	A Simple LAN Performance Measure; J. Vis

•	A Scalable and Efficient Intra-Domain Tunneling Mobile-IP Scheme; A. Aziz

•	Annotated Bibliography on Distributed Queue Dual Bus (DQDB); M. N. O. Sadiku and A. S. Arvind

•	Annotated Bibliography on Network Management; S. Znaty and J. Sclavos

•	Mechanisms of MPEG Stream Synchronization; G. J. Lu, H. K. Pung, and T. S. Chua

•	Data Traffic in a New Centralized Switch Node for LAN; E. A. Khalil, M. Khalid, and H. B. Kekre

Volume 24, Number 2 (April 1994)

•	A Quality of Service Architecture; A. Campbell, G. Coulson, and D. Hutchinson

•	Precision Synchronization of Computer Network Clocks; D. Mills

Volume 24, Number 3 (July 1994)

•	A Programmable Network Interface for a Message-Based Multicomputer; R. K. Singh, S. G. Tell, and S. J. Bharrat

•	Vectorized Presentation Level Services for Scientific Distributed Applications; L. C. Stanberry, M. L. Branstetter, and D. M. Nessett

•	Providing the X.500 Directory User with QOS Information; P. Barker

•	Privacy Enhanced Mail Design and Implementation; D. F. Hadj Sadok and J. Kelner

•	Minimising Packet Copies in Multicast Routing by Exploiting Geographic Spread; J. Kadirire

•	Network Management Viewpoints: A New Way of Encompassing the Network Management Complexity; S. Znaty and J. Sclavos

Volume 24, Number 4 (October 1994)

SIGCOMM ’94 Symposium

•	Experiences with a High-Speed Network Adaptor: A Software Perspective; P. Druschel, L. L. Peterson, and B. S. Davie

•	User-Space Protocols Deliver High Performance to Applications on a Low-Cost Gb/s LAN; A. Edwards, G. Watson, J. Lumley, D. Banks, C. Calamvokis, and C. Dalton

•	TCP Vegas: New Techniques for Congestion Detection and Avoidance; L. S. Brakmo, S. W. O’Malley, and L. L. Peterson

•	A Structured TCP in Standard ML; E. Biagioni

•	Making Greed Work in Networks: A Game-Theoretic Analysis of Switch Service Disciplines; S. Shenker

•	Scalable Feedback Control for Multicast Video Distribution in the Internet; J.-C. Bolot, T. Turletti, and I. Wakeman

•	Statistical Analysis of Generalized Processor Sharing Scheduling Discipline; Z.-L. Zhang, D. Towsley, and J. Kurose

•	The Dynamics of TCP Traffic over ATM Networks; A. Romanow and S. Floyd

•	Reliable and Efficient Hop-by-Hop Flow Control; C. Özveren, R. Simcoe, and G. Varghese

•	Credit Update Protocol for Flow-Controlled ATM Networks: Statistical Multiplexing and Adaptive Credit Allocation; H. T. Kung, T. Blackwell, and A. Chapman

•	Flexible Routing and Addressing for a Next Generation IP; P. Francis and R. Govindan

•	An Architecture for Wide-Area Multicast Routing; S. Deering, D. Estrin, D. Farinacci, V. Jacobson, C.-G. Liu, and L. Wei

•	Distributed, Scalable Routing Based on Link-State Vectors; J. Behrens and J. J. Garcia-Luna-Aceves

•	Signaling and Operating System Support for Native-Mode ATM Applications; R. Sharma and S. Keshav

•	Experiences of Building an ATM Switch for the Local Area; R. J. Black, I. Leslie, and D. McAuley

•	Controlling Alternate Routing in General-Mesh Packet Flow Networks; S. Sibal and A. DeSimone

•	On Optimization of Polling Policy Represented by Neural Networks; Y. Matumoto

•	Design and Implementation of a Prototype Optical Deflection Network; J. Feehrer, J. Sauer, and L. Ramfelt

•	Conflict-Free Channel Assignment for an Optical Cluster-Based Shuffle Network Configuration; K. A. Aly

•	MACAW: A Media Access Protocol for Wireless LANs; V. Bharghavan, A. Demers, S. Shenker, and L. Zhang

•	Asymptotic Resource Consumption in Multicast Reservation Styles; D. J. Mitzel and S. Shenker

•	Highly Dynamic Destination-Sequenced Distance-Vector Routing (DSDV) for Mobile Computers; C. E. Perkins and P. Bhagwat

•	A Methodology for Designing Communication Protocols; G. Singh

•	Wide-Area Traffic: The Failure of Poisson Modeling; V. Paxson and S. Floyd

•	Analysis, Modeling and Generation of Self-Similar VBR Video Traffic; M. W. Garrett and W. Willinger

•	An Algorithm for Lossless Smoothing of MPEG Video; S. S. Lam, S. Chow, and D. Yau

•	USC: A Universal Stub Compiler; S. W. O’Malley, T. Proebsting, and A. B. Montz

•	An Object-Based Approach to Protocol Software Implementation; C.-S. Liu

•	Improved Algorithms for Synchronizing Computer Network Clocks; D. L. Mills

Volume 24, Number 5 (October 1994)

Note: This Issue was mis-labeled “October 1995” in print

•	TCP and Explicit Congestion Notification; S. Floyd

•	Measured Performance of Data Transmission over Cellular Telephone Networks; T. Alanko, M. Kojo, H. Laamanen, M. Liljeberg, M. Moilanen, K. Raatikainen

•	High Performance TCP in ANSNET; C. Villamizar, C. Song

•	Can we Trust in HDLC?; M. Chiani, V. Tralli, C. Salati

•	Intelligent Congestion Control for ABR Service in ATM Networks; K.-Y. Siu, H.-Y. Tzeng

��� TC \l \f p “Research Areas in Computer Communication; L. Kleinrock (Vol. 4, No. 3, July 1974)”�Research Areas in Computer Communication

L. Kleinrock�UCLA

(Originally Published in Vol. 4, No. 3, July 1974)

�The editor of this review recently made the mistake of inviting me to discuss those problems and areas which I think require ÒurgentÓ investigation in the field of Computer Communications. What a wonderful oppor�tun�ity to express my biased opinions!

First let me say that this is a most exciting time to be conducting research in the field of Computer Communications. The area has certainly come of age, the applications have clearly been identified, the technology exists to satisfy those needs and the public may even be ready for the revolution.

Perhaps the most sophisticated form of Computer Communications may be found in data communication networks. In the April 1974 issue of this review, Wushow Chou (CHOU 74) discussed some of the design problems for these networks and the reader is referred to his comments for some specific problem areas. The 1960s was the era of time-shared computing systems and other forms of multi-access computing. Computer communication networks represent multi-access in spades! These networks and computer systems give rise to inherent sources of conflict among the multiusers in attempting to access the many resources offered. The question of conflict resolution lies at the root of most of the problems that we encounter. However, we are willing to put up with the conflicts in order to gain the great benefits possible through resource sharing. Resource sharing and resource allocation are perhaps the key elements and key problems in the area of Computer Communication Systems. A fair amount of sophistication is usually required in the allocation of resources in order to realize the large savings from resource sharing. It therefore behooves one to understand the nature of these processes. Specifically, sharing will only work if the load does not exceed the capacity of the system and, in that case, large shared systems will permit efficient scheduling due to the smoothing effect of the law of large numbers. Thus in a real sense we find ourselves in the situation of deterministic processes which may be properly scheduled for ease of sharing.

Some of the specific problem areas in which research is currently taking place and where principal results are still required include the following. First there is the design of large computer communication networks; by this I mean on the order of a thousand nodes or more. The computational and combinatorial complexities encountered here are enormous and some extremely clever partitioning and decomposition techniques are required for efficient design. Certainly not all the design problems have been resolved for the moderate sized networks such as, for example, the ARPANET (CARR 70, CROC 72, FRAN 70, FRAN 72, HEAR 70, KLEI 70, MCKE 72, MCQU 72, ORNS 72, ROBE 70, ROBE 72, ROBE 73a, THOM 72). Among the more serious technical problems remaining in moderate size network design is the flow control problem which has been a constant boobie trap in existing networks. Flow control refers to those procedures which limit the entry of messages into the network for one reason or another. These control procedures incorporate reassembly functions and/or sequencing functions which can lead to deadlock conditions or throughput degradation condi�tions. Clever and effective flow control proce�dures along with a procedure for verifying their capability and correctness is an open research area. Another class of problems which are of current research importance involve the use of radio for communica�tions. In particular, satellite communica�tions in a com�pu�ter com�mun��ica�tions network offers some extreme advan�tages with regard to providing long-haul high speed inexpensive communications. These satellite channels have been studied in a multi-access uplink, broadcast downlink mode and have been shown to be quite effective in this role (ABRA 73, KLEI 73, ROBE 73b). The characteristic of satellite communications is that the propagation delay usually far exceeds the transmission time of a packet or message. Numerous transmission techniques are possible and one can take advantage of the broadband capabilities of the satellite. At the other extreme, the use of ground radio transmission, once again in a multiaccess broadcast mode, is extremely interesting for providing access from a terminal to a switching computer acting perhaps as a gateway into a network. The problems here are similar to that of satellite transmission except that the parameters yield a propagation delay which is far less than the transmission time for the packet or message. As a result, special techniques are used to take advantage of this relationship (KLEI 74a). Another extremely interesting class of problems, which as yet has not been properly studied, is that of interconnecting different computer networks on a national or global basis. Just what the protocols should be and where these protocols should reside are as yet unsettled. For example, should the assembly be done at the gateways between networks or at the source and destination of the message traffic? Further, how can one sensibly handle the case when different sized packets are expected in each of the networks? More, how does one introduce an equitable charging and accounting scheme in such a mixed network system? In fact, the general question of accounting, privacy, security and resource control and allocation are really unsolved questions which require a sophisticated set of tools.

In all of these research endeavors, it is worthwhile to indicate that set of tools in which the research scientist should be skilled. Among these I would emphasize probability theory (FELL 66), queueing theory (KLEI 74b), network flow theory (FRAN 71), and optimization theory (BEVE 70). In addition, it is almost imperative that the researcher have a strong computer science background with an emphasis perhaps in operating systems, and this should be supplemented with some background in communication theory, at least at the elementary levels. Such individuals tend to be rare with the weakness either coming on the theoretical side or on the computer science background side. At the universities we are attempting to correct this lack and are meeting with partial success.

Above I have outlined some of the outstanding problems which require solution in terms of impact their solutions will have on the growth of computer communications. By design I have been vague in order not to bias the outlook which comes from fresh entries into this field. The problems certainly are significant and challenging and are worthy of oneÕs attention. However, I would also urge the neophyte researcher to be on the lookout for additional applications of the so far successful techniques which we have used in computer communications, and attempt to find their use in areas outside this field.

REFERENCES

ABRA 73	Abramson, N., ÒPacket Switching with Satellites,Ó National Computer Conference, AFIPS Conference Proc., June 4-8, 1973.

BEVE 70	Beveridge, G.S. and R.S. Schechter, Optimization: Theory and Practice, McGraw-Hill, New York, 1970.

CARR 70	Carr, C.S., S.D. Crocker, and V.G. Cerf, ÒHOST-HOST Communication Protocol in the ARPA Network,Ó SJCC 1970, AFIPS Conference Proc., 36:589-597.

CHOU 74	Chou, W., ÒProblems in the Design of Data Communications Networks,Ó Computer Communication Review, Vol. 4, No. 2, April 1974.

CROC 72	Crocker, S.D., J.F. Heafner, R.M. Metcalfe, and J.B. Postel, ÒFunction-Oriented Protocols for the ARPA Computer Network,Ó SJCC 1972, AFIPS Conference Proc., 40:271-279.

FELL 66	Feller, W., An Introduction to Probability Theory and its Applications, Vol. II, J. Wiley & Sons (New York), 1966.

FRAN 70	Frank, H., I.T. Frisch, and W. Chou, ÒTopological Considerations in the Design of the ARPA Computer Network,Ó SJCC 1970, AFIPS Conference Proc., 36:581-587.

FRAN 71	Frank, H., and I.T. Frisch, Communication, Transmission, and Transportation Networks, Addison-Wesley Publishing Co., Reading, Mass., 1971.

FRAN 72a	Frank, H., R.E. Kahn, and L. Kleinrock, ÒComputer Communication Network Design Ñ Experience with Theory and Practice,Ó SJCC 1972, AFIPS Conference Proc., 40:255-270.

HEAR 70	Heart, F.W., R.E. Kahn, S.M. Ornstein, W.R. Crowther, and D.C. Walden, ÒThe Interface Message Processor for the ARPA Computer Network,Ó SJCC 1970, AFIPS Conference Proc., 36:551-567.

KLEI 70	Kleinrock, L., ÒAnalytic and Simulation Methods in Computer Network Design,Ó SJCC 1970, AFIPS Conference Proc., 36:569-579.

KLEI 73	Kleinrock, L., and S.S. Lam, ÒPacket Switching in a Slotted Satellite Channel,Ó National Computer Conference, AFIPS Conference Proc., June 4-8, 1973.

KLEI 74	Kleinrock, L. Queuing Systems, Vol. I, Theory, Vol. II, Computer Applications, to be published by Wiley Interscience, New York, 1974.

KLEI 74a	Kleinrock, L., and W.E. Naylor, ÒOn Measured Behavior of the ARPA Network,Ó Proc. National Computer Conference, May 1974.

KLEI 74b	Kleinrock, L., and S. Lam, ÒOn Stability of Packet Switching in a Random Multi-access Broadcast Channel,Ó Proc. of the Special Sub-conference on Computer Nets, Seventh Hawaii International Conference on System Sciences, April 1974.

MCKE 72b	McKenzie, A.A., B.P. Cossell, J.M. McQuillan, and M.J. Thrope, ÒThe Network Control Center for the ARPA Network,Ó ICCC Proc., October 1972, pp. 185-191.

MCQU 72	McQuillan, J.M., W.R. Crowther, B.P. Cossell, D.C. Walden, and F.E. Heart, ÒImprovements in the Design and Performance of the ARPA Network,Ó FJCC 1972, AFIPS Conference Proc., 41:714-754.

ORNS 72	Ornstein, S.M., F.E. Heart, W.R. Crowther, H.K. Rising, S.B. Russell, and A. Michel, ÒThe Terminal IMP for the ARPA Computer Network,Ó SJCC 1972, AFIPS Conference Proc., 40:243-254.

ROBE 70	Roberts, L.G., and B.D. Wessler, ÒComputer Network Development to Achieve Resource Sharing,Ó SJCC 1970, AFIPS Conference Proc., 36:543-549.

ROBE 72	Roberts, L.G., ÒExtensions of Packet Communication Technology to a Hand Held Personal Terminal,Ó SJCC 1972, AFIPS Conference Proc., 40:295-298.

ROBE 73b	Roberts, L.G., ÒDynamic Allocation of Satellite Capacity through Packet Reservation,Ó National Computer Conference, AFIPS Conference Proc., June 4-8, 1973.

THOM 72	Thomas, R.H., and D.A. Henderson, ÒMcRoss Ñ A Multi-Computer Programming System,Ó SJCC 1972, AFIPS Conference Proc., 40:281-293.

�� tc \l \f p “Nomadic Computing - An Opportunity; L. Kleinrock” �NOMADIC COMPUTING – AN OPPORTUNITY

Leonard Kleinrock�Chairman, Computer Science Department�UCLA

ABSTRACT

We are in the midst of some truly revolutionary changes in the field of computer-communications, and these offer opportunities and challenges to the research community. One of these changes has to do with nomadic computing and communications. Nomadicity refers to the system support needed to provide a rich set of capabilities and services to the nomad as he moves from place to place in a transparent and convenient form. This new paradigm is already manifesting itself as users travel to many different locations with laptops, PDA's, cellular telephones, pagers, etc. In this paper we discuss some of the open issues that must be addressed as we bring about the system support necessary for nomadicity. In addition, we present some of the considerations with which one must be concerned in the area of wireless communications, which forms one (and only one) component of nomadicity.

�INTRODUCTION�

There are few things in one’s professional life as gratifying as finding a powerful new analytical result that provides insight into a class of interesting computer-communications problems. Results of this kind change the way we think about such a class of problems. Many of us, as former winners of the ACM SIGCOMM Award, have been recognized for just that kind of work.

However, among those activities that do compete with such “results with insight” for excitement and gratification, is the exploration of emerging new tech�nol�ogies that represent a major shift in the way we do things, as opposed to how we think about things. It is just such a new technology, namely, Nomadic Comput�ing, that we discuss in the present paper.

The fact is that the field of computer-communications in its largest sense (i.e., not simply the wires and networks, but also the infrastructure, the middleware, the appli�cations, the uses and users of the technology) is in the midst of an accelerating groundswell. Witness the fact that the Internet is now a household word (just ask your neighbors). The use of the Worldwide Web (WWW) is growing faster than any other application we have ever witnessed in 25 years of networking (from the day the ARPANET was born at UCLA in September 1969 up to the present); and the WWW is still in its infancy!

Three things have converged in the last three years to bring our field into center stage of technology, science, and society:

The focus by the present Federal Administration on the National Information Infrastructure (NII).

The explosive growth of the Internet.

The recognition by the commercial and entertainment world that networking has an enormous market potential.

Taking center stage brings with it opportunities and responsibilities. For example, do we as technologists have a responsibility to evaluate the likely scenarios that follow from the differing visions of each of the three events above? Is there a need to find a vision and an architecture for the NII which permits an integrated view of these differing visions? How do we address the needs of certain public interest communities (e.g., those of research, education, library) who do not have a natural platform for expressing their needs and who depend, in large part, upon government support for their activities? What is the role of government in these matters? What are the opportunities and responsibilities of our profession? We choose not to dwell any further on this here, but refer the reader for a discussion of these and many related issues to a report released last year by the National Research Council [1].

What is noteworthy is that we are in the midst of some very significant changes in many aspects of informa�tion technology, and these changes reach far beyond the purely technical aspects of our profession. It is at times like this that new innovations in thinking are called for, that major shifts in the use of technology must be recognized and anticipated, and that future, unknown, killer applications of the technology must not be precluded by the imposition of shortsighted archi�tec�tural constraints. Yes, indeed, this is a time of great opportunity for our technology and its applica�tions.

A MAJOR SHIFT

Currently, most users of think of computers as associated with their desktop appliances or with a server located in a dungeon in some mysterious basement. However, many of those same users may be considered to be nomads, in that they own computers and communication devices that they carry about with them in their travels as they move between office, home, air�plane, hotel, automobile, branch office, etc. Moreover, even without portable computers or communications, there are many who travel to numerous locations in their business and personal lives, and who require access to computers and communications when they arrive at their destinations. Indeed, a move from one’s desk to a conference table in one’s office constitutes a nomadic move since the computing platforms and communica�tions capability may be considerably different at the two locations. The variety of portable computers is impressive, ranging from laptop computers, to notebook computers, to personal digital assistants (or personal information managers), to smart credit card devices, to wrist watch computers, etc. In addition, the commun�ica�tion capability of these portable computers is advancing at a dramatic pace from high speed modems, to PCMCIA modems, to email receivers on a card, to spread-spectrum hand-held radios, to CDPD trans�ceivers, to portable GPS receivers, to gigabit satellite access, etc.

The combination of portable computing with portable communications is changing the way we think about information processing [8]. We now recognize that access to computing and communications is necessary not only from one’s “home base”, but also while one is in transit and when one reaches one’s destination.�

These ideas form the essence of the “major shift” to nomadic computing and communications that we choose to address in this paper. The focus is on the system support needed to provide a rich set of capa�bilities and services to the nomad as he moves from place to place in a transparent and convenient form.

NOMADIC COMPUTING�

We are interested in those capabilities that must be put in place to support nomadicity. The desirable charac�teristics for nomadicity include independence of location, of motion, of platform and with widespread presence of access to remote files, systems and services. The notion of independence here does not refer to the quality of service one sees, but rather to the perception of a computing environment that automatically adjusts to the processing, communica�tions and access available at the moment. For example, the bandwidth for moving data between a user and a remote server could easily vary from a few bits per second (in a noisy wireless environment) to hundreds of megabits per second (in a hard-wired ATM environment); or the computing platform available to the user could vary from a low-powered Personal Digital Assistant while in travel to a powerful supercomputer in a science laboratory. Indeed, today’s systems treat radically changing connectivity or bandwidth/latency values as exceptions or failures; in the nomadic environment, these must be treated as the usual case. Moreover, the ability to accept partial or incomplete results is an option that must be made available due to the uncertainties of the informatics infrastructure.

The ability to automatically adjust all aspects of the user’s computing, communication and storage func�tion�ality in a transparent and integrated fashion is the essence of a nomadic environment.

Some of the key system parameters with which one must be concerned include: bandwidth; latency; relia�bil�ity; error rate; delay; storage; processing power; interference; interoperability; user interface; etc. These are the usual concerns for any computer-communication environment, but what makes them of special interest for us is that the values of these parameters change dramatically as the nomad moves from location to location. In addition, some totally new and primary concerns arise for the nomad such as weight, size and battery life of his portable devices. And the bottom line consideration in many nomadic applications is cost.

As researchers and users, there are a number of enchanting reasons why nomadicity should interest you. For example, nomadicity is clearly a newly emerging technology that users are already surround�ed with. Indeed, this author judges it to be a paradigm shift in the way computing will be done in the future, so why not begin working in the field now? Information technology trends are moving in this direction. Nomadic computing and communications is a multi�disciplinary and multiinstitutional effort. It has a huge potential for improved capability and con�venience for the user. At the same time, it presents at least as huge a problem in interoperability at many levels. The contributions from any investigation of nomadicity will be mainly at the middleware level. The products that are beginning to roll out have a short term focus; however, there is an enormous level of interest among vendors (from the computer manufacturers, the networking manufacturers, the carriers, etc.) for long range development and product planning, much of which is now underway. Whatever work is accomplished now will certainly be of immediate practical use.

There are fundamental new research problems that arise in the development of a nomadic architecture and system. Let us consider a sampling of such problems. Below, we break these into Systems Issues and Wireless Networking Issues.

Systems Issues

One key problem is to develop a full System Architecture and Set of Protocols for nomadicity. These should provide for a transparent view of the user’s dynamically changing computing and communi�ca�tions environment. The protocols must satisfy the following kinds of requirements:

Interoperation among many kinds of infrastructures (e.g., wireline and wireless)

Ability to deal with unpredictability of: user behavior, network capability, computing platform

Provide for graceful degradation

Scale with respect to: heterogeneity, address space, quality of service (QoS), bandwidth, geo�gra�phical dimensions, number of users, etc.

Integrated access to services

Ad-hoc access to services

Maximum independence between the network and the applications from both the user’s viewpoint as well as from the development viewpoint

Ability to match the nature of what is transmitted to the bandwidth availability (i.e., compression, approximation, partial informa�tion, etc.)

Cooperation among system elements such as sensors, actuators, devices, network, operating system, file system, middleware, services, applications, etc.

In addition, the components that can help in providing these requirements are:

An integrated software framework which pre�sents a common virtual network layer

Appropriate replication services at various levels

File synchronization

Predictive caching

Consistency services

Adaptive database management

Location services (to keep track of people and devices)

Discovery of resources

Discovery of profile

A second research problem is to develop a Reference Model for Nomadicity which will allow a discussion of its attributes, features and structure in a consistent fashion. This should be done in a way that characterizes the view of the system as seen by the user, and the view of the user as seen by the system. The dimensions of this reference model might include:

System state consistency (i.e., is the system consistent at the level of email, files, database, applications, etc.)

Functionality (this could include the bandwidth of communications, the nature of the commun�ica�tion infrastructure, the quality of service provided, etc.)

Locality, or Awareness (i.e., how aware is the user of the local environment and its resources, and how aware is the environment of the users and their profiles)

A third research problem is to develop Mathematical Models of the nomadic environment. These models will allow one to study the performance of the system under various workloads and system configurations as well as to develop design procedures.

As mentioned above, the area of nomadic computing and communications is multidisciplinary. A list of the disciplines which contribute to this area are (in top-down order):

Advanced applications, such as multimedia or visualization

Database systems

File systems

Operating systems

Network systems

Wireless communications

Low power, low cost radio technology

Micro-electro-mechanical systems (MEMS) sensor technology

MEMS actuator technology

Nanotechnology

The reason that the last three items in this list are included is that we intend that the nomadic environment include the concept of an intelligent room. Such a room has imbedded in its walls, furniture, floor, etc., all manner of sensors (to detect who and what is in the room), actuators, communica�tors, logic, cameras, etc. Indeed, one would hope to be able to speak to the room and say, for example, “I need some books on the subject of spread spectrum radios.” and perhaps three books would reply. The replies would also offer to present the table of contents of each book, as well, perhaps, as the full text and graphics. Moreover, the books would identify where they are in the room, and, if such were the case, might add that one of the books is three doors down the hall in a colleague’s office!

There are numerous other systems issues of interest that we have not addressed here. One of the primary issues is that of security, which involves privacy as well as authentication. Such matters are especially difficult in a nomadic environment since the nomad often finds that his computing and communication devices are outside the careful security walls of his home organization. This basic lack of physical security exacerbates the problem of nomadicity.

We have only touched upon some of the systems issues relevant to nomadicity. Let us now discuss some of the wireless networking issues of nomadicity.

Wireless Networking Issues

It is clear that a great many issues regarding nomadicity arise whether or not one has access to wireless communications. However, with such access, a number of interesting considerations arise which we discuss in this section.

Access to wireless communications provides two capabilities to the nomad. First, it allows him to communicate from various (fixed) locations without being connected into the wireline network. Second, it allows him to communicate while traveling. Although the bandwidth offered by wireless communication media varies over an enormous range as does the wireline network bandwidth, the nature of the error rate, fading behavior, interference level, mobility issues etc., for wireless are considerably different so that the algorithms and protocols require some new and different forms from that of wireline networks [3].

The cellular radio networks that are so prevalent today have an architecture that assumes the existence of a cell base station for each cell of the array; the base station controls the activity of its cell. The design considerations of such cellular networks are reasonably well understood and are being addressed by an entire industry [5]. We discuss these no further in this paper.�

There is however, another wireless networking architecture of interest which assumes no base stations [2,6]. Such wireless networks are useful for applications that require “instant” infrastructure, among others. For example, disaster relief, emergency operations, special military operations, clandestine operations, etc., are all cases where no base station infrastructure can be assumed. In the case of no base stations, maintaining communications is considerably more difficult. For example, it may be the case that the destination for a given reception is not within range of the transmitter, in which case some form of relaying is required; this is known as multi-hop communications. Moreover, since there are no fixed location base stations, then the connectivity of the network is subject to considerable change as devices move around and/or as the medium changes its characteristics. A number of new consider�a�tions arise in these situations, and new kinds of network algorithms are needed to deal with them.

In order to elaborate on some of the issues with which one must be concerned in the case of no base stations, we decompose the possible scenarios into the following three:

Static Topology with One-Hop Communications: In this case, there is no motion among the system ele�ments, and all transmitters can reach their destina�tions without any relays. The issues of concern, along with the needed network algorithms (shown in italics), are as follows:

Can you reach your destination: Power Control

What access method should you use: Network Access Control

Which channel (or code) should you use: Channel Assignment Control

Will you interfere with another transmission: Power and Medium Access Control

When do you allow a new “call” into the system: Admission Control

For different multiplexed streams, can you achieve the required QoS (e.g., bandwidth, loss, delay, delay jitter, higher order statistics, etc.): Multimedia Control

What packet size should you use: System Design

How are errors to be handled: Error Control

How do you handle congestion: Congestion Control

How do you adapt to failures: Degradation Control

Static Topology with Multi-Hop Communications: Here the topology is static again, but transmitters may not be able to reach their destinations in one hop, and so multi-hop relay communications is necessary in some cases. The issues of concern, along with the needed network algorithms (shown in italics) ARE ALL OF THE ABOVE PLUS:

Is there a path to your destination: Path Control

Does giant stepping [7] help: Power Control

What routing procedure should you use: Routing Control

When should you reroute existing calls: Reconfiguration Control

How do you assign bandwidth and QoS along the path: Admission Control and Channel Assign�ment

Dynamic Topology with Multi-Hop: In this case, the devices (radios, users, etc.) are allowed to move which causes the network connectivity to change dynamically. The issues of concern, along with the needed network algorithms (shown in italics) ARE ALL OF THE ABOVE PLUS:

Do you track or search for your destination: Location Control

What network reconfiguration strategy should you use: Adaptive Topology Control

How should you use reconfigurable and adaptive base stations: Adaptive Base Station Control

These lists of considerations are not complete, but are only illustrative of the many interesting research problems that present themselves in this environment. Indeed, in this section we have addressed only the network algorithm issues, and have not presented the many other issues involved with radio design, hardware design, tools for CAD, system drivers, etc.

CONCLUSION

In this paper we have presented nomadicity as a new paradigm in the use of computer and communications technology and have laid down a number of challenging problems. The field is current, exciting, draws from many disciplines, and offers a variety of kinds of problems whose solutions are of immediate importance. You can contribute to nomadicity in a number of ways, limited only by your imagination. We have thrown down the gauntlet - now it’s your move.

REFERENCES

[1]	Computer Science and Telecommunications Board, “Realizing the Information Future: The Internet and Beyond”, National Academy Press, Washington, DC, 1994.

[2]	Jain, R., J. Short, L. Kleinrock and J. Villasenor, “PC-notebook Based Mobile Networking: Algor�ithms, Architectures and Implementations”, ICC ‘95, June 1995.

[3]	Katz, R. H., “Adaptation and Mobility in Wireless Information Systems, “ IEEE Personal Communications Magazine, Vol. 1, No. 1, (First Quarter, 1995), pp. 6-17.

[4]	“Nomadicity: Characteristics, Issues, and Applications”, Nomadic Working Team of the Cross Industrial Working Team, 1995.

[5]	Padgett, J.E., C.G. Gunther, and T. Hattori, “Overview of Wireless Personal Communica�tions”, IEEE Communications Magazine, January 1995, Vol. 33, No. 1, pp.28-41.

[6]	Short, J., R. Bagrodia, L. Kleinrock, “Mobile Wireless Network System Simulation”, UCLA Technical Report, CSD-950015.

[7]	Takagi, H. and L. Kleinrock, “Optimal Transmission Ranges for Randomly Distributed Packet Radio Terminals”, IEEE Transactions on Communications, Vol. COM-32, No. 3, pp. 246-257, March 1984.

[8]	Weiser, M., “The Computer for the 21st Century”, Scientific American September 1991, pp. 94-104.

�� TC \l \f p “The ALOHA System; F.F. Kuo �(Vol. 4 No. 1, January 1974)”�The ALOHA System

F.F. Kuo�University of Hawaii

(Originally Published in Vol. 4, No. 1, January 1974)

THE ALOHA SYSTEM is composed of a related series of contracts and grants from a variety of funding agencies with principal support from ARPA, which deal with two main themes: computer communications (TASK 1), and computer structures (TASK 2).

Under computer�communications there is work in (a) Studies on computer communications using radio and satellites, (b) The development of a prototype radio�linked time�sharing network, (c) System studies and planning for a Pacific area computer communications network linking major universities in the U.S., Japan, Australia and other Pacific countries.

Under computer structures, we are engaged in research/development in multiprocessor computing structures, computer networks, and geographically distributed computing systems. This work is being undertaken in two phases: 1) the establishment of a research facility and 2) the research work itself. The research facility is centered around the BCC 500 computing system.

TASK 1: RADIO COMMUNICATIONS

Developments in remote access computing during the latter part of the 1960's have resulted in increasing importance of remote time�sharing, remote job entry and networking for large information processing systems. The present generation of computer�communication systems is based on the use of leased or dial�up common carrier facilities, primarily wire connections. Under many conditions such communication facilities offer the best possible communica�tions option to the overall system designer of a large computer�communication facility. In other circumstances, however, the organization of common carrier data communication systems seriously limits the possibilities of a large information processing system.

Since September 1968, THE ALOHA SYSTEM Project at the University of Hawaii has investigated alternatives to the use of conventional wire communications in a geographically diffuse computer system. When the constraint of data communications by wire is eliminated a number of options for different methods of organizing data communications within a computer�communications net are made available to the system designer. THE ALOHA SYSTEM Project has investi�gated the use of a new and simple form of random access communications for a statewide university computing system; the first links in this UHF radio�linked computer system, were set up in mid�1971.

Since that time the ALOHA SYSTEM has been in continuous operation. The ALOHA network uses two 24,000 baud channels at 407.350 MHz and at 413.475 MHz in the upper UHF band. ALOHA uses packet switching techniques similar to that employed by the ARPANET, in conjunction with a novel form of random�access radio�channel multiplexing.

We are now developing a Phase II ALOHA network with mini� and micro-�computers as programmable terminals and repeaters. This effort is part of the work undertaken by the Packet Radio Group under the direction of Robert E. Kahn of ARPA. In conjunction with the hardware development we are also conducting system studies on the effects of different channel protocols upon system performance and also on the properties of the random�access channel (known now as the ALOHA Channel) used in different modes.

TASK 1: SATELLITE COMMUNICATIONS

We are now conducting experiments on the effective uses of high capacity satellite channels for packet switched communications. The experiments are centered around the geosynchronous satellites ATS�1 of NASA and INTELSAT IV of COMSAT.

With the development of new digital communications systems by COMSAT in which data at the rate of 50K baud can be transmitted through a single voice channel, data transmission by satellite has become both technologically and economically realizable. During the past year we have initiated two specific research projects for satellite extension of THE ALOHA SYSTEM and several theoretical studies involving the unique properties of satellite channels. The first of the projects involves the use of large commercial ground stations and the establishment of an ARPANET SATELLITE SYSTEM; the second involves the use of small inexpensive ground stations in a joint research effort with NASA Ames Research Center. In regard to the ARPANET SATELLITE SYSTEM we have been involved in a joint study with ARPA, BBN, UCLA, and Xerox PARC to design a suitable protocol for packet communications via satellite.

In December 1972, a 50 kilobaud data channel using a single PCM voice channel was installed between the COMSAT ground stations at Paumalu, Hawaii and Jamesburg, California. The first subscriber of this service was ARPA for inclusion of THE ALOHA SYSTEM into the ARPANET. The BCC 500 computer is planned to be the main HOST of the Hawaii TIP. We are also planning to connect the MENEHUNE (the communications computer for the ALOHA net) as the second HOST.

The second satellite project involves the use of the NASA satellite ATS�1 using small inexpensive ground stations which cost less than $5,000 each. Thus far we have progressed to the point where an ALOHA random access burst mode channel is in operation between the University of Hawaii, NASA/AMES Research Center and the University of Alaska. During the following year we plan to interface this channel into a computer near each of these ground stations, extend the number of ground stations to other sites, including possibly universities in Japan (Tohoku), Australia (Sydney), and other Pacific countries and establish a small ground station satellite network on an experimental basis.

We are also studying the possibility of using a complete transponder on a U.S. domestic satellite for ARPA Network operation. Such a transponder might provide megabit or higher data rates using a transponder dedicated to packet switched operation and terminating in a large number of moderately priced ground stations at a cost of only a fraction of the expected land line costs by the end of 1974. In addition to lower costs and higher speeds, a packet switched transponder on a domestic satellite would provide for higher network connectivity and enhanced possibilities for new forms of resource sharing.

TASK 2: BACKGROUND

Task 2 of THE ALOHA SYSTEM is concerned with multiprocessor computing structures and systems. Its primary research facility is the large BCC 500 system which was brought from Berkeley, California when Berkeley Computer Corporation ceased activities.

The main ideas involved in the 500's design were formulated by project GENIE at UC, Berkeley during 1967 and 1968. At that time it was planned that a private company would participate with UC in a joint design effort for a multi�user computing system designed expressly for on�line activities. This arrangement did not work well, however, and in early 1969 a number of persons from the project left UC and formed BCC with the specific goal of building a working prototype of a similar system.

This effort came to an end two years later when, with the nation's economy in a severe recession and the entire computing industry in an accompanying 'adjustment', the company ran out of available development capital a few months short of its goal of producing income on its prototype. The system itself, however, was almost complete and had been running an operating system for six months.

The equipment was acquired by the University of Hawaii upon the formation of Task 2 and was brought to Honolulu in early 1972. Since that time much of the Task's efforts have been directed to setting up the system once again and reconstructing some of the hardware after careful analysis of its state. Software development has also been done since the system has been locally usable beginning in March, 1973. By December, 1973 the system will achieve full host status on the ARPANET and will be operated regularly. By virtue of the time difference between Hawaii and the mainland — especially the East Coast — the system might be especially attractive for browsers.

TASK 2: BCC 500 SYSTEM

The system hardware includes two central processors and five special�purpose processors, 128K 24�bit words of central memory (i.e. visible to all processors), 32K words of additional memory connected to some of the special purpose processors, 4 million words of drum storage (transferring at 2 megawords/sec, or 6 megabytes/ sec) and 380 megabytes of disk storage. The central processors are provided each with memory maps giving them the ability to address 256K words of paged, virtual memory of which half is available for user programs.

The special�purpose processors implement those portions of the operating system which are concerned with global system tasks. These include memory management��central memory allocation, dynamic drum allocation, disk allocation and all page traffic between these devices; character input/output��to and from terminals including the handling of break and/or wakeup characters and remote echo strategies; central processor scheduling; and the NCP process for network protocol handling. Those operating system functions which are oriented toward the individual user process, i.e., which can be done by calls from the user process not requiring its blocking, are performed on the CPU's in a conventional manner. The systems code for these functions resides in one of two hardware�implemented system rings (a third ring permits the user process to run while permitting the system full protection from it).

All system software is written in SPL, a systems�programming language developed by BCC for operating systems and utility subsystems 'like compilers) There is no assembly language. All compiled code is reentrant and sharable between tasks.

The CPU's have a special mode selectable in their state word which permits them to execute XDS 940 machine language directly. A utility program, called the 940 Emulator, is available to all users and operates in conjunction with 940 programs, serving to translate 940 system calls which are otherwise trapped into equivalent sequences of 500 system calls. In this fashion all available 940 software will run on the 500 system.

We will welcome your on�line exploration of our system as it assumes host status and direct your attention particularly to the SPL language. Please address your questions and comments to: Wayne Lichtenberger, 486 Holmes Hall, University of Hawaii, 2540 Dole Street, Honolulu, Hawaii 96822.

�

[Insert Kuo Figure here]

�� TC \l \f p “Selecting Sequence Numbers; R.S. Tomlinson �(Proc. ACM SIGCOMM/SIGOPS Interprocess Communications Workshop, Santa Monica, CA, March 1975)”� Selecting Sequence Numbers

Raymond. S. Tomlinson�Bolt Beranek and Newman�Cambridge, Massachusetts

(Originally Published in Proc. ACM SIGCOMM/SIGOPS Interprocess Communications Workshop, Santa Monica, CA, March 1975)

Introduction

A characteristic of almost all communication protocols is the use of unique numbers to identify individual pieces of data. These identifiers permit error control through acknowledgement and retransmission techniques. Usually successive pieces of data are identified with sequential numbers and the identifiers are thus called sequence numbers.

This paper discusses techniques for selecting and synchronizing sequence numbers such that no errors will occur if certain network characteristics can be bounded and if adequate data error detection measures are taken. The discussion specifically focuses on the protocol described by Cerf and Kahn (1), but the ideas are applicable to other similar protocols.

The Problem

One of the problems with the protocol described by Cerf and Kahn which was brought out by our experiments at BBN is "How do you identify duplicate packets from a previous use of a particular connection?". What is necessary is a means for either the receiver of the late packet to identify the packet as late or a means for the originator of the packet to tell the receiver that the packet was late.

The protocol as described provides a fine mechanism for identifying late packets while data are actively flowing between two ports. It would also work fine if hosts never went down and had large amounts of storage. But hosts do go down and have to be restarted and hosts don't have an inexhaustible supply of storage.

The Solution

The essence of the solution is that sequence numbers must be chosen such that a particular sequence number never refers to more than one byte at any one time and the valid range of sequence numbers must be positively synchronized whenever a connection is used. The former requires careful attention to the method used for selecting initial sequence numbers. The latter requires a more involved handshake than that provided by the protocol.

Positive Synchronization

Achieving positive synchronization requires a three way handshake for SYN and a two-way handshake for REL. This is necessary because the passive side of the connection must have positive assurance from the active side that the packet received is current. Simply receiving a packet does not provide this assurance. Assuming one end as the initiator and the other end as responder, the normal procedure for synchronizing sequence numbers is:

1) Initiator sends a SYN with a unique sequence number (one that cannot be outstanding in the net).

2) Responder receives this packet but does not process the data (if any) because it does not know whether or not the packet is a late duplicate.

3) Responder returns a packet which ACKs the initiator's number and SYNs the responder's unique sequence number.

4) The initiator receives the responder's SYN and believes it because it ACKs an appropriate sequence number and SYNs a previously unsynchronized (in that direction) connection. The initiator now knows that the responder is willing to go ahead and knows where the responder is going to start but the responder does not yet know if the initiator was really trying to synchronize or if the packet received was a late duplicate.

5) The initiator sends back a packet which ACKs the responder's sequence number.

6) The responder receives this packet and believes it because it ACKs an appropriate sequence number and has a sequence number of its own which is in the appropriate range. The original packet and this one may now be processed further, data delivered, RELs processed etc.

The handshake for REL needs to be only two-way because valid sequence numbers have been established and may be used to acknowledge the REL. Since the need to send a REL may occur at times when there are no data bytes to transmit, a dummy byte which is not delivered to the user process is sent to provide something to be acknowledged.

A consequence of this need for positive synchronization is that any data in the initial packet with the SYN may not be delivered to the user process until the validity of the packet is verified. It is useful to include data in the initial packet, however, since that data may be acknowledged in the first response packet eliminating the need for a subsequent packet for acknowledging the data. A minimum exchange for data flow in one direction is four packets. This is illustrated by example below. The fourth packet is required to inform the initiator that it may forget the connection information.

It is also necessary to provide a mechanism to negatively acknowledge responses to spurious packets. A REJ bit or command should be provided for this purpose.

Selecting Unique Sequence Numbers

The assumption that networks may generate duplicate packets with possibly long lifetimes renders the task of providing for unique sequence number non-trivial. The period of time over which a particular sequence number may refer to a particular byte requires knowing an upper bound on the packet lifetime in the network. This bound must be moderately tight because, as this bound becomes looser, either packet overhead must increase due to the need for more bits of sequence number or transmission rate must be restricted so that sequence number are not reused before packets die out in the network. The period during which a particular sequence number refers to a particular byte is then some small multiple of this packet lifetime (depending on how many reverberations the protocol will support). I will use T as a parameter of the protocol design which designates this small multiple of the packet lifetime.

The size of the window plays a part in determining whether a late packet might be confused with current packets. A large window increases the maximum sequence number the receiver will accept as valid. The maximum window size is a design parameter of the protocol and must be specified before the protocol is complete. For our purposes, the window size can be conveniently thought of as extending the apparent packet lifetime (T) and will not be discussed further here.

Also subsumed into the parameter T is the maximum host service interruption time. If a host stops executing for a period of time and then resumes with no loss, any packets held in that host during that period, whether they are data packets or acknowledgement packets, are effectively delayed by the duration of the service interruption. This delay is indistinguishable from any delay caused by the network itself.

Another parameter of the protocol design is the maximum data rate. The maximum data rate design parameter may be less than or greater than the data rate achievable by the network and associated hardware. The design parameter will probably ultimately be less than the hardware/network limitation as technology improves. If this is the case, software control will have to be used to limit the actual data rate.

Given the maximum data rate (R) and the maximum packet lifetime (T) and the maximum sequence number (M), we can define the minimum sequence number cycle time (C) as

C = M/R

and state that this must be larger than the maximum packet lifetime

C > T

This inequality must be guaranteed otherwise packets with the same sequence numbers, but from an earlier cycle, may still exist in the network.

The selection of values for some of these parameters is arbitrary. One could select a field width for sequence numbers thus determining M and compute R from that. T is determined by the network characteristics. The amount by which C exceeds T must also be selected. The amount by which C exceeds T determines how frequently sequence numbers must be resynchronized when activity is low (see below). Therefore, C should be substantially greater than T.

Since the choice of sequence numbers is directly under control of the sender, it is best to place the responsibility for selecting unique sequence numbers on the sender. The receiver then accepts a packet on the basis of whether the sequence number falls within the current window or not. If the receiver has no current window then the handshake described above is used to establish one.

To prevent reusing a particular sequence number too soon it is necessary for the sender to have knowledge about when that sequence number was last used. Figure 1 illustrates the situation when complete knowledge of this sort is available. The curve of actual sequence numbers used as a function of time permits a region of forbidden sequence number vs. time points to be defined. The curve of actual sequence numbers is not permitted to reenter this region. Complete knowledge of this kind requires a prohibitive amount of storage.

Another possibility is to retain a few numbers which permit the sequence number curve to be bounded. This scheme and the previous one require a memory which persists at least as long as T even in the event of system crashes or other memory destroying events.

The method I will describe uses a time-of-day clock to govern the selection of sequence numbers. The choice of a time-of-day clock for this purpose is natural since time is the factor which determines whether duplicates might still exist. If the time-of-day clock has its own natural period such as seconds since midnight, then it is necessary to choose the sequence cycle time (C) such that the clock period is an integral multiple of C. There are several mappings of clock to sequence number. The mapping which maintains maximum resolution is given by the expression

(V mod C)*M/C

where V is the clock value, C is the sequence cycle time in units of V, and M is the maximum sequence number. The sequence number equivalent given by this formula is called ISN (initial sequence number) in the following discussion. ISN is used for the initial sequence number for establishing or re-establishing a connection in the absence of other information.

A plot of ISN as a function of time is shown in figure 2. The step size depends on the resolution of the time-of-day clock and the range of sequence numbers required. The step size is exaggerated in the figure. Also on figure 2 are drawn another staircase preceeding the ISN curve by one step, a staircase delayed from that by C-T, and a horizontal line labelled "last used seq no.". These lines delimit a region of allowed sequence numbers. If packets are never given sequence numbers outside of this region, there will never be any problem with confusing late arriving packets with current packets. This is because the sequence number of a late arriving packet will be outside the allowed region either because the current sequence numbers have gone beyond it thus raising the lower boundary or because it is impossible for enough time to have passed to place it in the allowed region of the next cycle. Remember that the next cycle will not occur until an amount of time greater than T has passed and, by definition, the packet cannot persist for that length of time.

The sequence number constraints may be summarized as follows:

a.	The current sequence number must not "get ahead" of the ISN clock by more than one step because packets with those sequence numbers from the previous sequence number cycle may be left in the network.

b. The current sequence number must not "fall behind" the ISN clock by more than C-T-<one clock step> because duplicates of packets generated with such sequence numbers may appear later and be confused with the (then current) ISN.

c. Potential sequence numbers must increase monotonically even when the connection is inactive because there will almost certainly be a conflict if there are any packets remaining in the network.

Referring to figure 2 again, note that one of the bounds of the allowed region is the largest (last) used sequence number. This would seem to require that that number be remembered at least as long as its reuse might cause confusion (T). This would require excessive amounts of storage in all except a few special cases. It is necessary to remember it for a short time because it may exceed the ISN curve. This could be avoided by moving the ISN curve to the extreme left edge of the allowed region. Doing this, however, makes it immediately impossible to use the sequence number selected from the ISN curve for communication until the next tick of the clock. This is, in fact, the reason why the ISN curve in figure 2 is shown displaced from the left edge of the allowed region.

The solution to this possible dilemma is to remember the last used sequence number if it is greater than ISN until the next clock tick. At this point the ISN curve will necessarily exceed the last used sequence number since, when the connection was active, the sequence numbers would not have been permitted to exceed the ISN curve by more than one tick since doing so would have placed the sequence numbers outside of the allowed region. In the event of a memory destroying event, such as a system restart, it is necessary to wait for one tick of the ISN because that insures that an initial sequence number selection will be greater than the sequence numbers in use just prior to the memory loss. The rules for selecting initial sequence numbers are as follows:

1. Remember the last used sequence number at least until the next tick of ISN.

2. Inhibit initial sequence number selection until at least one ISN tick has occurred following a memory loss (system restart).

3. If the last used sequence number is known, use it (incremented by 1) for a new initial sequence number.

4. If no last used sequence number is being remembered and rule 2 is satisfied, use ISN for a new initial sequence number.

Once an initial sequence number is selected, packets are given sequence numbers as specified by the protocol. Sequence numbers so selected must not equal or exceed ISN plus one step.

If data flows at less than maximum rate for a long enough time, the current sequence number would cross into the forbidden region on the right. Packets emitted with these sequence numbers and delayed by time T would conflict with a later value of ISN. This must be prevented by resynchronizing the sequence numbers to a larger value. In order to resynchronize sequence numbers, the current sequence numbers must be released and then a new sequence (using sequence number ISN) established.

Examples of Connection Synchronization

The dialogs below illustrate the interchange of letters that occurs in various situations. Each line of the dialog consists of a packet label in parentheses followed by the activity at process A where "<--" signifies the packet being received by A, "-->" signifies the packet being transmitted by A and "..." signifies that A is unaware of the packet at that time. Next appears a description of the packet in the form <SEQ n><control><data>. Next appears the activity at process B where "-->" signifies the packet is received by B. "<--" signifies the packet is transmitted by B. "..." signifies that B is unaware of the packet. The label is a handle on the packet for illustration purposes. When a packet is duplicated or retransmitted it will be given the same label. When the delay between transmission and reception of a packet is unimportant, the packet will be shown to be transmitted and received on the same line.

Unidirectional Connection with Sender Initiating

Lbl 	A 	Packet	B

(1)	-->	<SEQ O><SYN><>	-->

		A synchronizes to O.

(2)	<--	<SEQ O><SYN, ACK O><>	<--

		B synchronizes to O and acknowledges

		0.

(3)	-->	<SEQ O><ACK 0><10 Data Bytes>	-->

		A acknowledges B's O and sends some

		data.

(4)	<--	<SEQ O><ACK 10><> 	<--

		B acknowledges A's data.

(5)	-->	<SEQ 10><ACK 0><6 Data Bytes>	-->

(6)	<--	<SEQ O><ACK 16><>	<--

(7)	-->	<SEQ 16><ACK 0, REL><20 Data Bytes> 	-->

		A sends last data bytes and REL.

(8)	<--	<SEQ O><ACK 36, REL, CTL><Dummy Byte>	<--

		B acknowledges all A's data (and the 		

		REL) and sends its own REL.

(9)	-->	<SEQ 36><ACK 1><> 	-->

		A acknowledges B's REL.

Unidirectional with Receiver Initiating

(1) 	--> 	<SEQ O><SYN><>	-->

		A synchronizes to 0.

(2) 	<-- 	<SEQ O><SYN, ACK 0><14 Data Bytes>	<--

		B synchronizes to 0, acknowledges A,

		and sends data.

(3) 	--> 	<SEQ O><ACK 14><>	-->

		A acknowledges B's data.

(4)	<-- 	<SEQ 14><ACK 0><10 Data Bytes>	<--

(5) 	--> 	<SEQ O><ACK 24><>	-->

(6) 	<-- 	<SEQ 24><ACK 0, REL><5 Data Bytes>	<--

	

(7) 	--> 	<SEQ O><ACK 29, CTL, REL><Dummy Byte> 	-->

(8) 	<-- 	<SEQ 29><ACK 1><>	<--

Minimal Exchange Sender Initiating

(1) 	--> 	<SEQ O><SYN><21 Data Bytes> 	-->

		A synchronizes to O and sends data.

	

(2) 	<-- 	<SEQ O><SYN, ACK 21><> 	<--

		B acknowledges A's data and SYN's its	

		own sequence number. Data is not yet

		delivered to user process.

(3) 	--> 	<SEQ 21><REL, ACK O><>	-->

		A acknowledges B's sequence number and

		REL's the connection. B delivers data

		to user process.

(4) 	--> 	<SEQ 22><ACK 1>	-->

		A acknowledges B's REL and drops the

		connection. Note that if this final ACK

		gets lost, B will resend its REL and A �		will respond with an error reply. B must �		interpret this as equivalent to the ACK.

Late Duplicate SYN

(1) 	...	<SEQ x><SYN><23 Data Bytes>	-->

		B receives a late duplicate packet.

(2) 	<-- 	<SEQ O><SYN, ACK x+23><> 	<--

		B responds synchronizing its own

		sequence numbers. A is not aware of

		the connection.

(3)	-->	<SEQ x+23><REJ, ACK O><>	-->

		A rejects the response. B throws away

		the data and resets the connection.

Late Duplicate SYN Plus Late Response

(1) 	... 	<SEQ x><SYN><22 Data Bytes>	-->

		B receives the late duplicate packet �		containing SYN.

(2) 	<-- 	<SEQ O><SYN, ACK x+22><> 	<--

		B responds.

(3)	...	<SEQ x+22><ACK y><31 Data Bytes>	-->

		B receives a duplicate of the original

		response to the response to packet

		(1). Note that it ACK's y which is

		outside B's current sequence numbers.

		The packet is rejected since A's

		sequence numbers have not been

		verified and the ACK is out of range.

(4) 	--> 	<SEQ x+22><REJ, ACK O><> 	-->

		A rejects the response as in the 	

		previous example.

Simultaneous Initiation

(1) 	--> 	<SEQ O><SYN><15 Data Bytes> 	...

		A synchronizes to 0.

(2) 	... 	<SEQ O><SYN><> 	<--

		Meanwhile, B synchronizes too.

(1) 	... 	<SEQ O><SYN><15 Data Bytes>	-->

		A's packet arrives.

(3) 	... 	<SEQ O><SYN, ACK O><> 	<--

		B acknowledges A's sequence number and 				�		resynchronizes its own since it has not 	

		yet received verification from A.

(2) 	<-- 	<SEQ O><SYN><>	...

		B's original packet arrives at A.

(4)	-->	<SEQ O><SYN, ACK 0><15 Data Bytes> 	-->

		A sends its first packet again but this

		time acknowledges B's sequence number.

		B is now completely synchronized.

(3)	<--	<SEQ O><SYN, ACK O><> 	...

		B's first response arrives at A. A is

		now completely synchronized. This

		continues as in the above cases.

Conclusion

The methods described above for managing use of sequence numbers on a connection assure that each byte of information is uniquely identified in spite of packet duplication and long delay in the network, and in spite of service disruptions or complete memory loss by either or both communicating hosts. It is our belief that any lesser schemes will lead to unreliable network performance and are, therefore, unsatisfactory.

�

[insert tomlinson figure 1 here]

�

[insert Tomlinson Figure 2 here]

�� tc \l \f p “An Overview of the New Routing Algorithm for the ARPANET; J.M. McQuillan, I. Richter,E.C. Proc. Sixth Data Comm. Symposium, November 1979)” �AN OVERVIEW OF THE NEW ROUTING ALGORITHM �FOR THE ARPANET

John M. McQuillan �Ira Richer �Eric C. Rosen�Bolt Beranek and Newman Inc. �Cambridge, MA

(Originally published in: Proc. Sixth Data Communications Symposium, November, 1979)�

�Summary*

The original routing algorithm of the ARPANET, in service for over a decade, has recently been removed from the ARPANET and replaced with a new and different algorithm. Although the new algorithm, like the old, is a distributed, adaptive routing algorithm, it is not similar to the old in any other important respect. In the new algorithm, each node maintains a data base describing the delay on each network line. A shortest-path computation is run in each node which explicitly computes the minimum-delay paths (based on the delay entries in the data base) from that node to all other nodes in the network. The average delay on each network line is measured periodically by the nodes attached to the lines. These measured delays are broadcast to all network nodes, so that all nodes use the same data base for performing their shortest-path computations. The new routing algorithm was extensively tested on the ARPANET before being released. This paper describes the algorithm and summarizes the results of these tests.

Introduction

The last decade has seen the design, implementation, and operation of several routing algorithms for distributed networks of computers. The first such algorithm, the original routing algorithm for the ARPANET, has served remarkably well considering how long ago (in the history of packet switching) it was conceived. This paper describes the new routing algorithm we installed recently in the ARPANET. Readers not familiar with our earlier activities may consult [1] for a survey of the ARPANET design decisions, including the previous routing algorithm, readers interested in a survey of routing algorithms for other computer networks and current research in the area may consult [2].

A distributed, adaptive routing scheme typically has a number of separate components, including (1) a measurement process for determining pertinent network characteristics, (2) a protocol for disseminat�ing information about these characteristics, and (3) a calculation to determine how traffic should be routed. A routing "algorithm" or "procedure" is not specified until all these components are defined. In the present paper we discuss these components of the new ARPANET algorithm. We begin with a brief outline of the shortcomings of the original algorithm and then provide a description of the new procedure. The algorithm has undergone extensive testing in the ARPANET under operational conditions; the final section gives a summary of the test results. The present paper is a summary of our conclusions only; for more complete descriptions of our research findings, see our internal reports on this project [3, 4, 5].

Problems with the Original Algorithm

The original ARPANET routing algorithm and the new version both attempt to route packets along paths of least delay. The total path is not determined in advance; rather, each node decides which line to use in forwarding the packet to the next node. In the original approach, each node maintained a table of estimated delay to each other node, and sent its table to all adjacent nodes every 128 as. When node I received the table from an adjacent node J. it would first measure the delay from itself to J. (We will shortly discuss the procedure used for measuring the delay.) Then it would compute its delay via J to all other nodes by adding to each entry in J's table its own delay to J. Once a table was received from all adjacent nodes, node I could easily determine which adjacent node would result in the shortest delay to each destination node in the network.

In recent years we began to observe a number of problems with the original ARPANET routing algorithm [6] and have come to the conclusion that a complete redesign was the only way to solve some of them. In particular, we decided that a new algorithm was necessary to solve the following problems:

Although the exchange of routing tables consumed only a small fraction of line bandwidth, the packets containing the tables were long, and the periodic transmission and processing of such long, high-priority packets can adversely affect the flow of network traffic [7]. Moreover, since the updates contain an entry for each network node, the routing packets would become corresponding larger (or more frequent) as the ARPANET grows to 100 or more nodes, thereby exacerbating the problem.

The route calculation is performed in a distributed manner, with each node basing its calculation on local information together with calculations made previously at every other node. With such a scheme, it is difficult to ensure that routes used by different nodes are consistent,

The rate of exchange of routing tables and the distributed nature of the calculations causes a dilemma: the network is too slow in adapting to congestion and to important topology changes, yet it can respond too quickly (and perhaps inaccurately) to minor changes.

The delay measurement Procedure of the old ARPANET routing algorithm is quite simple. Periodically, an IMP counts the number of packets queued for transmission on its lines and adds a constant to these counts; the resulting number is the "length" of the line for purposes of routing. This delay measurement procedure has three serious defects:

If two lines have different speeds, or different propagation delays, then the fact that the same number of packets is queued for each line does not imply that packets can expect equal delays over the two lines. Even if two Lines nave the same speed and propagation delay, difference in the sizes of the packets which are queued for each line may cause different delays on the two lines.

In the ARPANET, where the queues are con�strained to have a (short) maximum length, queue length is a boor indicator of delay. The con�straints on queue Length are imposed by the software in order to fairly resolve contention for a limited amount of resources. There are a number of such resources which must be obtained before a packet can even be queued for an output line. If a packet must wait a significant amount of time to get these resources, it may experience a long delay, even though the queue for its output line is quite short.

An instantaneous measurement of queue length does not accurately predict average delay because there is a significant real-time fluctua�tion in queue lengths at any traffic level. Our measurements show that under a high constant offered load the average delay is high, but many individual packets show low delays, and the queue length often falls to zero! This variation may be due to variation in the utilization of the CPU, or to other bottlenecks, the presence of which is not accurately reflected by measuring queue lengths.

These three defects are all reflections of a single point, namely that the length of an output queue is only one of many factors that affect a packet's delay. A measurement procedure that takes into account only one such factor cannot give accurate results.

The new routing algorithm is an improvement over the old one in that it uses fewer network resources, operates on more realistic estimates of network condi�tions, reacts faster to important network changes, and does not suffer from long-term loops or oscillations.

The New Routing Procedure

The routing procedure we have developed contains several basic components. Each node an the network maintains a data base describing the network topology and the line delays. Using this data base, each node independently calculates the best paths to all other nodes, routing outgoing packets accordingly. Because the traffic in the network can be quite variable, each node periodically measures the delays along its outgoing lines and forwards this information (as a "routing update") to all other nodes. A routing update generated by a particular node contains information only about the delays on the lines emanating from that node. Hence an update packet is quite small, and its size is independent of the number of nodes in the network. An update generated by a particular node travels unchanged to all nodes in the network (not just to the immediate neighbors of the originating node, as an many other routing algorithms.) Since the updates need not be processed before being forwarded, and since they are small, they propagate very quickly through the network, so that all nodes can update their data bases rapidly and continue to route traffic in a consistent and efficient manner.

Many algorithms have been devised for finding the shortest path through a network. Several of these are based on the concept of computing the entire tree of shortest paths from a given node, the root of the tree. A recent article [8] discusses some of these algorithms and references several survey articles. The algorithm we have implemented is based on an algorithm attributed to Dijkstra [9]; because of its search rule, we call it the shortest-path-first (SPF) algorithm.

The basic SPF algorithm uses a data base describing the network to generate a tree representing the minimum delay paths, from a given root node to every other network node. Figure 1 shows a simplified flow chart of the algorithm. The tree initially consists of just the root node.

Figure 1 here

The tree is then augmented to contain the node that is closest (in delay) to the root and that is adjacent to a node already on the tree. The process continues by repetition of this last step. LIST denotes a data structure containing nodes that have not yet been placed on the tree but are neighbors of nodes that are on the tree. The tree is built up shortest-paths-first — hence the name of the algorithm. Eventually the furthest node from the root is added to the tree, and the algorithm terminates. We have made important additions to this basic algorithm so that changes in network topology or characteristics require only an incremental calculation rather than a complete re- calculation of all shortest paths.

Figure 2 shows a seven-node network and the corresponding shortest path tree for node 1. The figure also shows the routing directory which is produced by the algorithm and which would be used by node 1 to dispatch traffic. For example, traffic for node 4 is routed via node 2. Only the routing directory is used in forwarding packets; the tree is used only in creating the directory.

The two other important components of the routing procedure are the mechanism for measuring delay and the scheme for propagating information. The routing algorithm must have some way of measuring the delay of a packet at each hop. This aspect of the routing algorithm is quite crucial; an algorithm with poor delay measurement facilities will perform poorly, no matter how sophisticated its other features are.

Each node measures the actual delay of each packet flowing over each of its outgoing lines, and calculates the average delay every 10 seconds. If this delay is significantly different from the previous delay, it is reported to all other nodes. The choice of 10 seconds as the measurement period represents a significant departure from the old routing algorithm. Since it takes 10 seconds to produce a measurement, the delay estimate for a given line cannot change more often than once every 10 seconds. The old routing algorithm, on the other hand, would allow the delay estimate to change as often as once every 128 msec. We now believe, however, that there is no point to changing the estimate so often, since it is not possible to obtain an accurate estimate of delay in the ARPANET in less than several seconds. Figure 3 shows some actual delays; an artificially induced traffic load was applied between minutes 5 and 17. The procedure of directly measuring the packet delays cannot fail to yield a more accurate result than any procedure which attempts to infer the delays by measuring something else which is merely expected to correlate with the delays (such as queue lengths.)

Figure 2 here

The updating procedure for propagating delay information is of critical importance because it must ensure that each update is actually received at all nodes, so that identical data bases of routing information are maintained at all nodes. When an update is generated, it is assigned a sequence number. Each update is transmitted to all nodes by the simple but reliable method of transmitting it on all lines. When a node receives an update, it first checks to see whether it has processed that update (or an update which originated from the same node, but which had a later sequence number) before. If so, it is discarded. If not, it is immediately forwarded to all adjacent nodes. In this way the update quickly flows to all other nodes. The fact that an update flows once in each direction over each network line is the basis for a reliable transmission procedure for the updates. Because the updates are short and are generated infrequently, this procedure uses very little line or node bandwidth. We have augmented this basic procedure with a mechanism to ensure that data bases at nodes are correctly updated when a new node or line is installed, or when a whole set of previously disconnected nodes joins the network. The updating protocol is discussed in detail in [10] .

Since all nodes perform the same calculation on an identical data base, there are no long-lasting routing loops. Of course transient loops may occasionally form for a few packets when a change is being processed, but that is quite acceptable, since it has no significant impact on the average delay in the network.

Performance

We next describe some analytical and empirical results on the performance of the new routing algorithm. One important measure of the efficiency of the SPF algorithm is the average time required to process changes in the delays along network lines, since such changes comprise the bulk of the processing requirements. When a given node receives an update message indicating that the delay along some line has increased, the running time of the SPF algorithm is roughly proportional to the number of nodes in that line's subtree; that is, it is roughly proportional to the number of nodes to which the delay has become worse. When a given node receives an update message indicating that the delay along some line has decreased, the amount of time it takes to run the incremental SPF algorithm is roughly proportional to the number of nodes in that line's subtree after the algorithm is run; that is, it is roughly proportional to the number of nodes to which the delay got better. Thus, in either case, the SPF running time is directly related to the subtree size.

Figure 3 here

Since the average subtree size provides a measure of SPF performance, it is useful to understand how this quantity varies with the size of the network. Let N denote the number of network nodes, and let h. represent the number of hops on the path from the source node, i = 1, to node i; in other words, if the length of each line is 1, then hi is the length of the path to node i. Clearly, node i appears in i's subtree and in the subtrees of all the nodes along the path to i. Thus hi is equal to the number of subtrees in which node E is present, so that

total number of all subtree nodes� EMBED Equation.2 ���

and since there are N-1 subtrees (the complete tree from the source node is not considered to be a "subtree"), the average subtree size is given by

average subtree size � EMBED Equation.2 ���

But this expression is identical to the average hop length of all paths, and thus we have the remarkable result that in any tree, the average subtree size is equal to the average hop length from the root to all nodes. This result is significant because the average hop length generally increases quite slowly as the number of nodes increases. (For a network with uniform connectivity c>2, the average hop length increases roughly as log N/log(c-1).)

To establish some estimate of the running time of the algorithm, we programmed a stand-alone version for the ARPANET nodes. We randomly assigned each line in the ARPANET a length between 1 and 20. We ran the SPF algorithm to initialize the data structure in each node. Then we picked 50 lines at random and successively gave each a new random length. Every time we changed the length of a line, we changed it by at least 15%. Also, some lines were brought down by being assigned a length which represented infinity. Each time we did this, we ran the SPF algorithm with each node as the source node. We obtained the following results:

The average time per node to run the incremental SPF algorithm was about 2.2 msec.

The average time per subtree node to run the incremental SPF algorithm was about 1.1 msec.

Since we calculated that the average subtree size multiplied by the probability that a line is in the tree is about 2, these two results are in agreement. Note that these are average times; actual times varied from under 1 msec. to 40 msec.

The figures given above are for the shortest path calculation only. Processing an update invokes a routine to maintain the topology data base (including the ability to dynamically add or delete lines and nodes), and a routine to determine which nodes can be reached from the root node. These modules increase the running time by about a factor of two; and the total storage requirement, including these modules, the topology data base, and the measurement and updating packages, is about 2000 16-bit words.

We designed and programmed the new routing procedure over a period of about six months. We then began an extensive series of tests on the ARPANET, at off-peak hours but under actual network conditions [5]. Our tests involved a great deal more than simply turning the new routing algorithm on to see whether it would run. The tests were specifically designed to stress the algorithm, by inducing those situations which would be most difficult for it to handle well. To stress its ability to react properly to topological changes, we induced line and node failures in as many different ways as we could think of, including multiple simultaneous failures. We also generated large amounts of test traffic in order to see how the algorithm performs under heavy load. (In this respect, it should be noted that the periods during which we were testing were "off-peak" only with respect to the amount of ordinary user traffic in the network. The amount of test traffic we generated far exceeds the amount of traffic generated by users, even during peak hours.) We experimented with many different traffic patterns, in order to test the algorithm under a wide variety of heavily loaded conditions. In particular, we tried to induce those situations which would be most likely to result in loops or in wild oscillations. We also designed and implemented a sophisticated set of measurement and instrumentation tools, so that we could evaluate the routing algorithm's performance. Some of these tools enabled us to monitor the utilization of resources used by the algorithm. Others enabled us to monitor changes in delay (as measured by the routing algorithm), as well as changes in the routing trees themselves at particular network nodes. One of our most important tools was the "tagged packet". A tagged packet is a packet which, as it travels through the network, receives an imprint from each node through which it travels. When such a packet reaches its destination, it contains a list of all the nodes it has traversed, as well as the delay it experienced at each node. These packets provided us with a very straightforward indication of the routing algorithm's performance. Of course, since the network was also in use by ordinary users during our tests, we cannot claim to have performed "controlled" experiments, in the strict scientific sense. However, all our experiments were repeated many times before being used to draw conclusions. Some of our main results are:

Utilization of resources (line and processor bandwidth) by the new routing algorithm is as expected, and compares quite favorably with the old algorithm. Line overhead and CPU overhead are both less than two percent.

The new algorithm responds quickly and correctly to topological changes; most nodes learn of an update within 100 msec.

The new algorithm is capable of detecting congestion, and will route packets around a congested area.

The new algorithm tends to route traffic on minimum hop paths, unless there are special circumstances which make other paths more attractive.

The new algorithm does not show evidence of serious instability or oscillations due to feedback effects.

Routing loops occur only as transients, affecting only packets that are already in transit at the time when there is a routing change. The few packets that we have observed looping have not traversed any node more than twice. However, the loop can be many hops long.

Under heavy load, 'he new algorithm will seek out paths where there is excess bandwidth, in order to try to delivery as much traffic as possible to the destination.

Of course, the new routing algorithm does not generate optimal routing — no single-path algorithm with statistical input data could do that. It has performed well, and is successful in eliminating many of the problems associated with the old routing scheme. After several months of careful testing during which both old and new routing algorithms were resident in the network and used for experiments [5], we began to operate the ARPANET with the new routing scheme in May 1979, and removed the old routing program. Since that time we have continued to monitor the performance of the algorithm. the results obtained during our test periods have continued to hold, even during peak hours, and no new or unforeseen problems have yet arisen.

References

“The ARPANET Design Decisions," J.M. McQuillan and D.C. Walden, Computer Networks, Vol.1, No.5, August 1977.

"Routing Algorithms for Computer Networks -- A Survey", J.M. McQuillan, 1977 National Telecommunications Conference, December 1977.

“ARPANET Routing Algorithm Improvements -- First Semiannual Technical Report," J.M. McQuillan, I. Richer, E.C. Rosen, BBN Report No. 3803, April 1978.

"ARPANET Routing Algorithm Improvements — Second Semiannual Technical Report, J.M. McQuillen, I. Richer, E.C. Rosen, and D.P. Bertsekas, BBN Report No. 3940, October 1978.

"ARPANET Routing Algorithm Improvements — Third Semiannual Technical Report," E.C. Rosen, J. Herman, I. Richer, and J.M. McQuillan, BBN Report No. 4088, April 1979.

"ARPANET Routing Study — Final Report," J.M. McQuillan, I. Richer, and E. Rosen, BBN Report No. 3641, September 1977.

"On the Effects of Periodic Routing Updates in Packet Switched Networks," W. E. Naylor and L. Kleinrock, Conference Record, National Tele�com�mun�ications Conference, Dallas, Texas, November, 1976, pp. 16.2.1 - 16.2.7.

"Efficient Algorithms for Shortest Paths in Sparse Network," D.B. Johnson, J. ACM, Vol 24, pp 1-13, January 1977.

"A Note on Two Problems in Connection with Graphs", E. Dijkstra, Numer. Math., Vol. 1, pp 269-271, 1959.

“The Update Protocol of the New ARPANET Routing Algorithm", E.C. Rosen, submitted to Fourth Berkeley Conference on Distributed Data Management and Computer Networks.

�� tc \l \f p “Congestion Control in IP/TCP Internetworks; J. Nagle (Vol. 14, No. 4, October 1984)” � Congestion Control in IP/TCP Internetworks

John Nagle�Ford Aerospace and Communications Corporation�Palo Alto, California

(Originally Published in: Vol. 14, No. 4, October 1984)

�Introduction

Congestion control is a recognized problem in complex networks. We have discovered that the Department of Defense's Internet Protocol (IP), a pure datagram protocol, and Transmission Control Protocol (TCP), a transport layer protocol, when used together, are subject to unusual congestion problems caused by inter�actions between the transport and datagram layers. In particular, IP gateways are vulnerable to a phenome�non we call congestion collapse, especially when such gateways connect networks of widely different band�width. We have developed solutions that prevent congestion collapse.

These problems are not generally recognized because these protocols are used most often on networks built on top of ARPANET IMP technology. ARPANET IMP based networks tradi�tionally have uniform bandwidth, identical switching nodes, and are sized with substan�tial excess capacity. This excess capacity, and the ability of the IMP system to throttle the transmissions of hosts has for most IP/TCP hosts and networks, been adequate to handle congestion. With the recent split of the ARPANET into two interconnected networks and the growth of other networks with differing properties connected to the ARPANET, however, reliance on the benign properties of the IMP system is no longer enough to allow hosts to communicate rapidly and reliably. Improved handling of congestion is now mandatory for successful network operation under load.

Ford Aerospace and Communications Corporation, and its parent company, Ford Motor Company, operate the only private IP/TCP long-haul network in existence today. This network connects six facilities (one in Michigan, two in California, one in Colorado, one in Texas, and one in England) some with extensive local networks. This net is cross-tied to the ARPANET but uses its own long�haul circuits; traffic between Ford facilities flows over private leased circuits, including a leased transatlantic satellite connection. All switching nodes are pure IP datagram switches with no node-to-node flow control, and all hosts run software either written or heavily modified by Ford or Ford Aerospace. Bandwidth of links in this network varies widely, from 1200 to 10,000,000 bits per second. In general, we have not been able to afford the luxury of excess long-haul bandwidth that the ARPANET possesses, and our long-haul links are heavily loaded during peak periods. Transit times of several seconds are thus common in our network.

Because of our pure datagram orientation, heavy loading, and wide variation in bandwidth, we have had to solve problems that the ARPANET/MILNET com�mun�ity is just beginning to recognize. Our network is sensitive to suboptimal behavior by host TCP imple�mentations, both on and off our own net. We have devoted considerable effort to examining TCP behavior under various conditions, and have solved some widely prevalent problems with TCP. We present here two problems and their solutions. Many TCP implementa�tions have these problems; if throughput is worse through an ARPANET/MILNET gateway for a given TCP implementation than throughput across a single net, there is a high probability that the TCP implemen�ta�tion has one or both of these problems.

Congestion Collapse

Before we proceed with a discussion of the two specific problems and their solutions, a description of what happens when these problems are not addressed is in order. In heavily loaded pure datagram networks with end to end retransmission, as switching nodes become congested, the round trip time through the net in�creases and the count of datagrams in transit within the net also increases. This is normal behavior under load. As long as there is only one copy of each datagram in transit, congestion is under control. Once retrans�mission of datagrams not yet delivered begins, there is potential for serious trouble.

Host TCP implementations are expected to retransmit packets several times at increasing time intervals until some upper limit on the retransmit interval is reached. Normally, this mechanism is enough to prevent serious congestion problems. Even with the better adaptive host retransmission algorithms, though, a sudden load on the net can cause the round�trip time to rise faster than the sending hosts measurements of round�trip time can be updated. Such a load occurs when a new bulk transfer, such a file transfer, begins and starts filling a large window. Should the round�trip time exceed the max�i�mum retransmission interval for any host, that host will begin to introduce more and more copies of the same datagrams into the net. The network is now in serious trouble. Eventually all available buffers in the switching nodes will be full and packets must be dropped. The round-trip time for packets that are delivered is now at its maximum. Hosts are sending each packet several times, and eventually some copy of each packet arrives at its destination. This is conges�tion collapse.

This condition is stable. Once the saturation point has been reached, if the algorithm for selecting packets to be dropped is fair, the network will continue to operate in a degraded condition. In this condition every packet is being transmitted several times and throughput is reduced to a small fraction of normal. We have pushed our network into this condition experimentally and observed its stability. It is possible for round�trip time to become so large that connections are broken because the hosts involved time out.

Congestion collapse and pathological congestion are not normally seen in the ARPANET/ MILNET system only because these networks have substantial excess capa�city. Where connections do not pass through IP gateways, the IMP-to-host flow control mechanisms prevent congestion collapse, especially since TCP implementations tend to be well adjusted for the time constants associated with the pure ARPANET case. However, other than ICMP Source Quench messages, nothing prevents congestion collapse when TCP is run over the ARPANET/MILNET and packets are being dropped at gateways. Worth noting is that a few badly-behaved hosts can by themselves congest the gateways and prevent other hosts from passing traffic. We have observed this problem repeatedly with certain hosts (with whose administrators we have communicated privately) on the ARPANET.

Adding additional memory to the gateways will not solve the problem. The more memory added, the longer round-trip times must become before packets are dropped. Thus, the onset of congestion collapse will be delayed, but when collapse occurs a larger fraction of the packets in the net will be duplicates and throughput will be worse.

The Two Problems

Two key problems with the engineering of TCP implementations have been observed; we call these the small-packet problem and the source-quench problem. The second is being addressed by several implement�ors; the first is generally believed (incorrectly) to be solved. We have discovered that once the small-packet problem has been solved, the source�quench problem becomes much more tractable. We thus present the small-packet problem and our solution to it first.

The Small-Packet Problem

There is a special problem associated with small packets. When TCP is used for the transmission of single-character messages originating at a keyboard, the typical result is that 41 byte packets (one byte of data, 40 bytes of header) are transmitted for each byte of useful data. This 400% overhead is annoying but tolerable on lightly loaded networks. On heavily loaded networks, however, the congestion resulting from this overhead can result in lost datagrams and retrans�mis�sions, as well as excessive propagation time caused by congestion in switching nodes and gateways. In practice, throughput may drop so low that TCP connections are aborted.

This classic problem is well-known and was first addressed in the Tymnet network in the late 1960s. The solution used there was to impose a limit on the count of datagrams generated per unit time. This limit was enforced by delaying transmission of small packets until a short (200-500ms) time had elapsed, in hope that another character or two would become available for addition to the same packet before the timer ran out. An additional feature to enhance user acceptability was to inhibit the time delay when a control character, such as a carriage return, was received.

This technique has been used in NCP Telnet, X.25 PADs, and TCP Telnet. It has the advantage of being well�understood, and is not too difficult to implement. Its flaw is that it is hard to come up with a time limit that will satisfy everyone. A time limit short enough to provide highly responsive service over a 10M bits per second Ethernet will be too short to prevent congestion collapse over a heavily loaded net with a five second round�trip time; and conversely, a time limit long enough to handle the heavily loaded net will produce user frustration on the Ethernet.

The Solution To The Small-Packet Problem

Clearly an adaptive approach is desirable. One would expect a proposal for an adaptive inter-packet time limit based on the round-trip delay observed by TCP. While such a mechanism could certainly be imple�mented, it is unnecessary. A simple and elegant solution has been discovered.

The solution is to inhibit the sending of new TCP segments when new outgoing data arrives from the user if any previously transmitted data on the connection remains unacknowledged. This inhibition is to be unconditional; no timers, tests for size of data received, or other conditions are required. Implementa�tion typically requires one or two lines inside a TCP program.

At first glance, this solution seems to imply drastic changes in the behavior of TCP. This is not so. It all works out right in the end. Let us see why this is so.

When a user process writes to a TCP connection, TCP receives some data. It may hold that data for future sending or may send a packet immediately. If it refrains from sending now, it will typically send the data later when an incoming packet arrives and changes the state of the system. The state changes in one of two ways; the incoming packet acknowledges old data the distant host has received, or announces the availability of buffer space in the distant host for new data. (This last is referred to as "updating the window"). Each time data arrives on a connection, TCP must reexamine its current state and perhaps send some packets out. Thus, when we omit sending data on arrival from the user, we are simply deferring its transmission until the next message arrives from the distant host. A message must always arrive soon unless the connection was previously idle or communications with the other end have been lost. In the first case, the idle connection, our scheme will result in a packet being sent whenever the user writes to the TCP connection. Thus we do not deadlock in the idle condition. In the second case, where the distant host has failed, sending more data is futile anyway. Note that we have done nothing to inhibit normal TCP retransmission logic, so lost messages are not a problem.

Examination of the behavior of this scheme under various conditions demonstrates that the scheme does work in all cases. The first case to examine is the one we wanted to solve, that of the character-oriented Telnet connection. Let us suppose that the user is sending TCP a new character every 200ms, and that the connection is via an Ethernet with a round-trip time including software processing of 50ms. Without any mechanism to prevent small�packet congestion, one packet will be sent for each character, and response will be optimal. Overhead will be 4000%, but this is acceptable on an Ethernet. The classic timer scheme, with a limit of 2 packets per second, will cause two or three characters to be sent per packet. Response will thus be degraded even though on a high-bandwidth Ethernet this is unnecessary. Overhead will drop to 1500%, but on an Ethernet this is a bad tradeoff. With our scheme, every character the user types will find TCP with an idle connection, and the character will be sent at once, just as in the no�control case. The user will see no visible delay. Thus, our scheme performs as well as the no�control scheme and provides better responsiveness than the timer scheme.

The second case to examine is the same Telnet test but over a long�haul link with a 5�second round trip time. Without any mechanism to prevent small�packet congestion, 25 new packets would be sent in 5 seconds�. Overhead here is 4000%. With the classic timer scheme, and the same limit of 2 packets per second, there would still be 10 packets outstanding and contributing to congestion. Round�trip time will not be improved by sending many packets, of course; in general it will be worse since the packets will contend for line time. Overhead now drops to 1500%. With our scheme, however, the first character from the user would find an idle TCP connection and would be sent immediately. The next 24 characters, arriving from the user at 200ms intervals, would be held pending a message from the distant host. When an ACK arrived for the first packet at the end of 5 seconds, a single packet with the 24 queued characters would be sent. Our scheme thus results in an overhead reduction to 320% with no penalty in response time. Response time will usually be improved with our scheme because packet overhead is reduced, here by a factor of 4.7 over the classic timer scheme. Congestion will be reduced by this factor and round�trip delay will decrease sharply. For this case, our scheme has a striking advantage over either of the other approaches.

We use our scheme for all TCP connections, not just Telnet connections. Let us see what happens for a file transfer data connection using our technique. The two extreme cases will again be considered.

As before, we first consider the Ethernet case. The user is now writing data to TCP in 512 byte blocks as fast as TCP will accept them. The user's first write to TCP will start things going; our first datagram will be 512+40 bytes or 552 bytes long. The user's second write to TCP will not cause a send but will cause the block to be buffered. Assume that the user fills up TCP's outgoing buffer area before the first ACK comes back. Then, when the ACK comes in, all queued data up to the window size will be sent. From then on, the window will be kept full, as each ACK initiates a sending cycle and queued data is sent out. Thus, after a one round�trip time initial period when only one block is sent, our scheme settles down into a maximum-throughput condi�tion. The delay in startup is only 50ms on the Ethernet, so the startup transient is insignificant. All three schemes provide equivalent performance for this case.

Finally, let us look at a file transfer over the 5�second round trip time connection. Again, only one packet will be sent until the first ACK comes back; the window will then be filled and kept full. Since the round�trip time is 5 seconds, only 512 bytes of data are transmitted in the first 5 seconds. Assuming a 2K window, once the first ACK comes in, 2K of data will be sent and a steady rate of 2K per 5 seconds will be maintained thereafter. Only for this case is our scheme inferior to the timer scheme, and the difference is only in the startup transient; steady-state throughput is identical. The naive scheme and the timer scheme would both take 250 seconds to transmit a 100K byte file under the above conditions and our scheme would take 254 seconds, a difference of 1.6%.

Thus, for all cases examined, our scheme provides at least 98% of the performance of both other schemes, and provides a dramatic improvement in Telnet per�form�ance over paths with long round trip times. We use our scheme in the Ford Aerospace Software Engineer�ing Network, and are able to run screen editors over Ethernet and talk to distant TOPS-20 hosts with improved performance in both cases.

Congestion Control with ICMP

Having solved the small-packet congestion problem and with it the problem of excessive small�packet conges�tion within our own network, we turned our attention to the problem of general congestion control. Since our own network is pure datagram with no node�to�-node flow control, the only mechanism available to us under the IP standard was the ICMP Source Quench message. With careful handling, we find this adequate to prevent serious congestion problems. We do find it necessary to be careful about the behavior of our hosts and switching nodes regarding Source Quench messages.

When to Send an ICMP Source Quench

The present ICMP standard� specifies that an ICMP Source Quench message should be sent whenever a packet is dropped, and additionally may be sent when a gateway finds itself becoming short of resources. There is some ambiguity here but clearly it is a violation of the standard to drop a packet without sending an ICMP message.

Our basic assumption is that packets ought not to be dropped during normal network operation. We therefore want to throttle senders back before they overload switching nodes and gateways. All our switching nodes send ICMP Source Quench messages well before buffer space is exhausted; they do not wait until it is necessary to drop a message before sending an ICMP Source Quench. As demonstrated in our analysis of the small�packet problem, merely providing large amounts of buffering is not a solution. In general, our experience is that Source Quench should be sent when about half the buffering space is exhausted; this is not based on extensive experimentation but appears to be a reasonable engineering decision. One could argue for an adaptive scheme that adjusted the quench generation threshold based on recent experience; we have not found this necessary as yet.

There exist other gateway implementations�that generate Source Quenches only after more than one packet has been discarded. We consider this approach undesirable since any system for controlling congestion based on the discarding of packets is wasteful of bandwidth and may be susceptible to congestion collapse under heavy load. Our understanding is that the decision to generate Source Quenches with great reluctance stems from a fear that acknowledge traffic will be quenched and that this will result in connection failure. As will be shown below, appropriate handling of Source Quench in host implementations eliminates this possibility.

What to do when an ICMP Source Quench Is Received

We inform TCP or any other protocol at that layer when ICMP receives a Source Quench. The basic action of our TCP implementations is to reduce the amount of data outstanding on connections to the host mentioned in the Source Quench. This control is applied by causing the sending TCP to behave as if the distant host's window size has been reduced. Our first implementation was simplistic but effective; once a Source Quench has been received our TCP behaves as if the window size is zero whenever the window isn't empty. This behavior continues until some number (at present 10) of ACKs have been received, at that time TCP returns to normal operation�. David Mills of Linkabit Corporation has since implemented a similar but more elaborate throttle on the count of outstanding packets in his DCN systems. The additional sophistication seems to produce a modest gain in throughput, but we have not made formal tests. Both implementations effectively prevent congestion collapse in switching nodes.

Source Quench thus has the effect of limiting the connection to a limited number (perhaps one) of out�standing messages. Thus, communication can continue but at a reduced rate, that is exactly the effect desired.

This scheme has the important property that Source Quench doesn't inhibit the sending of acknowledges or retransmissions. Implementations of Source Quench entirely within the IP layer are usually unsuccessful because IP lacks enough information to throttle a connection properly. Holding back acknowledges tends to produce retransmissions and thus unnecessary traffic. Holding back retransmissions may cause loss of a connection by a retransmission timeout. Our scheme will keep connections alive under severe overload but at reduced bandwidth per connection.

Other protocols at the same layer as TCP should also be responsive to Source Quench. In each case we would suggest that new traffic should be throttled but acknow�ledges should be treated normally. The only serious problem comes from the User Datagram Proto�col, not normally a major traffic generator. We have not imple�ment�ed any throttling in these protocols as yet; all are passed Source Quench messages by ICMP but ignore them.

Self-defense for Gateways

As we have shown, gateways are vulnerable to host mismanagement of congestion. Host misbehavior by excessive traffic generation can prevent not only the host's own traffic from getting through, but can interfere with other unrelated traffic. The problem can be dealt with at the host level but since one mal�functioning host can interfere with others, future gateways should be capable of defending themselves against such behavior by obnoxious or malicious hosts. We offer some basic self�defense techniques.

On one occasion in late 1983, a TCP bug in an ARPANET host caused the host to frantically generate retransmissions of the same datagram as fast as the ARPANET would accept them. The gateway that connected our net with the ARPANET was saturated and little useful traffic could get through, since the gateway had more bandwidth to the ARPANET than to our net. The gateway busily sent ICMP Source Quench messages but the malfunctioning host ignored them. This continued for several hours, until the mal�functioning host crashed. During this period, our network was effectively disconnected from the ARPANET.

When a gateway is forced to discard a packet, the packet is selected at the discretion of the gateway. Classic techniques for making this decision are to discard the most recently received packet, or the packet at the end of the longest outgoing queue. We suggest that a worthwhile practical measure is to discard the latest packet from the host that originated the most packets currently queued within the gateway. This strategy will tend to balance throughput amongst the hosts using the gateway. We have not yet tried this strategy, but it seems a reasonable starting point for gateway self�protection.

Another strategy is to discard a newly arrived packet if the packet duplicates a packet already in the queue. The computational load for this check is not a problem if hashing techniques are used. This check will not protect against malicious hosts but will provide some protection against TCP implementations with poor retransmission control. Gateways between fast local networks and slower long�haul networks may find this check valuable if the local hosts are tuned to work well with the local network.

Ideally the gateway should detect malfunctioning hosts and squelch them; such detection is difficult in a pure datagram system. Failure to respond to an ICMP Source Quench message, though, should be regarded as grounds for action by a gateway to disconnect a host. Detecting such failure is non�trivial but is a worthwhile area for further research.

Conclusion

The congestion control problems associated with pure datagram networks are difficult, but effective solutions exist. If IP/TCP networks are to be operated under heavy load, TCP implementations must address several key issues in ways at least as effective as the ones described here.

�� tc \l \f p “Improving Round-Trip Time Estimates in Reliable Transport Protocols; P. Karn, C. Partridge (Proc. SIGCOMM ‘87, Stowe, VT, August 1987)” � Improving Round-Trip Time Estimates in Reliable Transport Protocols

P. Karn, C. Partridge

(Originally published in: Proc. SIGCOMM ‘87, Vol 17, No. 5, October 1987)�

� tc \l \f p “Fragmentation Considered Harmful; C.A. Kent, J.C. Mogul (Proc. SIGCOMM ’87, Vol. 17, No. 5, October 1987)” �Fragmentation Considered Harmful

Christopher A. Kent�Jeffrey C. Mogul

Digital Equipment Corporation�Western Research Lab

(Originally published in Proc. SIGCOMM ‘87, Vol. 17, No. 5, October 1987)

Abstract

Internetworks can be built from many different kinds of networks, with varying limits on maximum packet size. Throughput is usually maximized when the largest possible packet is sent; unfortunately, some routes can carry only very small packets. The IP protocol allows a gateway to fragment a packet if it is too large to be transmitted. Fragmentation is at best a necessary evil; it can lead to poor per�formance or complete communication failure. There are a variety of ways to reduce the likelihood of fragmentation; some can be incorporated into exist�ing IP implementations without changes in protocol specifications. Others require new protocols, or modifications to existing protocols.

�1. Introduction

Internetworks built of heterogeneous networks are valuable because they insulate higher-level protocols from changes in network technology, because they al�low universal communication without the expense of constructing a homogeneous universal infrastructure, and because they allow the use of different network technologies as appropriate to both local-area and long-haul links. Most datagram networks set a maximum limit on tile size of packets they carry, to simplify packet buffering in the nodes and to limit how long one packet can lie up the link. In a heterogeneous interned such as the DARPA IP Internet, these packet-size limits, known as MTUs (for maximum trans�mission unit) vary widely from 254 bytes for Packet Radio networks to 2000 bytes for the Wideband Satellite Network [22]; since nobody knows exactly what is connected to the Internet, the range in MTUs may be even broader.

In general, it is better to use a few large packets instead of many small packets to carry a given amount of data, because much of the cost of packetized communication is per-packet rather than per-byte. On a high-speed LAN, throughput can increase almost linearly with packet size over a wide range of sizes. Therefore, we prefer to make our packets as large as possible.

This desire for large packets conflicts with the variation in MTUs across an internet. We want to send large packets but some network along the packets’ path may not be able to carry them. One approach to this dilemma is fragmentation when a node must transmit a packet that is larger than the MTU of the network. it breaks the packet into several smaller fragments and sends them instead. If the fragments are all sent along the same data link and are immediately reassembled at the next node, this is called transparent or intra-network fragmenta�tion. If the fragments are allowed to follow independent routes, and are reassembled only upon reaching their ultimate destination this is called inter-network frag�ment�a�tion. A good discussion of both methods, in more detail, may be found in Shoch [23].

In this paper, drawing on experience with a large heterogeneous internetwork, we examine fragmenta�tion in the context of the IP protocol [18]. IP supports the use of inter-network fragmentation. (Transparent fragmentation may be also be used as long as it is invisible to the IP layer.) Fragmentation appears at first to be an elegant solution to the problem, but subtle complications arise in real networks that can result in poor performance or even total communication failure.

Experience with inter-network fragmentation in the IP Internet has convinced us that it is something to avoid. In section 2 we compare the advantages and dis�advantages of fragmentation, in order to justify this assertion. We then discuss, in section 3, a variety of schemes for avoiding or recovering from fragmentation

2. What is wrong with fragmentation?

The arguments in favor of fragmentation are straight�forward. Fragmentation allows higher level protocols to be unconcerned with the characteristics of the transmission channel, and to send data in conveniently sized pieces. Sending larger quantities of data in each IP datagram minimizes the bookkeeping overhead asso�ciated with managing the data. (See section 3.5 fowl specific example.)

Fragmentation allows the source host to deal with routes having different MTUs without having to know what path packet are taking. The safest strategy is for the source to send very small datagrams, at a great loss of efficiency. Fragmentation allows the source to choose a size that is “reasonable” and, when that size proves to be too large, provides a mechanism that allows data to continue to get through.

Finally, fragmentation allows protocols to optimize performance for high bandwidth connections. Emerg�ing network technologies have larger and larger MTUs. Most local networks have MTUs large enough to send 1024 bytes of user data plus associated overhead in a single packet; new technologies will allow ten times that. Fragmentation provides a mechanism for deciding the actual packet size as late as possible. It especially allows protocols to avoid choosing to send small datagrams until absolutely necessary. Protocols can choose large segment sizes to take advantage of the large MTU in a local network, and rely on fragmenta�tion at gateways to send the segments through networks with small MTUs when needed. If datagrams must traverse a route consisting of several high-MTU links followed by a low-MTU link, by delaying the use of small packets until the low-MTU link is reached, fragmentation allows the use of large packets on the initial high MTU links, and thus uses those links more efficiently.

The arguments against fragmentation fall into three categories

Fragmentation causes inefficient use of resources: Poor choice of fragment sizes can greatly increase the cost of delivering a datagram. Additional bandwidth is used for the additional header information, intermediate gateways must expend computational resources to make addi�tion�al routing decisions, and the receiving host must reassemble the fragments.

Loss of fragments leads to degraded per�formance: Reassembly of IP fragments is not very robust. Loss of a single fragment requires the higher level protocol to retransmit all of the data in the original datagram, even if most of the fragments were received correctly.

Efficient reassembly is hard: Given the likelihood of lost fragments and the information present in the IP header, there are many situa�tions in which the reassembly process, though straight�forward, yields lower than desired performance.

2.1. An overview of fragmentation in IP

IP is a protocol providing unreliable delivery of datagrams. IP datagrams are encapsulated in network-specific packets. Gateways may fragment an incoming packet if it will not fit in a single outgoing packet; in this case, each fragment is sent as a separate packet. The [P header contains several fields that are used to manage fragmentation [18]:

Identification: A 16-bit field assigned by the sender to aid in assembling the fragments of a datagram. The tuple (source, destination, proto�col, identification) for a given datagram must be unique over all existing datagrams. When a packet is fragmented, the value of the Identifica�tion field of the original packet is copied into each fragment.

Time to live (TTL): An 8-bit field that specifies the maximum time, measured in seconds, that the packet may remain in the Internet system. If TTL contains the value zero, the packet must be discarded. The TTL must be decreased by at least one every time the packet passes through a gateway, even if the time required to process the packet is less than a second. Thus, the TTL field is an upper bound on packet lifetime.

Fragment offset: A 13-bit field that identifies the fragment location, relative to the beginning of the original, unfragmented datagram. Frag�ment off�sets are in units of 8 bytes.

More fragments: A l-bit field that indicates whether or not this is the last fragment of the datagram.

The reassembly process consists of matching the protocol and identification fields of incoming fragments with those of fragments already held, and coalescing the data into complete datagrams. Fragments must be discarded if their TTL expires while they are held for reassembly. (For more details of the reassembly algorithm, see [5].)

Higher level protocols such as TCP (Transmission Control Protocol) [19] use IP as a basis to implement a reliable connection between two client processes. Portions of the data stream known as segments are sent in individual IP datagrams, along with control informa�tion used by the cooperating TCP processes to ensure reliable communication. In particular, TCP uses a sequence number that covers individual bytes in the data stream, and an acknowledgment mechanism that allows the receiving process to tell the sender “I have correctly received all data up to and including sequence number n.”

2.2. Fragmentation causes inefficient resource usage

Consider the costs associated with sending a packet. Each time it passes through a gateway, there is some constant computational overhead to make routing decisions, modify the packet header, compute the new checksum, and move the packet between the appro�priate incoming and outgoing queues. In addition, a portion of the available bandwidth on the incoming and outgoing interfaces is consumed. In many cases, the constant computational overhead dominates the cost. Input and output may be overlapped using DMA devices; in a typical uniprocessor gateway, there is no way to parallelize the computational overhead.

Fragmenting at an IP gateway, rather than having the host choose the appropriate segment size to avoid fragmentation, may lead to suboptimal use of gateway resources and network bandwidth. Consider a TCP process that tries to send 1024 data bytes across a route that includes the ARPAnet, which has an MTU of 1006 bytes. The IP and TCP headers are at least 40 bytes long, leading to a total unfragmented IP data�gram 1064 bytes in length. To cross the ARPAnet, this will be broken into a 1006 byte fragment, followed by a 78 byte fragment. These short fragments amortize the fixed overhead per ARPAnet packet over very few bytes of data, and the total packet count is much higher than needed. If the sending TCP instead chooses segments that fit in a 1006 byte ARPAnet packet, the total packet count is minimized, and the total overhead is as low as possible.

For example, consider sending 10 Kbytes of data. Sending 1024-byte TCP segments generates 10 IP datagrams, each 1064 bytes long. Each datagram is fragmented into two ARPAnet packets, one 1006 bytes long and the other 78 bytes, for a total of 20 packets. If the originating TCP instead sends 966 byte segments (the largest that will fit in a single ARPAnet packet), only 11 packets are sent.

Another limit to utilizing available bandwidth lies in the interaction of the TTL and Identification fields. Assume that a reasonable initial value for the TTL field is 32 (the maximum hop count from edge to edge of the DARPA Internet is currently estimated to be between 15 and 20). If we allow fragmentation, we must ensure that all datagrams in flight have unique values for the Identification field. Thus, the maximum datagram rate is 216/32, or 2048 datagrams per second. Current gateways can forward nearly 1000 packets per second; high performance workstations and interfaces can generate packets much more rapidly, and can probably forward 4000 packets per second. We are certainly within five years of having commonly available processor and network technology that pushes against the limit imposed by the 16-bit Identification field.

This limit implies that, to increase bandwidth in the presence of fragmentation, hosts should send larger datagrams, so as to carry more data per value of the Identification field. This is a bad idea, because large datagrams lead to more fragments, and we shall show that this increases the likelihood of a severe decrease in performance. If we simply avoid fragmented data�grams, values of the Identification field need not be unique, and there is no bandwidth limit imposed by its size.

2.3. Poor performance when fragments are lost

When segments are sent that are large enough to require fragmentation, the loss of any fragment requires the entire segment to be retransmitted. This can lead to poorer performance than would have been achieved by originally sending segments that didn't require frag�menta�tion.

Gateways in the Internet must drop packets when congested. If the gateways are congested, dropping fragments only makes the situation worse. Dropped fragments mean increased retransmissions, which leads to more fragments. As the loss rate goes up due to heavy congestion, the total throughput drops dramatically, since the loss of any one fragment means that the resources expended in sending the other fragments of that datagram are entirely wasted.

Even when congestion is not the problem, retrans�mis�sion does not necessarily increase the likelihood that all the fragments that make up the segment will arrive unscathed. In particular, network idiosyncrasies may conspire to cause the same fragment or fragments to be lost on successive retransmission. We call this deter�min�istic fragment loss.

An example of deterministic fragment loss occurs in the 4.2BSD Unix implementation of TCP when datagrams pass between a local network (typically an Ethernet or a Proteon ring, with MTUs of 1500 or 2046 bytes, respectively) and the ARPAnet. The TCP prefers to send 1024 byte data segments, which are transmitted in 1064 byte IP datagrams. As seen earlier, this results in two fragments, 1006 and 78 bytes long.

The receiving gateway receives both fragments and sends them out over the local Proteon ring. The Proteon ring interface does not have sufficient buffer�ing to receive back-to-back packets, so it consistently drops the second fragment. The sending TCP times out, and retransmits the 1024 byte segment, which will again be fragmented. The second fragment is again lost, the segment times out, and eventually the connection is broken.

In addition, many of the gateways in the Internet today are derived from 4.2BSD Unix. This implementation of IP does not properly fragment a previously fragmented packet, preventing some fragments from ever reaching their destination, which might better be called guar�anteed fragment loss.

2.4. Efficient reassembly is difficult

Reassembling fragments into datagrams at the IP layer is considerably less robust than constructing a reliable stream at the TCP layer. The window mechanism in TCP allows the reassembly process to accurately gauge how much buffer space to allocate for the current stream of unacknowledged data bytes. Also, because in TCP the data stream is covered by a sequence number for each data byte, once a contiguous sequence of bytes at the beginning of the outstanding data stream has been reassembled, it can be acknowledged and handed up to the next layer. Thus, progress can always be made, even if in small amounts.

At the IP layer, there is no indication in the header of a fragmented packet of how many other fragments follow, or of the length of the entire datagram. The More Fragments bit tells only if this the last fragment of the datagram, and the Fragment Offset field tells only the position of this fragment in the complete datagram. If the total size of the incoming datagram is too large to fit available buffer space, no progress can be made. The IP specification requires hosts to be able to reassemble datagrams at least 576 bytes in length; larger segment sizes must be explicitly negotiated by higher level protocols.

Even if there is sufficient buffer space to reassemble a very large datagram, conflicts can occur. In the Inter�net, it is possible for fragments of the same datagram to take different routes to their ultimate destination. Depending on queue management strategies at gate�ways along the way, a fragment of a small datagram may arrive intermixed with the fragments of a large datagram. More concretely, assume two datagrams, L (large) and S (small), are fragmented as L1L2L3L4L5L6L7L8 and S1S2. If there are only eight buffers available, and the reception order is LlL2L3L4L5L6L7S1L8S2, reassembly of L cannot succeed, despite adequate buffer space. Upon reception of Sl, the reassembly process could discard Ll through L7, which would leave six free buffers and allow S to be reassembled when S2 arrives. Or, it could discard L8 (and subsequently S2), blocking reassembly of both L and S; the buffers would be kept full until the fragments expire. In either case, the work done to transport all the fragments of L is entirely wasted. It is not possible to coalesce a complete initial string of fragments and partially acknowledge receipt of the datagram in order to free some of the buffer space. (Dave Mills first pointed out this behavior in [13].)

It is difficult to decide how long to hold on to received fragments. The only firm limit is the TTL field; the reassembly process must discard fragments as their TTLs expire. Since each gateway decrements the TTL field, it must be set high enough to traverse the longest possible route, and thus may still be quite high when the packet arrives at its destination. Naive use of the received TTL as a reassembly timeout will cause some fragments to occupy buffer space for a much longer time than necessary. Use of too short a reassembly timeout will cause fragments to be dropped too quickly, leading to unnecessary retransmissions.

Because IP is a datagram protocol, there is no guarantee that a given fragment will ever arrive. A higher level protocol may retransmit a lost IP datagram. If a retrans�mitted datagram does not have the same value for the IP Identification field, its data will not be recognized as being the same as that in previously received fragments. The old fragments will occupy buffer space until timed out or forced out by incoming packets, and cannot fill holes left by fragments dropped from the second data�gram. This suggests that higher level protocols should attempt to use the same value for the IP Identification on both the original and retransmitted data. (This idea was proposed by John Shriver [24].)

3. Avoiding fragmentation

We believe that, in most circumstances, the potential disadvantages of fragmentation far outweigh the expected advantages. Thus, hosts should avoid sending datagrams that are so large that they will be frag�ment�ed. The length limit can be determined by a variety of general approaches:

Always send small datagrams: There is some datagram size that is small enough to fit without fragmentation on any network; we could simply send no datagrams larger than this limit.

Guess minimum MTU of path: Use a heuristic to guess the minimum MTU along the path the datagram will follow.

Discover actual minimum MTU of path: Use a protocol to determine the actual minimum MTU along the path the datagram will follow.

Guess or discover MTU and backtrack if wrong: Since an estimate might be wrong, and a discovered MTU may change if a route changes, sometimes we may have to adjust the length limit. This requires both a mechanism for detecting errors, and a mechanism for correcting them.

Later in this section we will discuss more specific fragmentation avoidance schemes.

All these strategies assume that the route the datagrams will follow is independently determined. If multiple routes are available between source and destination, one might instead try to avoid frag�menta�tion by using source-routing to avoid data links with small MTUs. Suitable alternate routes seldom exist, however, and even when they do we see no efficient way for an IP host to obtain enough information to choose a good source-route.

IP is a layered protocol architecture, and fragmentation avoidance must be done at the right layer. It makes little sense to build redundant mechanisms into several layers if it is possible to do it once. This implies that the right place for fragmentation avoidance is the layer common to all IP communication, the IP datagram layer itself (and its partner, the ICMP protocol). It would be a poor idea to put the entire fragmentation avoidance mechanism in, say, the TCP layer, because both the mechanism and any additional protocol would have to be duplicated in parallel layers, such as UDP[17], NETBLT[6], and VMTP[3], and because it would be awkward for a TCP-based mechanism to share knowledge with other layers and across connections.

This is not to say that layers above IP should be uninvolved in fragmentation avoidance. Architectural layering does not mean that higher layers must be kept ignorant of fragmentation issues. Optimal performance depends upon cooperation between layers for example, the TCP layer should not send huge segments if the IP layer knows that they will be fragmented.

Most of the fragmentation-avoidance schemes we will propose depend on keeping some knowledge about the minimum MTU (MINMTU) on the path a datagram will follow. A MINMTU value could be associated with a specific destination network, a specific destination host, a specific route (there may be several routes to one destination, with differing MINMTUs), or a specific connection (since for different applica�tions, we may want to choose between optimiz�ing for maximum bandwidth versus minimum delay, and thus might want to accept different risks of fragmentation for different connections to the same host). The MINMTU values could be kept in the IP routing database, or in a separate database, especially if per-connection MINMTUs are wanted. To support per-connection MlNMTUs, the IP layer must obtain a connection identifier from connection-oriented higher layers.

It is our belief that a per-connection scheme (degenerating to a per-route-to-specific-host scheme for connectionless protocols) is the most flexible one. While it is true that by keeping per-destination-network information one might be able to pool information about several hosts, this is not necessarily safe. Because many networks are subnetted [15], because MTUs may vary among the subnets of a given network, and because one cannot tell whether a remote network is subnetted or not, it is not true that knowing the MINMTU for one host reliably gives you the MINMTU for all other hosts on the same network.

Routes in a datagram network are not necessarily symmetric; the route a packet takes may not be the reverse of the route taken by a packet traveling in the opposite direction. Because of this, it is not safe for a host to assume that it can send a datagram as large as the one it has received from its peer. An independent MINMTU determination must be made for each direction, although the peer hosts may assist each other in doing so.

When the IP layer has determined the MINMTU for a connection or destination, it can make this information available to higher layers, such as TCP, that are generating segments to be sent as IP datagrams Segment-generating layers should ask the IP layer for a MINMTU before sending a segment; connection-based layers should either check periodically that the MINMTU has not changed, or should be able to handle asynchronous notification of a change.

3.1. Fragmentation avoidance without protocol changes

In this section we describe several fragmentation avoidance schemes that can be implemented without changing existing protocol specifications or creating new protocols. There are obvious advantages to such approaches, since they can be taken immediately by individual sites or vendors; further, we have sufficient experience with one of them to believe that it works fairly well. On the other hand, none of these schemes can make use of exact knowledge of MlNMTUs, and so may not provide optimal performance.

3.1.1. Always send tiny datagrams

If a host always sent datagrams no larger than the minimum MTU over the entire internet, these datagrams would never be fragmented. In the IP Internet the limit is no higher than 254 bytes, and might be lower. Since almost all of the Internet supports larger MTUs, and since performance depends so strongly on packet size, this approach can't provide reasonable performance. It is worth invoking only as a temporary diagnostic measure if performance actually increases when the datagram size is decreased, this is a clear indication that inappropriate fragmentation is taking place for larger datagrams.

Alternatively, one might assume that using a 576-byte limit is small enough to avoid fragmentation in virtually all cases (we hope that in the future, all new LP network links would be capable of handling packets of this size). 576 bytes is set forth in the IP specifica�tion [18] as the maximum size a host can send without explicit permission from the receiving host, so it is reasonable as an arbitrary value.

3.1.2. Send 576-byte datagrams if the route goes via a gateway

The IP layer can determine if the route for a connection or destination goes via a gateway. If it does, then the size limit is set to 576 (our favorite arbitrary value); otherwise, any size up to the MTU of the data-link layer may be used.

This approach provides maximum performance for local connections, and reasonable assurance that on most non-local connections, datagrams will not be fragmented. It is not perfect, since

It does not avoid fragmentation on every path

It may unnecessarily limit packet size, especially on subnetted collections of high-speed LANs that all support large packets.

If proxy ARP is used [14] then the IP layer may be fooled into believing that a non-local path is local, and thus use large datagrams when they are not necessarily safe.

However, it is quite easy to implement and in general provides good performance. A variant of this scheme, implemented in the TCP layer, has been used for several years at many sites and is now incorporated in 4.3BSD Unix [12]. This is the method we recommend in the absence of protocol changes.

3.13. Send 576-byte datagrams if the route goes off-net

Instead of checking whether a destination is behind a gateway, the IP layer can examine the destination's network number to decide if it is local or non-local. In a subnetted environment, this trades a higher risk of guessing too high a MINMTU for higher performance within the local collection of subnets.

3.2. Fragmentation avoidance with protocol changes

In this section we describe several fragmentation avoidance schemes that require changes to existing protocol specifications or the creation of new protocols. Mostly, these involve changes to gateways and some minor changes to IP-layer software; all are designed so as to coexist with unmodified gateways and hosts.

3.2.1. Probe mechanisms

Ideally, for a host to be able to send the largest possible datagrams that will not be fragmented, it must have perfect information as to the MINMTU along the path the datagrams will follow. Since most IP hosts do not even know what that route is, much less what the MTUs are along the route, we need a mechanism for discovering MINMTU.

The most straightforward kind of mechanism is to send a packet along the route, collecting MTU information as it goes; we call these probe mechanisms. Probe mechanisms require support from gateways each gate�way along the route must update the probe according to the MTU of the hop it is about to take. Probe mechan�isms also require support from peer hosts, since paths are asymmetric, once a probe reaches the end of its route, the information it has collected must be returned to the source host.

A probe may either gather a list of all the MTUs along the path (somewhat analogous to the IP “Record Route” option), with which the host can determine the MINMTU, or the probe may simply carry only the lowest MTU value seen along the route. The former method provides a little more information; the latter method is easier to implement and results in shorter packets.

A probe may be made only once, at the beginning of a connection or the use of a route, or it may be made periodically. Periodic probes are preferable if the MINMTU is kept per-destination or per-connection, since the route may change. If MINMTU information is kept per-route, then it will not change and consequently probes need not be repeated.

Probe mechanisms are useful for discovering other path characteristics besides MINMTU. As long as one is processing a probe, it makes sense to collect a variety of information, since it comes at little additional cost. This information could include:

Minimum bandwidth

Useful for determining appropriate transmission rates; if a host knows that a 9600-baud link is part of the path, it should behave differently than if the path is entirely via 100 Mbit fiber networks.

Maximum delay

Useful for determining realistic round-trip times; if a satellite channel is in use, with a delay of several hundred milliseconds, a host should not retransmit as quickly as if the end-to-end delay were several milliseconds.

Maximum queue length

A high value implies congestion; if measured using the “fair-queueing” algorithm [16] it indicates to a host whether it is sending too much. Alternatively, a “congestion-encountered” flag could be set if any gateway along the path is experiencing congestion.

Maximum error rate

When a link along the path is experiencing a high error rate, a host might choose to send shorter packets (so as to reduce the likelihood that an entire datagram is dropped because of a single error) or use error-correcting codes.

Hop Count

The total number of links traversed along the route may be of interest, for example, in choosing a value for the “Time To Live” field. (Collection of hop counts was proposed by Mike Karels [10].)

It is not necessary for every gateway along the path to support probing, providing they all forward the probe. Gaps in the probe information are not fatal; at worst, host behavior is the same as if no probing is done. A gateway that does support probing can cover up for an occasional uncooperative gateway by looking at the incoming link as well as the outgoing link when determining the MINMTU.

Since route choices may depend on the IP “Type of Service” and perhaps the IP “Security” option, probes should carry the same Type of Service and Security as the data packets will [4]; gateways should observe Type of Service and Security when updating values in probes.

3.2.2. Probing with ICMP messages

A probe can be done using a separate packet; in the IP architecture, we would do this using a new ICMP “Probe Path” message. This is described in detail in appendix I.

Briefly, a host wishing to probe a path sets initial values for the fields of the Probe Path message, then sends it to the destination host. Each gateway along the route updates various fields of the message. When the destination host receives the message, it copies the recorded information into a different area of the message, reinitializes the recording fields, and returns the message to the original host. If the second host requests, the message may make one more trip, after which both hosts will have the path information, including MINMTU.

3.23. Probes piggybacked on IP headers

It is not necessary to send a separate packet to probe the path. Instead, the probe information can be piggy�backed on the actual data packets, as part of the IP header. In appendix II we describe new IP header options for recording and returning MINMTU informa�tion. (Additional options could be defined for recording other path characteristics.)

In this case, a host wishing to probe a path sets initial values for the “Probe MTU” option in the IP header of a datagram it is sending. Each gateway along the route may update the value carried in this option. When the destination host receives the datagram, it copies the recorded information into a “MTU Reply” option and attaches it to the next datagram going back to the source host. When this reply is received, the first host knows the MINMTU; the second host may pass its own Probe MTU option along with the MTU Reply, so after one more datagram both hosts can know the MINMTU.

Because the piggyback method does not involve additional packets, it may be cheaper than the ICMP method; it should be cheap enough that one can send it frequently, to react to changes in the route. The drawback is that it adds overhead to the processing of data packets, and may be harder to implement, since when a host wants to return a MINMTU value it must find an outgoing datagram to which it can attach the MTU Reply option.

3.3. Recovery from fragmentation

Instead of avoiding fragmentation by trying to predict when it will occur, a host could instead detect when it occurs and recover by shrinking the datagram size. Detection can be accomplished with or without the use of new protocols.

All methods start by assuming a large datagram size, and adjusting the datagram size based on indications of fragmentation. After a few iterations of this process using a binary search on the datagram size, and after receiving acknowledgments from the remote host to verify that the datagrams are actually arriving, the source host can have arbitrarily precise knowledge of the MINMTU for the path.

Detection methods have the advantage that they cause no additional overhead unless fragmentation occurs. They have the disadvantage that they can create lots of useless traffic if not carefully implemented.

3.3.1. Use of “Don't Fragment” flag

One such approach is to set the “Don't Fragment” flag on every datagram, and use the MTU of the first hop as the initial datagram size. If a datagram reaches a gateway that would have to fragment it, the gateway (obeying the “Don't Fragment” flag) must drop the datagram and return an ICMP “Destination Unreachable/Fragmentation Needed and DF Set” message [20]. The source host, upon receiving this ICMP, should try a smaller datagram size and retransmit any unacknowledged data. (A variant of this scheme was first proposed by Geof Cooper [7].)

This method requires no protocol changes, but the drawback is that until the proper MINMTU is discovered, many datagrams will be dropped, and thus it may take a long time to set up a connection. Since many connections transfer only a few data packets (mail, for example), this is a significant overhead; it would only be useful for long connections.

3.3.2. Passive detection of fragmentation

A complementary approach is to allow fragmentation of any datagram, but to detect when this happens and adjust the datagram size accordingly. While this might take longer to arrive at the proper MINMTU, it does not force gateways to drop any datagrams in the meantime; thus it improves performance on long connections without harming brief ones. One way to do this without changing protocols is to observe the retransmission rate; from a high retransmission rate one might deduce that deterministic fragment loss is occurring. The datagram size can be lowered until the retransmission rate drops noticeably.

The problem is that a high retransmission rate may also be caused by other problems, especially congestion. Cutting the datagram size is exactly the wrong approach when fragmentation is not occurring and the path is congested, since it increases the number of packets required to send the same data and thus increases the congestion. This approach should therefore be used only when an independent mechanism is used to detect or suppress congestion, such as the use of ICMP source quenches, Nagle's fair-queueing algorithm [16], or statistical properties of the round-trip delays [9].

3.3.3. Proper use of “Time Exceeded” ICMP messages

The receiving host can tell if it is losing fragments because partial datagrams waiting on its reassembly queue will time out. The ICMP protocol currently includes a “Time Exceeded” message, including a code that can be set to indicate “fragment reassembly time exceeded.” While this message does not convey complete information on the MINMTU of the path, it is a clear indication that the source host has guessed too high and should reduce the size of the datagrams it is sending. Apparently, many IP implementations do not end this message, nor do many know what to do with it.

3.3.4. “Fragmentation Warning” ICMP messages

In this scheme, when a gateway fragments a datagram, it forwards the fragments as usual but also sends a message back to the source host. This “Fragmentation Warning” ICMP message would carry the maximum allowable datagram size, so that the source host could reduce the datagram size to fit through the link in question. The process may have to be repeated if a subsequent link has a slightly smaller MTU. (A variant of this scheme was first proposed by Art Berggreen [1].)

This scheme has a serious danger if the source host does not receive or act upon the warning message, not only will fragmentation continue to occur, but a lot of useless traffic will be created by subsequent warning messages. A gateway could avoid sending multiple warnings to the same host, at the cost of maintaining a cache of recently warned host addresses. Alternatively, we could intro�duce a new “Warn if Fragmented” flag in the IP header, analogous to the “Don't Fragment” flag. Only if this flag is set would a warning be issued, and a source host setting this flag should take care to heed warnings.

3.3.5. “Fragments Received” ICMP messages

A similar approach generates warnings at the destina�tion, rather than the gateways. If a host receives a fragmented datagram, it can send a “Fragments Received” ICMP message back to the source host. This warning would carry the size of the largest fragment of the datagram; this is a lower bound on MINMTU, although it is possible that larger datagrams could be sent without fragmentation. Again, some mechanism is needed to limit unheeded warnings, so as to prevent congestion. (A variant of this scheme was first proposed by Charles Lynn [11].)

3.4. Use of Transparent Fragmentation

The need for inter-network fragmentation, and consequently its dangers, can be reduced or eliminated by the use of transparent fragmentation (sometimes called intra-network fragmentation). If all the fragments of a datagram are sent to a unique next-hop gateway for reassembly, and if the fragmenting and reassembling gateways use a low-level protocol that increases the chances of complete delivery, two benefits are obtained:

Deterministic fragment loss is unlikely, if the protocol between the two gateways supports acknowledgments of individual fragments. It need not be completely reliable, since the end hosts are willing to accept occasional lost or mis-sequenced datagrams.

If the (reassembled) datagram subsequently traverses a network with a larger MTU, it makes more efficient use of that network than a collection of smaller fragments.

On the other hand, transparent fragmentation has many drawbacks: (1) a datagram may be repeatedly reassem�bled and refragmented; (2) gateway implemen�ta�tions become more complex and require much more buffer memory; (3) the performance gains are limited because a datagram cannot be larger than the MTU of the first-hop network and because a maximum size must be enforced to provide a limit on gateway reassembly buffer space. Most important in the IP world a destination host may still have to perform reassembly, since the MTU of the last hop link may be smaller than the datagram size; this means that most of the problems associated with internetwork fragmenta�tion would still be present, although to a lesser degree. (Transparent fragmentation was successful in the Pup architecture because almost all non-gateway Pup hosts were attached to networks with MTUs larger than the maximum allowed Pup datagram size [2].)

Since transparent fragmentation is invisible except to the gateways involved, it can be used in an IP internet wherever the benefits outweigh the drawbacks; this is specifically allowed by the IP specification [18]. We encourage designers of gateways and networks to consider the use of transparent fragmentation, especially if the natural MTU of the network is unusually small. For example, the actual IMP-to-IMP messages on the ARPAnet are only 1008 bits long; the 1007-byte MTU of the ARPAnet is an illusion created by transparent fragmentation and reassembly within the IMPs [8].

3.5. Careful use of intentional fragmentation

In certain restricted cases, and with a little luck, one can obtain significant performance improvements by sending such large datagrams that they must be fragmented immediately by the source host, before being transmitted on their first hop. This is done in Sun Microsystems’ implementation of their NFS protocol [21]. Throughput is improved because fewer datagrams are handled in the layers above IP, and because end-to-end acknowledgements are done only in the RPC layer, rather than in the transport layer as well. This performance improvement is extremely unstable; because it is vulnerable to deterministic fragment loss, performance may drop radically if gateways or interfaces with insufficient buffering are in use. In some cases, the protocol fails entirely.

We do not believe that intentional fragmentation is a good idea, since careful protocol design and imple�menta�tion should be able to provide similar peak performance without anywhere near the risk. It is especially irresponsible to use over an internet prone to congestion, since congestion may cause deterministic fragment loss and the resulting retransmission of long packet trains can only worsen the congestion.

Intentional fragmentation, in spite of its risk, is appealing because as long as it works it requires no implementation modifications beyond some parameter tuning. If it is used, we think the risk can be reduced by approaches analogous to those we have suggested for determining MINMTU.

For example, intentional fragmentation could be restricted to those destinations that are on the local network, or those without an intervening gateway. Alternatively, the source host could observe the retransmission rate and cease intentional fragmenta�tion if the rate is high; since intentional fragmentation is worse for congestion than the use of undersized datagrams, this is a good idea even when one cannot distinguish retransmissions caused by congestion from those caused by deterministic fragment loss.

If accurate information, say from a probe mechanism, shows that somewhere along the path the fragments will be re-fragmented, one would clearly not want to use intentional fragmentation. Aside from the problem that many existing gateways derived from 4.2BSD code cannot properly fragment a fragment, this results in a great expansion in the total number of fragments and consequently the risks of congestion and deterministic fragment loss.

4. Summary and Recommendations

We believe that future heterogeneous internetworks will include networks with a wide range of bandwidths, because economics force long-haul networks to have lower bandwidths than local-area networks. The MTU that maximizes performance varies with bandwidth on low-bandwidth links, a small MTU is used to limit the time the link can be occupied by one packet; on high-bandwidth links, a large MTU allows per-packet over�heads to be amortized over many bytes. Therefore, link-level MTUs will always vary within heterogeneous internetworks.

In this paper, we have explored the use of internetwork fragmentation as a solution to the problem of differing MTUs. Fragmentation frees higher level protocols from having to alter their behavior based on the route over which packets flow. To the designers of IP, internet�work fragmentation appeared to be the right choice. Unfortunately, as we have shown, blind reliance on fragmentation in IP can be costly in both performance and reliability.

4.1. Recommendations

In section 3 we described a broad variety of schemes for avoiding or ameliorating fragmentation. Not all of these schemes are worthwhile, and not all of the good ones should be adopted together. Here we suggest what we believe are the most appropriate steps to take.

We are proposing engineering modifications to a large, heterogeneous internetwork where there is a tremen�dous delay in disseminating change to all sites; some sites may never catch up. Stability is important; this means that whenever possible, a change should not disrupt those hosts that are not yet updated.

Since a robust host implementation should simply ignore packets and options that it does not understand, one might think it safe to make changes that involve sending additional packets on the off chance that the receiver knows what to do with them. In the larger context of an internetwork prone to congestion, however, we should worry about injecting useless packets. We thus favor approaches that do not repeatedly send packets that might be ignored.

4.1.1. Recommendations not involving protocol changes

Some solutions can be implemented immediately, without changes to protocol specifications. Most effective is the one described in section 3.1.2, limiting the datagram size to 576 bytes whenever the packet is routed via a gateway. This should be implemented in the IP layer, rather than in the TCP layer as in 4.3BSD.

Somewhat more difficult, but still possible without protocol changes at the IP layer or above, is the use of transparent fragmentation (that is, immediate reassembly) over networks with small MTUs. Effectively, this means increasing the MTU of such networks as viewed by hosts on other networks.

Finally, we strongly encourage implementors who use intentional fragmentation to do so only when packets are sent directly, with no gateway along the route. Also, intentional fragmentation should cease when the retransmission rate increases beyond a certain level.

We do not recommend the use of the ICMP “fragment reassembly time exceeded” message since it appears that most hosts simply ignore it; this is a shame but it may be too late to correct.

4.1.2. Recommendations for protocol changes

If protocol changes were to be considered, we would recommend the adoption of both the ICMP “Probe Path” message described in appendix I, and the IP “Probe MTU” option described in appendix II. Both of these changes require support from gateways and from host IP layers, but they can be incrementally adopted without confusing existing implementations. On the other hand, the ICMP “Probe Path” message can still cause the “useless packets” problem.

We suggest implementing both probe mechanisms because the cost of doing so is not much higher than that of implementing one, and we cannot predict which is more effective. Each may be optimal for certain applications.

4.1.3. Recommendations for new architectures

The IP Internet was intended as an experiment, and from this experiment we can extract some lessons to use in designing new architectures. Any large hetero�geneous datagram internetwork is likely to require fragmentation at times; careful design can make fragmentation normally unnecessary, and can avert its most serious drawbacks. We do not believe that frag�menta�tion should be completely hidden from hosts; to do so would be to fall into the trap of providing reliable stream protocols at too low a level. Rather, fragmenta�tion should simply be as robust as possible, so that it does not lead to performance disasters.

We urge consideration of transparent fragmentation whenever possible. There is little value in the ability to send fragments of one datagram along different routes, and reassembly by gateways should not be prohibitively expensive. Main memory sizes and costs are improving so rapidly that buffer space should no longer be considered the limiting resource; reassembly might actually improve the switching rates of gateways by reducing the number of individually switched frag�ments. We suggest that a source host be able to turn off transparent fragmentation by setting a flag in the datagram header, analogous to the IP “Don't Fragment” flag.

We also believe that the ability to record path information — not only about MTU but also about congestion, bandwidth, etc. — is so valuable that it should be done on every packet. The header overhead could be reduced by encoding the numerical informa�tion, either by reducing resolution or by using a logarithmic scale. By doing recording in standard rather than optional header fields, its cost could be made negligible.

Finally, since transparent fragmentation cannot entirely obviate the use of inter-network fragmentation, there must be a way to recover from inappropriate fragmentation. The receiving host can detect the problem, through repeated reassembly timeouts, and should notify the sending host via something akin to the ICMP “fragmentation reassembly time exceeded” message. If support for this message had been mandatory in IP, it would have eliminated the problem of complete communication failure due to deterministic fragment loss.

Acknowledgements

This paper was inspired by a flurry of messages on the TCP-IP electronic mailing list, which provoked us to write down some thoughts we had been harboring for several years. Many of the ideas in this paper come from TCP-IP participants; we have tried to cite specific references. Other participants whose important contri�bu�tions are not otherwise cited include Bob Braden, Hans-Wemer Braun, Vint Cerf, Doug Kingston, John Wobus, and Lixia Zhang. We would also like to thank Dave Boggs for continually reminding us that Pup got it right.

Appendix I. ICMP “Probe Path” message

The format of the proposed ICMP “Probe Path” message is shown in figure 1-1.

Byte�0	1	2	3

Type�Code�Checksum��Identifier�Sequence Number��Minimum MTU encountered��Minimum Bandwidth encountered��Maximum Delay encountered��Maximum Queue Length encountered��Maximum Error Rate encountered��Hop Count��Returned Identifier�Returned Sequence Number��Returned Minimum MTU encountered��Returned Minimum Bandwidth encountered��Returned Maximum Delay encountered��Returned Maximum Queue Length encountered��Returned Maximum Error Rate encountered��Returned Hop Count��Figure I-1 Format of ICMP “Probe Path” message

The fields of a Probe Path message are:

Type�To be assigned.

Code�Indicates how far through a “three-way” handshake this message is:

1 = Initial message don't believe “Returned” values; please reply.

2 = Second message believe “Returned” values; please reply.

3 = Third message believe “Returned” values; no reply expected.

For codes I and 2, gateways must update values in other fields as specified. For code 3, gateways need not update values in other fields.

Checksum�The usual ICMP checksum. It must be updated when a gateway modifies any of the other fields.

Identifier�An identifier to aid in matching probes with replies, may be zero.

Sequence Number�A sequence number to aid in matching probes with replies, may be zero.

If the Code is 1 or 2, the following six fields are updated by gateways as the message follows its route; they are all 32-bit two's complement (signed) integers. Their initial values are set by the source host, as indicated. Gateways should observe the Type of Service field and Security option in the IP header of the Probe Path message when updating these fields.

Minimum MTU encountered�Initially set to the MTU of the first hop data link, or to MAXINT (23l-l). Each gateway compares this value to the MTU of the incoming and outgoing links for the message, and reduces the recorded value, if necessary. MTU is measured in octets.

Minimum Bandwidth encountered�Initially set to the bandwidth of the first hop data link, or to MAXINT. Each gateway compares this value to the bandwidth of the incoming and outgoing links for the message, and reduces the recorded value, if necessary. Bandwidth is measured in bits per second.

Maximum Delay encountered�Initially set to the delay of the first hop data link, or to zero. Each gateway compares this value to the time it will take the packet to traverse the incoming and outgoing links, and increases the recorded value, if necessary. Delay is measured in microseconds. For networks, such as CSMA/CD, where the delay is not a simple function of the packet length, use the expected value of the delay for an average packet.

Maximum Queue Length encountered�Initially set to the length of the output queue of the source host when the packet is placed on that queue, or to zero. Each gateway compares this value to the length of the queue in which the packet is placed, and increases the recorded value, if necessary.

Maximum Error Rate encountered�Initially set to the error rate of the first hop data link, or to zero. Each gateway compares this value to the error rate of the incoming and outgoing links, and increases the recorded value, if necessary. Error rate is measured as the reciprocal of the bit-error rate; i.e., it is the expected value of the number of bits between errors.

Hop Count�Initially set to 1. Each gateway increments this value by one.

If the Code of an incoming message is 1 or 2, the following eight (“returned”) fields are used to return the previous eight (“incoming”) fields to the probing host:

Returned Identifier�Returned Sequence Number�Returned Minimum MTU encountered�Returned Minimum Bandwidth encountered�Returned Maximum Delay encountered�Returned Maximum Queue Length encountered�Returned Maximum Error Rate encountered�Returned Hop Count

The destination host copies the appropriate fields (e.g., “Minimum MTU encountered” is copied to “Returned Minimum MTU encountered”), reinitializes the incoming fields, sets the code field to 2 or 3 depending on whether it needs path information, recomputes the checksum, reverses the source and destination addresses, and returns the message. When a host receives a Code 2 or Code 3 message, it can use the values in the returned fields to update its path information database. The 32-bit wide fields are interpreted as two's complement integers; a negative value means that the field value is not valid.

Appendix II. IP “Probe MTU” options

The format of the proposed IP “Probe MTU” option is shown in figure II-1. The option type code is to be assigned; it is not copied on fragmentation, it is of option class 2 (debugging and measurement). This option is always 8 octets long.

010xxxx0�Length�Minimum MTU encountered�Identifier��Type=yyy 	Length=8

Figure II-1 Format of IP “Probe MTU” option

The value of the Probe MTU option is the minimum MTU encountered along the route followed by the packet, measured in octets. It is initialized by the source host to the MTU of the first hop data-link, or it may be initialized to 231-l. Each gateway compares this value to the MTU of the incoming and outgoing links for the packet, and reduces the recorded value, if necessary. Gateways should observe the Type of Service field and Security option in the IP header when updating this value. The source host should set the Identifier field to allow it to match the reply to this option with the appropriate connection or route.

When a destination host receives a packet with the Probe MTU option, it creates an “MTU Reply” option, whose format is shown in figure II-2. The option type code is to be assigned; it is not copied on fragmentation, it is of option class 2 (debugging and measurement). This option is always 8 octets long. The “Returned Minimum MTU” and “Identifier” fields are copies of the corresponding fields in the received Probe MTU option.

010xxxx1�Length�Returned Minimum MTU�Identifier��Type=zzz 	Length=8

Figure 11-2 Format of IP “MTU Reply” option

The destination host returns this option attached to the next packet sent to the originating host. Because several Probe MTU options may arrive before one is sent, the MTU Reply option may appear more than once in a packet. A packet carrying an MTU Reply option may also carry a Probe MTU option.

When a host receives an MTU Reply option, it uses the Identifier field to associate the Minimum MTU value with a particular connection or destination.

References

1. Art Berggreen. IP Datagram Sizes. Electronic distribution of the TCP-IP Discussion Group, no MessageID.

2. David R. Boggs, John F. Shoch, Edward A. Taft, and Robert M. Metcalfe. "Pup An intemetwork architecture." IEEE Transactions on Communications COM-28, 4 (April 1980), 612-624.

3. David R. Cheriton. VMTP: A transport protocol for next generation communication systems. SIGCOMM '86, ACM SIGCOMM, August, 1986.

4. J. Noel Chiappa. IP Datagram Sizes. Electronic dis�tribution of the TCP-IP Discussion Group, MessageID <12304502322.33.JNC@XX.LCS.MlT.EDU>.

5. David D. Clark. IP Datagram Reassembly Algorithms. RFC 815, Network Information Center, SRI International, July, 1982.

6. David D. Clark, Mark L. Lambert, and Lixia Zhang. NETBLT A Bulk Data Transfer Protocol. RFC 998, Network Information Center, SRI International, March, 1987.

7. Geof Cooper. IP Datagram Sizes. Electronic dis�tribution of the TCP-IP Discussion Group, MessagelD <8705230517.AA01407@apolling.imagen.uucp>.

8. F. E. Heart, R. E. Kahn. S. M. Ornstein, W. R. Crowther, and D. C. Walden. The interface message processor for the ARPA computer network Proc. AFIPS Spring Joint Computer Conference, May, 1970, pp. 551-567.

9. Van Jacobson. Retransmit Timers Theory and Practice. In preparation.

10. Mike Karels. IP Datagram Sizes. Electronic dis�tribution of the TCP-IP Discussion Group, MessagelD <8705262316.AA08021@okeefe.Berkeley.EDU>.

11. Charles Lynn. IP Datagram Sizes. Electronic dis�tribution of the TCP-IP Discussion Group, MessagelD <[G.BBN.COM]22-May-87 20:ll:55.CLYNN>.

12. M. Kirk McKusick, Mike Karels, and Sam Leffler. Performance Improvements and Functional Enhance�ments in 4.3BSD. Proc. Summer USENIX Conference, June, 1985, pp. 519-531.

13. Dave Mills. IP Datagram Sizes. Electronic dis�tribution of the TCP-IP Discussion Group, MessagelD <8705261315.aO29301@Huey.UDEL.EDU>.

14. Jeffrey Mogul. Internet Subnets. RFC 917, Network Information Center, SRI International, October, 1984.

15. Jeffrey Mogul and Jon Postel. Internet Standard Subnetting Procedure. RFC 950, Network Information Center, SRI International, August, 1985.

16. John B. Nagle. "On Packet Switches with Infinite Storage.” IEEE Transactions on Communications COM-35, 4 (April 1987), 435–438.

17. Jon Postel. User Datagram Protocol. RFC 768, Network Information Center, SRI International, August, 1980.

18. Jon Postel. Internet Protocol. RFC 791, Network Information Center, SRI International, September, 1981.

19. Jon Postel. Transmission Control Protocol. RFC 793, Network Information Center, SRI International, September, 1981.

20. Jon Postel. Internet Control Message Protocol. RFC 792, Network Information Center, SRI International, September, 1981.

21. Russel Sandberg, David Goldberg, Steve Kleiman, Dan Walsh, and Bob Lyon. Design and Implementa�tion of the Sun Network Filesystem. Proc. Summer USENIX Conference, June, 1985, pp. 119-130.

22. Alan Sheltzer, Robert Hinden, and Mike Brescia. “Connecting different types of networks with gate�ways.” Data Communications (August 1982), 119126.

23. John Shoch. “Packet Fragmentation in Inter-network Protocols.” Computer Networks 3, 1 (February 1979), 3-8.

24. John A. Shriver. IP Datagram Sizes. Electronic dis�tribution of the TCP-IP Discussion Group, MessageID < 8705261623.AA12946@monk.proteon.com>.

�� tc \l \f p “Multicast Routing in Internetworks and Extended LANs; S. Deering (Proc. SIGCOMM ‘88, Stanford, CA, August 1988)” � Multicast Routing in Internetworks and Extended LANs

S. Deering

(Originally Published in: Proc. SIGCOMM ‘88, Vol 18, No. 4, August 1988)

�� tc \l \f p “The Design Design Philosophy of the DARPA Internet Protocols; D.D. Clark (Proc. SIGCOMM ‘88, Stanford, CA, August 1988)” �The Design Philosophy of the DARPA Internet Protocols

David D. Clark��Massachusetts Institute of Technology�Laboratory for Computer Science�Cambridge, MA. 02139

(Originally published in Proc. SIGCOMM ‘88, Computer Communication Review Vol. 18, No. 4, August 1988, pp. 106–114)

Abstract

The Internet protocol suite, TCP/IP, was first proposed fifteen years ago. It was developed by the Defense Advanced Research Projects Agency (DARPA), and has been used widely in military and commercial systems. While there have been papers and specifications that describe how the protocols work, it is sometimes difficult to deduce from these why the protocol is as it is. For example, the Internet protocol is based on a connectionless or datagram mode of service. The motivation for this has been greatly mis�understood. This paper attempts to capture some of the early reasoning which shaped the Internet protocols.

�Introduction

For the last 15 years� , the Advanced Research Projects Agency of the U.S. Department of Defense has been developing a suite of protocols for packet switched networking. These protocols, which include the Internet Protocol (IP), and the Transmission Control Protocol (TCP), are now U.S. Department of Defense standards for internetworking, and are in wide use in the commercial networking environment. The ideas developed in this effort have also influenced other protocol suites, most importantly the connectionless configuration of the ISO protocols�,�,�.

While specific information on the DOD protocols is fairly generally available�,�,�, it is sometimes difficult to determine the motivation and reasoning which led to the design.

In fact, the design philosophy has evolved considerably from the first proposal to the current standards. For example, the idea of the datagram, or connectionless service, does not receive particular emphasis in the first paper, but has come to be the defining charac�teristic of the protocol. Another example is the layering of the architecture into the IP and TCP layers. This seems basic to the design, but was also not a part of the original proposal. These changes in the Internet design arose through the repeated pattern of implementation and testing that occurred before the standards were set.

The Internet architecture is still evolving. Sometimes a new extension challenges one of the design principles, but in any case an understanding of the history of the design provides a necessary context for current design extensions. The connectionless configuration of ISO protocols has also been colored by the history of the Internet suite, so an understanding of the Internet design philosophy may be helpful to those working with ISO.

This paper catalogs one view of the original objectives of the Internet architecture, and discusses the relation between these goals and the important features of the protocols.

Fundamental Goal

The top level goal for the DARPA Internet Architecture was to develop an effective technique for multiplexed utilization of existing interconnected networks. Some elaboration is appropriate to make clear the meaning of that goal.

 The components of the Internet were networks, which were to be interconnected to provide some larger service. The original goal was to connect together the original ARPANET� with the ARPA packet radio network�,�, in order to give users on the packet radio network access to the large service machines on the ARPANET. At the time it was assumed that there would be other sorts of networks to interconnect, although the local area network had not yet emerged.

An alternative to interconnecting existing networks would have been to design a unified system which incorporated a variety of different transmission media, a multi-media network. While this might have permitted a higher degree of integration, and thus better performance, it was felt that it was necessary to incorporate the then existing network architectures if Internet was to be useful in a practical sense. Further, networks represent administrative boundaries of control, and it was an ambition of this project to come to grips with the problem of integrating a number of separately administrated entities into a common utility.

The technique selected for multiplexing was packet switching. An alternative such as circuit switching could have been considered, but the applications being supported, such as remote login, were naturally served by the packet switching paradigm, and the networks which were to be integrated together in this project were packet switching networks. So packet switching was accepted as a fundamental component of the Internet architecture.

The final aspect of this fundamental goal was the assumption of the particular technique for inter�connecting these networks. Since the technique of store and forward packet switching, as demonstrated in the previous DARPA project, the ARPANET, was well understood, the top level assumption was that networks would be interconnected by a layer of Internet packet switches, which were called gateways.

From these assumptions comes the fundamental structure of the Internet: a packet switched commun�ica�tions facility in which a number of distinguishable networks are connected together using packet com�mun�i�cations processors called gateways which implement a store and forward packet forwarding algorithm.

Second Level Goals

The top level goal stated in the previous section contains the word "effective," without offering any definition of what an effective interconnection must achieve. The following list summarizes a more detailed set of goals which were established for the Internet architecture.

Internet communication must continue despite loss of networks or gateways.

The Internet must support multiple types of communications service.

The Internet architecture must accommodate a variety of networks.

The Internet architecture must permit distributed management of its resources.

The Internet architecture must be cost effective.

The Internet architecture must permit host attachment with a low level of effort.

The resources used in the internet architecture must be accountable.

This set of goals might seem to be nothing more than a checklist of all the desirable network features. It is important to understand that these goals are in order of importance, and an entirely different network architecture would result if the order were changed. For example, since this network was designed to operate in a military context, which implied the possibility of a hostile environment, survivability was put as a first goal, and accountability as a last goal. During wartime, one is less concerned with detailed accounting of resources used than with mustering whatever resources are available and rapidly deploying them in an operational manner. While the architects of the Internet were mindful of accountability, the problem received very little attention during the early stages of the design, and is only now being considered. An architecture primarily for commercial deployment would clearly place these goals at the opposite end of the list.

Similarly, the goal that the architecture be cost effective is clearly on the list, but below certain other goals, such as distributed management, or support of a wide variety of networks. Other protocol suites, including some of the more popular commercial architectures, have been optimized to a particular kind of network, for example a long haul store and forward network built of medium speed telephone lines, and deliver a very cost effective solution in this context, in exchange for dealing somewhat poorly with other kinds of nets, such as local area nets.

The reader should consider carefully the above list of goals, and recognize that this is not a "motherhood" list, but a set of priorities which strongly colored the design decisions within the Internet architecture. The following sections discuss the relationship between this list and the features of the Internet.

Survivability in the Face of Failure

The most important goal on the list is that the Internet should continue to supply communications service, even though networks and gateways are failing. In particular, this goal was interpreted to mean that if two entities are communicating over the Internet, and some failure causes the Internet to be temporarily disrupted and reconfigured to reconstitute the service, then the entities communicating should be able to continue without having to reestablish or reset the high level state of their conversation. More concretely, at the service interface of the transport layer, this architecture provides no facility to communicate to the client of the transport service that the synchronization between the sender and the receiver may have been lost. It was an assumption in this architecture that synchronization would never be lost unless there was no physical path over which any sort of communication could be achieved. In other words, at the top of transport, there is only one failure, and it is total partition. The architecture was to mask completely any transient failure.

To achieve this goal, the state information which describes the on-going conversation must be protected. Specific examples of state information would be the number of packets transmitted, the number of packets acknowledged, or the number of outstanding flow control permissions. If the lower layers of the archi�tecture lose this information, they will not be able to tell if data has been lost, and the application layer will have to cope with the loss of synchrony. This architec�ture insisted that this disruption not occur, which meant that the state information must be protected from loss.

In some network architectures, this state is stored in the intermediate packet switching nodes of the network. In this case, to protect the information from loss, it must replicated. Because of the distributed nature of the replication, algorithms to ensure robust replication are themselves difficult to build, and few networks with distributed state information provide any sort of protection against failure. The alternative, which this architecture chose, is to take this informa�tion and gather it at the endpoint of the net, at the entity which is utilizing the service of the network. I call this approach to reliability "fate-sharing." The fate-sharing model suggests that it is acceptable to lose the state information associated with an entity if, at the same time, the entity itself is lost. Specifically, information about transport level synchronization is stored in the host which is attached to the net and using its communication service.

There are two important advantages to fate-sharing over replication. First, fate-sharing protects against any number of intermediate failures, whereas replication can only protect against a certain number (less than the number of replicated copies). Second, fate-sharing is much easier to engineer than replication.

There are two consequences to the fate-sharing approach to survivability. First, the intermediate packet switching nodes, or gateways, must not have any essential state information about on-going connections. Instead, they are stateless packet switches, a class of network design sometimes called a "datagram" network. Secondly, rather more trust is placed in the host machine than in an architecture where the network ensures the reliable delivery of data. If the host resident algorithms that ensure the sequencing and acknowledgment of data fail, applications on that machine are prevented from operation.

Despite the fact that survivability is the first goal in the list, it is still second to the top level goal of interconnection of existing networks. A more surviv�able technology might have resulted from a single multi-media network design. For example, the Internet makes very weak assumptions about the ability of a network to report that it has failed. Internet is thus forced to detect network failures using Internet level mechanisms, with the potential for a slower and less specific error detection.

Types of Service

The second goal of the Internet architecture is that it should support, at the transport service level, a variety of types of service. Different types of service are distinguished by differing requirements for such things as speed, latency and reliability. The traditional type of service is the bi-directional reliable delivery of data. This service, which is sometimes called a "virtual circuit" service, is appropriate for such applications as remote login or file transfer. It was the first service provided in the Internet architecture, using the Transmission Control Protocol (TCP)�. It was early recognized that even this service had multiple variants, because remote login required a service with low delay in delivery, but low requirements for bandwidth, while file transfer was less concerned with delay, but very concerned with high throughput. TCP attempted to provide both these types of service.

The initial concept of TCP was that it could be general enough to support any needed type of service. However, as the full range of needed services became clear, it seemed too difficult to build support for all of them into one protocol.

The first example of a service outside the range of TCP was support for XNET�, the cross-Internet debugger. TCP did not seem a suitable transport for XNET for several reasons. First, a debugger protocol should not be reliable. This conclusion may seem odd, but under conditions of stress or failure (which may be exactly when a debugger is needed) asking for reliable communications may prevent any communications at all. It is much better to build a service which can deal with whatever gets through, rather than insisting that every byte sent be delivered in order. Second, if TCP is general enough to deal with a broad range of clients, it is presumably somewhat complex. Again, it seemed wrong to expect support for this complexity in a debugging environment, which may lack even basic services expected in an operating system (e.g. support for timers.) So XNET was designed to run directly on top of the datagram service provided by Internet.

Another service which did not fit TCP was real time delivery of digitized speech, which was needed to support the teleconferencing aspect of command and control applications. In real time digital speech, the primary requirement is not a reliable service, but a service which minimizes and smoothes the delay in the delivery of packets. The application layer is digitizing the analog speech, packetizing the resulting bits, and sending them out across the network on a regular basis. They must arrive at the receiver at a regular basis in order to be converted back to the analog signal. If packets do not arrive when expected, it is impossible to reassemble the signal in real time. A surprising observation about the control of variation in delay is that the most serious source of delay in networks is the mechanism to provide reliable delivery. A typical reliable transport protocol responds to a missing packet by requesting a retransmission and delaying the delivery of any subsequent packets until the lost packet has been retransmitted. It then delivers that packet and all remaining ones in sequence. The delay while this occurs can be many times the round trip delivery time of the net, and may completely disrupt the speech reassembly algorithm. In contrast, it is very easy to cope with an occasional missing packet. The missing speech can simply be replaced by a short period of silence, which in most cases does not impair the intelligibility of the speech to the listening human. If it does, high level error correction can occur, and the listener can ask the speaker to repeat the damaged phrase.

It was thus decided, fairly early in the development of the Internet architecture, that more than one transport service would be required, and the architecture must be prepared to tolerate simultaneously transports which wish to constrain reliability, delay, or bandwidth, at a minimum.

This goal caused TCP and IP, which originally had been a single protocol in the architecture, to be separated into two layers. TCP provided one particular type of service, the reliable sequenced data stream, while IP attempted to provide a basic building block out of which a variety of types of service could be built. This building block was the datagram, which had also been adopted to support survivability. Since the reliability associated with the delivery of a datagram was not guaranteed, but "best effort," it was possible to build out of the datagram a service that was reliable (by acknowledging and retransmitting at a higher level), or a service which traded reliability for the primitive delay characteristics of the underlying network sub�strate. The User Datagram Protocol (UDP)� was created to provide a application-level interface to the basic datagram service of Internet.

The architecture did not wish to assume that the underlying networks themselves support multiple types of services, because this would violate the goal of using existing networks. Instead, the hope was that multiple types of service could be constructed out of the basic datagram building block using algorithms within the host and the gateway. For example, (although this is not done in most current implementations) it is possible to take datagrams which are associated with a controlled delay but unreliable service and place them at the head of the transmission queues unless their lifetime has expired, in which case they would be discarded; while packets associated with reliable streams would be placed at the back of the queues, but never discarded, no matter how long they had been in the net.

It proved more difficult than first hoped to provide multiple types of service without explicit support from the underlying networks. The most serious problem was that networks designed with one particular type of service in mind were not flexible enough to support other services. Most commonly, a network will have been designed under the assumption that it should deliver reliable service, and will inject delays as a part of producing reliable service, whether or not this reliability is desired. The interface behavior defined by X.25, for example, implies reliable delivery, and there is no way to turn this feature off. Therefore, although Internet operates successfully over X.25 networks it cannot deliver the desired variability of type service in that context. Other networks which have an intrinsic datagram service are much more flexible in the type of service they will permit, but these networks are much less common, especially in the long-haul context.

Varieties of Networks

It was very important for the success of the Internet architecture that it be able to incorporate and utilize a wide variety of network technologies, including military and commercial facilities. The Internet architecture has been very successful in meeting this goal; it is operated over a wide variety of networks, including long haul nets (the ARPANET itself and various X.25 networks), local area nets (Ethernet, ringnet, etc.), broadcast satellite nets (the DARPA Atlantic Satellite Network�,� operating at 64 kilobits per second and the DARPA Experimental Wideband Satellite Net,� operating within the United States at 3 megabits per second), packet radio networks (the DARPA packet radio network, as well as an experimental British packet radio net and a network developed by amateur radio operators), a variety of serial links, ranging from 1200 bit per second asynchronous connections to T1 links, and a variety of other ad hoc facilities, including intercomputer busses and the transport service provided by the higher layers of other network suites, such as IBM's HASP.

The Internet architecture achieves this flexibility by making a minimum set of assumptions about the function which the net will provide. The basic assumption is that network can transport a packet or datagram. The packet must be of reasonable size, perhaps 100 bytes minimum, and should be delivered with reasonable but not perfect reliability. The network must have some suitable form of addressing if it is more than a point to point link.

There are a number of services which are explicitly not assumed from the network. These include reliable or sequenced delivery, network level broadcast or multicast, priority ranking of transmitted packet, support for multiple types of service, and internal knowledge of failures, speeds, or delays. If these services had been required, then in order to accommodate a network within the Internet, it would be necessary either that the network support these services directly, or that the network interface software provide enhancements to simulate these services at the endpoint of the network. It was felt that this was an undesirable approach, because these services would have to be re-engineered and reimplemented for every single network and every single host interface to every network. By engineering these services at the transport, for example reliable delivery via TCP, the engineering must be done only once, and the implementation must be done only once for each host. After that, the implementation of interface software for a new network is usually very simple.

Other Goals

The three goals discussed so far were those which had the most profound impact on the design on the architecture. The remaining goals, because they were lower in importance, were perhaps less effectively met, or not so completely engineered. The goal of permitting distributed management of the Internet has certainly been met in certain respects. For example, not all of the gateways in the Internet are implemented and managed by the same agency. There are several different management centers within the deployed Internet, each operating a subset of the gateways, and there is a two-tiered routing algorithm which permits gateways from different administrations to exchange routing tables, even though they do not completely trust each other, and a variety of private routing algorithms used among the gateways in a single administration. Similarly, the various organizations which manage the gateways are not necessarily the same organizations that manage the networks to which the gateways are attached.

On the other hand, some of the most significant problems with the Internet today relate to lack of sufficient tools for distributed management, especially in the area of routing. In the large internet being currently operated, routing decisions need to be constrained by policies for resource usage. Today this can be done only in a very limited way, which requires manual setting of tables. This is error-prone and at the same time not sufficiently powerful. The most important change in the Internet architecture over the next few years will probably be the development of a new generation of tools for management of resources in the context of multiple administrations.

It is clear that in certain circumstances, the Internet architecture does not produce as cost effective a utilization of expensive communication resources as a more tailored architecture would. The headers of Internet packets are fairly long (a typical header is 40 bytes), and if short packets are sent, this overhead is apparent. The worse case, of course, is the single character remote login packets, which carry 40 bytes of header and one byte of data. Actually, it is very difficult for any protocol suite to claim that these sorts of interchanges are carried out with reasonable efficiency. At the other extreme, large packets for file transfer, with perhaps 1,000 bytes of data, have an overhead for the header of only four percent.

Another possible source of inefficiency is retransmission of lost packets. Since Internet does not insist that lost packets be recovered at the network level, it may be necessary to retransmit a lost packet from one end of the Internet to the other. This means that the retransmitted packet may cross several intervening nets a second time, whereas recovery at the network level would not generate this repeat traffic. This is an example of the tradeoff resulting from the decision, discussed above, of providing services from the end-points. The network interface code is much simpler, but the overall efficiency is potentially less. However, if the retransmission rate is low enough (for example, 1%) then the incremental cost is tolerable. As a rough rule of thumb for networks incorporated into the architecture, a loss of one packet in a hundred is quite reasonable, but a loss of one packet in ten suggests that reliability enhancements be added to the network if that type of service is required.

The cost of attaching a host to the Internet is perhaps somewhat higher than in other architectures, because all of the mechanisms to provide the desired types of service, such as acknowledgments and retransmission strategies, must be implemented in the host rather than in the network. Initially, to programmers who were not familiar with protocol implementation, the effort of doing this seemed somewhat daunting. Implementors tried such things as moving the transport protocols to a front end processor, with the idea that the protocols would be implemented only once, rather than again for every type of host. However, this required the invention of a host to front end protocol which some thought almost as complicated to implement as the original transport protocol. As experience with protocols increases, the anxieties associated with implementing a protocol suite within the host seem to be decreasing, and implementations are now available for a wide variety of machines, including personal computers and other machines with very limited computing resources.

A related problem arising from the use of host-resident mechanisms is that poor implementation of the mechanism may hurt the network as well as the host. This problem was tolerated, because the initial experiments involved a limited number of host implementations which could be controlled. However, as the use of Internet has grown, this problem has occasionally surfaced in a serious way. In this respect, the goal of robustness, which led to the method of fate-sharing, which led to host-resident algorithms, contri�butes to a loss of robustness if the host mis-behaves.

The last goal was accountability. In fact, accounting was discussed in the first paper by Cerf and Kahn as an important function of the protocols and gateways. However, at the present time, the Internet architecture contains few tools for accounting for packet flows. This problem is only now being studied, as the scope of the architecture is being expanded to include non-military consumers who are seriously concerned with under�stand�ing and monitoring the usage of the resources within the internet.

Architecture and Implementation

The previous discussion clearly suggests that one of the goals of the Internet architecture was to provide wide flexibility in the service offered. Different transport protocols could be used to provide different types of service, and different networks could be incorporated. Put another way, the architecture tried very hard not to constrain the range of service which the Internet could be engineered to provide. This, in turn, means that to understand the service which can be offered by a particular implementation of an Internet, one must look not to the architecture, but to the actual engineer�ing of the software within the particular hosts and gateways, and to the particular networks which have been incorporated. I will use the term "realization" to describe a particular set of networks, gateways and hosts which have been connected together in the context of the Internet architecture. Realizations can differ by orders of magnitude in the service which they offer. Realizations have been built out of 1200 bit per second phone lines, and out of networks only with speeds greater than 1 megabit per second. Clearly, the throughput expectations which one can have of these realizations differ by orders of magnitude. Similarly, some Internet realizations have delays measured in tens of milliseconds, where others have delays measured in seconds. Certain applications such as real time speech work fundamentally differently across these two realizations. Some Internets have been engineered so that there is great redundancy in the gateways and paths. These Internets are survivable, because resources exist which can be reconfigured after failure. Other Internet realizations, to reduce cost, have single points of connectivity through the realization, so that a failure may partition the Internet into two halves.

The Internet architecture tolerates this variety of realization by design. However, it leaves the designer of a particular realization with a great deal of engineering to do. One of the major struggles of this architectural development was to understand how to give guidance to the designer of a realization, guidance which would relate the engineering of the realization to the types of service which would result. For example, the designer must answer the following sort of question. What sort of bandwidths must be in the underlying networks, if the overall service is to deliver a throughput of a certain rate? Given a certain model of possible failures within this realization, what sorts of redundancy ought to be engineered into the realization?

Most of the known network design aids did not seem helpful in answering these sorts of questions. Protocol verifiers, for example, assist in confirming that protocols meet specifications. However, these tools almost never deal with performance issues, which are essential to the idea of the type of service. Instead, they deal with the much more restricted idea of logical correctness of the protocol with respect to specification. While tools to verify logical correctness are useful, both at the specification and implementation stage, they do not help with the severe problems that often arise related to performance. A typical implementation experience is that even after logical correctness has been demonstrated, design faults are discovered that may cause a performance degradation of an order of magnitude. Exploration of this problem has led to the conclusion that the difficulty usually arises, not in the protocol itself, but in the operating system on which the protocol runs. This being the case, it is difficult to address the problem within the context of the architectural specification. However, we still strongly feel the need to give the implementor guidance. We continue to struggle with this problem today.

The other class of design aid is the simulator, which takes a particular realization and explores the service which it can deliver under a variety of loadings. No one has yet attempted to construct a simulator which take into account the wide variability of the gateway implementation, the host implementation, and the network performance which one sees within possible Internet realizations. It is thus the case that the analysis of most Internet realizations is done on the back of an envelope. It is a comment on the goal structure of the Internet architecture that a back of the envelope analysis, if done by a sufficiently know�ledgeable person, is usually sufficient. The designer of a particular Internet realization is usually less concerned with obtaining the last five percent possible in line utilization than knowing whether the desired type of service can be achieved at all given the resources at hand at the moment.

The relationship between architecture and performance is an extremely challenging one. The designers of the Internet architecture felt very strongly that it was a serious mistake to attend only to logical correctness and ignore the issue of performance. However, they experienced great difficulty in formalizing any aspect of performance constraint within the architecture. These difficulties arose both because the goal of the architecture was not to constrain performance, but to permit variability, and secondly (and perhaps more fundamentally), because there seemed to be no useful formal tools for describing performance.

This problem was particularly aggravating because the goal of the Internet project was to produce specification documents which were to become military standards. It is a well known problem with government contracting that one cannot expect a contractor to meet any criteria which is not a part of the procurement standard. If the Internet is concerned about performance, therefore, it was mandatory that performance requirements be put into the procurement specification. It was trivial to invent specifications which constrained the perform�ance, for example to specify that the implementation must be capable of passing 1,000 packets a second. However, this sort of constraint could not be part of the architecture, and it was therefore up to the individual performing the procurement to recognize that these performance constraints must be added to the specifica�tion, and to specify them properly to achieve a realization which provides the required types of service. We do not have a good idea how to offer guidance in the architecture for the person performing this task.

Datagrams

The fundamental architectural feature of the Internet is the use of datagrams as the entity which is transported across the underlying networks. As this paper has suggested, there are several reasons why datagrams are important within the architecture. First, they eliminate the need for connection state within the intermediate switching nodes, which means that the Internet can be reconstituted after a failure without concern about state. Secondly, the datagram provides a basic building block out of which a variety of types of service can be implemented. In contrast to the virtual circuit, which usually implies a fixed type of service, the datagram provides a more elemental service which the endpoints can combine as appropriate to build the type of service needed. Third, the datagram represents the minimum network service assumption, which has permitted a wide variety of networks to be incorporated into various Internet realizations. The decision to use the datagram was an extremely successful one, which allowed the Internet to meet its most important goals very successfully.

There is a mistaken assumption often associated with datagrams, which is that the motivation for datagrams is the support of a higher level service which is essentially equivalent to the datagram. In other words, it has sometimes been suggested that the datagram is provided because the transport service which the application requires is a datagram service. In fact, this is seldom the case. While some applications in the Internet, such as simple queries of date servers or name servers, use an access method based on an unreliable datagram, most services within the Internet would like a more sophisticated transport model than simple datagram. Some services would like the reliability enhanced, some would like the delay smoothed and buffered, but almost all have some expectation more complex than a datagram. It is important to understand that the role of the datagram in this respect is as a building block, and not as a service in itself.

TCP

There were several interesting and controversial design decisions in the development of TCP, and TCP itself went through several major versions before it became a reasonably stable standard. Some of these design decisions, such as window management and the nature of the port address structure, are discussed in a series of implementation notes published as part of the TCP protocol handbook.�,� But again the motivation for the decision is sometimes lacking. In this section, I attempt to capture some of the early reasoning that went into parts of TCP. This section is of necessity incomplete; a complete review of the history of TCP itself would require another paper of this length.

The original ARPANET host-to host protocol provided flow control based on both bytes and packets. This seemed overly complex, and the designers of TCP felt that only one form of regulation would be sufficient. The choice was to regulate the delivery of bytes, rather than packets. Flow control and acknowledgment in TCP is thus based on byte number rather than packet number. Indeed, in TCP there is no significance to the packetization of the data.

This decision was motivated by several considerations, some of which became irrelevant and others of which were more important that anticipated. One reason to acknowledge bytes was to permit the insertion of control information into the sequence space of the bytes, so that control as well as data could be acknowledged. That use of the sequence space was dropped, in favor of ad hoc techniques for dealing with each control message. While the original idea has appealing generality, it caused complexity in practice.

A second reason for the byte stream was to permit the TCP packet to be broken up into smaller packets if necessary in order to fit through a net with a small packet size. But this function was moved to the IP layer when IP was split from TCP, and IP was forced to invent a different method of fragmentation.

A third reason for acknowledging bytes rather than packets was to permit a number of small packets to be gathered together into one larger packet in the sending host if retransmission of the data was necessary. It was not clear if this advantage would be important; it turned out to be critical. Systems such as UNIX which have a internal communication model based on single character interactions often send many packets with one byte of data in them. (One might argue from a network perspective that this behavior is silly, but it was a reality, and a necessity for interactive remote login.) It was often observed that such a host could produce a flood of packets with one byte of data, which would arrive much faster than a slow host could process them. The result is lost packets and retransmission.

If the retransmission was of the original packets, the same problem would repeat on every retransmission, with a performance impact so intolerable as to prevent operation. But since the bytes were gathered into one packet for retransmission, the retransmission occurred in a much more effective way which permitted practical operation.

On the other hand, the acknowledgment of bytes could be seen as creating this problem in the first place. If the basis of flow control had been packets rather than bytes, then this flood might never have occurred. Control at the packet level has the effect, however, of providing a severe limit on the throughput if small packets are sent. If the receiving host specifies a number of packets to receive, without any knowledge of the number of bytes in each, the actual amount of data received could vary by a factor of 1000, depending on whether the sending host puts one or one thousand bytes in each packet.

In retrospect, the correct design decision may have been that if TCP is to provide effective support of a variety of services, both packets and bytes must be regulated, as was done in the original ARPANET protocols.

Another design decision related to the byte stream was the End-Of-Letter flag, or EOL. This has now vanished from the protocol, replaced by the Push flag, or PSH. The original idea of EOL was to break the byte stream into records. It was implemented by putting data from separate records into separate packets, which was not compatible with the idea of combining packets on retransmission. So the semantics of EOL was changed to a weaker form, meaning only that the data up to this point in the stream was one or more complete application-level elements, which should occasion a flush of any internal buffering in TCP or the network. By saying "one or more" rather than "exactly one", it became possible to combine several together and preserve the goal of compacting data in reassembly. But the weaker semantics meant that various applications had to invent an ad hoc mechanism for delimiting records on top of the data stream.

In this evolution of EOL semantics, there was a little known intermediate form, which generated great debate. Depending on the buffering strategy of the host, the byte stream model of TCP can cause great problems in one improbable case. Consider a host in which the incoming data is put in a sequence of fixed size buffers. A buffer is returned to the user either when it is full, or an EOL is received. Now consider the case of the arrival of an out-of-order packet which is so far out of order to lie beyond the current buffer. Now further consider that after receiving this out-of-order packet, a packet with an EOL causes the current buffer to be returned to the user only partially full. This particular sequence of actions has the effect of causing the out of order data in the next buffer to be in the wrong place, because of the empty bytes in the buffer returned to the user. Coping with this generated book-keeping problems in the host which seemed unnecessary.

To cope with this it was proposed that the EOL should "use up" all the sequence space up to the next value which was zero mod the buffer size. In other words, it was proposed that EOL should be a tool for mapping the byte stream to the buffer management of the host. This idea was not well received at the time, as it seemed much too ad hoc, and only one host seemed to have this problem.� In retrospect, it may have been the correct idea to incorporate into TCP some means of relating the sequence space and the buffer management algorithm of the host. At the time, the designers simply lacked the insight to see how that might be done in a sufficiently general manner.

Conclusion

In the context of its priorities, the Internet architecture has been very successful. The protocols are widely used in the commercial and military environment, and have spawned a number of similar architectures. At the same time, its success has made clear that in certain situations, the priorities of the designers do not match the needs of the actual users. More attention to such things as accounting, resource management and operation of regions with separate administrations are needed.

While the datagram has served very well in solving the most important goals of the Internet, it has not served so well when we attempt to address some of the goals which were further down the priority list. For example, the goals of resource management and accountability have proved difficult to achieve in the context of datagrams. As the previous section discussed, most datagrams are a part of some sequence of packets from source to destination, rather than isolated units at the application level. However, the gateway cannot directly see the existence of this sequence, because it is forced to deal with each packet in isolation. Therefore, resource management decisions or accounting must be done on each packet separately. Imposing the datagram model on the internet layer has deprived that layer of an important source of information which it could use in achieving these goals.

This suggests that there may be a better building block than the datagram for the next generation of architecture. The general characteristic of this building block is that it would identify a sequence of packets traveling from the source to the destination, without assuming any particular type of service with that service. I have used the word "flow" to characterize this building block. It would be necessary for the gateways to have flow state in order to remember the nature of the flows which are passing through them, but the state information would not be critical in maintaining the desired type of service associated with the flow. Instead, that type of service would be enforced by the end points, which would periodically send messages to ensure that the proper type of service was being associated with the flow. In this way, the state information associated with the flow could be lost in a crash without permanent disruption of the service features being used. I call this concept "soft state," and it may very well permit us to achieve our primary goals of survivability and flexibility, while at the same time doing a better job of dealing with the issue of resource management and accountability. Exploration of alter�na�tive building blocks constitute one of the current directions for research within the DARPA Internet Program.

Acknowledgments — A Historical Perspective

It would be impossible to acknowledge all the contributors to the Internet project; there have literally been hundreds over the 15 years of development: designers, implementors, writers and critics. Indeed, an important topic, which probably deserves a paper in itself, is the process by which this project was managed. The participants came from universities, research laboratories and corporations, and they united (to some extent) to achieve this common goal.

The original vision for TCP came from Robert Kahn and Vinton Cerf, who saw very clearly, back in 1973, how a protocol with suitable features might be the glue that would pull together the various emerging network technologies. From their position at DARPA, they guided the project in its early days to the point where TCP and IP became standards for the DoD.

The author of this paper joined the project in the mid-70s, and took over architectural responsibility for TCP/IP in 1981. He would like to thank all those who have worked with him, and particularly those who took the time to reconstruct some of the lost history in this paper.

References

�� tc \l \f p “Development of the Domain Name System; P.V. Mockapetris, K.V. Dunlap (Proc. SIGCOMM ‘88, CCR Vol 18., No. 4, August 1988)” �Development of the Domain Name System

Paul V. Mockapetris�USC Information Sciences Institute, Marina del Rey, California

Kevin J. Dunlap�Digital Equipment Corp., DECwest Engineering, Washington

(Originally published in the Proceedings of SIGCOMM ‘88, �Computer Communication Review Vol. 18, No. 4, August 1988, pp. 123–133.)

�Abstract*

The Domain Name System (DNS) provides name service for the DARPA Internet. It is one of the largest name services in operation today, serves a highly diverse community of hosts, users, and net�works, and uses a unique combination of hierar�chies, caching, and datagram access.

This paper examines the ideas behind the initial de�sign of the DNS in 1983, discusses the evolution of these ideas into the current implementations and us�ages, notes conspicuous surprises, successes and shortcomings, and attempts to predict its future evo�lution.

1. Introduction

The genesis of the DNS was the observation, circa 1982, that the HOSTS.TXT system for publishing the mapping between host names and addresses was encountering or headed for problems. HOSTS.TXT is the name of a simple text file, which is centrally maintained on a host at the SRI Network Informa�tion Center (SRI�NIC) and distributed to all hosts in the Internet via direct and indirect file transfers.

The problems were that the file, and hence the costs of its distribution, were becoming too large, and that the centralized control of updating did not fit the trend toward more distributed management of the Internet.

Simple growth was one cause of these problems; an�other was the evolution of the community using HOSTS.TXT from the NCP�based original AR�PANET to the IP/TCP�based Internet. The re�search ARPANET’s role had changed from being a single network connecting large timesharing systems to being one of the several long�haul backbone net�works linking local networks which were in turn populated with workstations. The number of hosts changed from the number of timesharing systems (roughly organizations) to the number of worksta�tions (roughly users). This increase was directly re�flected in the size of HOSTS.TXT, the rate of change in HOSTS.TXT, and the number of transfers of the file, leading to a much larger than linear in�crease in total resource use for distributing the file. Since organizations were being forced into manage�ment of local network addresses, gateways, etc., by the technology anyway, it was quite logical to want to partition the database and allow local control of local name and address spaces. A distributed naming sys�tem seemed in order.

Existing distributed naming systems included the DARPA Internet’s IEN116 [IEN 116] and the XEROX Grapevine [Birrell 82] and Clearinghouse systems [Oppen 83]. The IEN116 services seemed excessively limited and host specific, and IEN116 did not provide much benefit to justify the costs of renovation. The XEROX system was then, and may still be, the most sophisticated name service in exis�tence, but it was not clear that its heavy use of repli�cation, light use of caching, and fixed number of hi�erarchy levels were appropriate for the heterogene�ous and often chaotic style of the DARPA Internet. Importing the XEROX design would also have meant importing supporting elements of its protocol architecture. For these reasons, a new design was begun.

The initial design of the DNS was specified in [RFC 882, RFC 883]. The outward appearance is a hierarchical name space with typed data at the nodes. Control of the database is also delegated in a hierarchical fashion. The intent was that the data types be extensible, with the addition of new data types continuing indefinitely as new applications were added. Although the system has been modified and refined in several areas [RFC 973, RFC 974], the current specifications [RFC 1034, RFC 1035] and usage are quite similar to the original definitions.

Drawing an exact line between experimental use and production status is difficult, but 1985 saw some hosts use the DNS as their sole means of accessing naming information. While the DNS has not replaced the HOSTS.TXT mechanism in many older hosts, it is the standard mechanism for hosts, particularly those based on Berkeley UNIX, that track progress in network and operating system design.

2. DNS Design

The base design assumptions for the DNS were that it must:

provide at least all of the same information as HOSTS.TXT.

Allow the database to be maintained in a distributed manner.

Have no obvious size limits for names, name components, data associated with a name, etc.

Interoperate across the DARPA Internet and in as many other environments as possible.

Provide tolerable performance.

Derivative constraints included the following:

The cost of implementing the system could only be justified if it provided extensible services. In particular, the system should be independent of network topology, and capable of encapsulating other name spaces.

In order to be universally acceptable, the system should avoid trying to force a single OS, architecture, or organizational style onto its users. This idea applied all the way from concerns about case sensitivity to the idea that the system should be useful for both large timeshared hosts and isolated PCs. In general, we wanted to avoid any constraints on the system due to outside influences and permit as many different implementation structures as possible.

The HOSTS.TXT emulation requirement was not particularly severe, but it did cause an early examination of schemes for storing data other than name-to�address mappings. A hierarchical name space seemed the obvious and minimal solution for the distribution and size requirements. The interoperability and performance constraints implied that the system would have to allow database infor�ma�tion to be buffered between the client and the source of the data, since access to the source might not be possible or timely.

The initial DNS design assumed the necessity of striking a balance between a very lean service and a completely general distributed database. A lean service was desirable because it would result in more implementation efforts and early availability. A general design would amortize the cost of introduction across more applications, provide greater functionality, and increase the number of environments in which the DNS would eventually be used. The “leanness” criterion led to a conscious decision to omit many of the functions one might expect in a state�of�the�art database. In particular, dynamic update of the database with the related atomicity, voting, and backup considerations was omitted. The intent was to add these eventually, but it was believed that a system that included these features would be viewed as too complex to be accepted by the community.

2.1 The architecture

The active components of the DNS are of two major types: name servers and resolvers. Name servers are repositories of information, and answer queries using whatever information they possess. Resolvers interface to client programs, and embody the algorithms necessary to find a name server that has the information sought by the client.

These functions may be combined or separated to suit the needs of the environment. In many cases, it is useful to centralize the resolver function in one or more special name servers for an organization. This structure shares the use of cached information, and also allows less capable hosts, such as PCs, to rely on the resolving services of special servers without needing a resolver in the PC.

2.2 The name space

The DNS internal name space is a variable�depth tree where each node in the tree has an associated label. The domain name of a node is the concatenation of all labels on the path from the node to the root of the tree. Labels are variable-length strings of octets, and each octet in a label can be any 8�bit value. The zero length label is reserved for the root. Name space searching operations (for operations defined at present) are done in a case�insensitive manner (assuming ASCII). Thus the labels “Paul”, “paul”, and “PAUL”, would match each other. This matching rule effectively prohibits the creation of brother nodes with labels having equivalent spelling but different case. The rational for this system is that it allows the sources of information to specify its canonical case, but frees users from having to deal with case. Labels are limited to 63 octets and names are restricted to 256 octets total as an aid to implementation, but this limit could be easily changed if the need arose.

The DNS specification avoids defining a standard printing rule for the internal name format in order to encourage DNS use to encode existing structured names. Configuration files in the domain system represent names as character strings separated by dots, but applications are free to do otherwise. For example, host names use the internal DNS rules, so VENERA.ISI.EDU is a name with four labels (the null name of the root is usually omitted). Mailbox names, stated as USER@DOMAIN (or more generally as local-�part@organization) encode the text to the left of the “@” in a single label (perhaps including “.”) and use the dot�-delimiting DNS configuration file rule for the part following the @. Similar encodings could be developed for file names, etc.

The DNS also decouples the structure of the tree from any implicit semantics. This is not done to keep names free of all implicit semantics, but to leave the choices for these implicit semantics wide open for the application. Thus the name of a host might have more or fewer labels than the name of a user, and the tree is not organized by network or other grouping. Particular sections of the name space have very strong implicit semantics associated with a name, particularly when the DNS encapsulates an existing name space or is used to provide inverse mappings (e.g. IN�-ADDR.ARPA, the IP addresses to host name section of the domain space), but the default assumption is that the only way to tell definitely what a name represents is to look at the data associated with the name.

The recommended name space structure for hosts, users, and other typical applications is one that mirrors the structure of the organization controlling the local domain. This is convenient since the DNS features for distributing control of the database is most efficient when it parallels the tree structure. An administrative decision [RFC 920] was made to make the top levels correspond to country codes or broad organization types (for example EDU for educational, MIL for military, UK for Great Britain).

2.3 Data attached to names

Since the DNS should not constrain the data that applications can attach to a name, it can’t fix the data’s format completely. Yet the DNS did need to specify some primitives for data structuring so that replies to queries could be limited to relevant information, and so the DNS could use its own services to keep track of servers, server addresses, etc. Data for each name in the DNS is organized as a set of resource records (RRs); each RR carries a well�-known type and class field, followed by applications data. Multiple values of the same type are represented as separate RRs.

Types are meant to represent abstract resources or functions, for example, host addresses and mailboxes. About 15 are currently defined. The class field is meant to divide the database orthogonally from type, and specifies the protocol family or instance. The DARPA Internet has a class, and we imagined that classes might be allocated to CHAOS, ISO, XNS or similar protocol families. We also hoped to try setting up function�specific classes that would be independent of protocol (e.g. a universal mail registry). Three classes are allocated at present: DARPA Internet, CHAOS, and Hessiod.

The decision to use multiple RRs of a single type rather than including multiple values in a single RR differed from that used in the XEROX system, and was not a clear choice. The space efficiency of the single RR with multiple values was attractive, but the multiple RR option cut down the maximum RR size. This appeared to promise simpler dynamic update protocols, and also seemed suited to use in a limited�size datagram environment (i.e. a response could carry only those items that fit in a maximum size packet without regard to partial RR transport).

2.4 Database distribution

The DNS provides two major mechanisms for transferring data from its ultimate source to ultimate destination: zones and caching. Zones are sections of the system�wide database which are controlled by a specific organization. The organization controlling a zone is responsible for distributing current copies of the zones to multiple servers which make the zones available to clients throughout the Internet. Zone transfers are typically initiated by changes to the data in the zone. Caching is a mechanism whereby data acquired in response to a client’s request can be locally stored against future requests by the same or other client.

Note that the intent is that both of these mechanisms be invisible to the user who should see a single database without obvious boundaries.

Zones

A zone is a complete description of a contiguous section of the total tree name space, together with some “pointer” information to other contiguous zones. Since zone divisions can be made between any two connected nodes in the total name space, a zone could be a single node or the whole tree, but is typically a simple subtree.

From an organization’s point of view, it gets control of a zone of the name space by persuading a parent organization to delegate a subzone consisting of a single node. The parent organization does this by inserting RRs in its zone which mark a zone division. The new zone can then be grown to arbitrary size and further delegated without involving the parent, although the parent always retains control of the initial delegation. For example, the ISI.EDU zone was created by persuading the owner of the EDU domain to mark a zone boundary between EDU and ISI.EDU.

The responsibilities of the organization include the maintenance of the zone’s data and providing redundant servers for the zone. The typical zone is maintained in a text form called a master file by some system administrator and loaded into one master server. The redundant servers are either manually reloaded, or use an automatic zone refresh algorithm which is part of the DNS protocol. The refresh algorithm queries a serial number in the master’s zone data, then copies the zone only if the serial number has increased. Zone transfers require TCP for reliability.

A particular name server can support any number of zones which may or may not be contiguous. The name server for a zone need not be part of that zone. This scheme allows almost arbitrary distribution, but is most efficient when the database is distributed in parallel with the name hierarchy. When a server answers from zone data, as opposed to cached data, it marks the answer as being authoritative.

A goal behind this scheme is that an organization should be able to have a domain, even if it lacks the communication or host resources for supporting the domain’s name service. One method is that organizations with resources for a single server can form buddy systems with another organization of similar means. This can be especially desirable to clients when the organizations are far apart (in network terms), since it makes the data available from separated sites. Another way is that servers agree to provide name service for large communities such as CSNET and UUCP, and receive master files via mail or FTP from their subscribers.

Caching

In addition to the planned distribution of data via zone transfers, the DNS resolvers and combined name server/resolver programs also cache responses for use by later queries. The mechanism for controlling caching is a time-�to�live (TTL) field attached to each RR. This field, in units of seconds, represents the length of time that the response can be reused. A zero TTL suppresses caching. The administrator defines TTL values for each RR as part of the zone definition; a low TTL is desirable in that it minimizes periods of transient inconsistency, while a high TTL minimizes traffic and allows caching to mask periods of server unavailability due to network or host problems. Software components are required to behave as if they continuously decremented TTLs of data in caches. The recommended TTL value for host names is two days.

Our intent is that cached answers be as good as answers from an authoritative server, excepting changes made within the TTL period. However, all components of the DNS prefer authoritative information to cached information when both are available locally.

3. Current Implementation Status

The DNS is in use throughout the DARPA Internet. [RFC 1031] catalogs a dozen implementations or ports, ranging from the ubiquitous support provided as part of Berkeley UNIX, through implementations for IBM�PCs, Macintoshes, LISP machines, and fuzzballs [Mills 88]. Although the HOSTS.TXT mechanism is still used by older hosts, the DNS is the recommended mechanism. Hosts available through HOSTS.TXT form an ever�-dwindling subset of all hosts; a recent measurement [Stahl 87] showed approximately 5,500 host names in the present HOSTS.TXT, while over 20,000 host names were available via the DNS.

The current domain name space is partitioned into roughly 30 top level domains. Although a top level domain is reserved for each country (approximately 25 in use, e.g. US, UK), the majority of hosts and subdomains are named under six top level domains named for organization types (e.g. educational is EDU, commercial is COM). Some hosts claim multiple names in different domains, though usually one name is primary and others are aliases. The SRI-NIC manages the zones for all of the non�country, top-level domains, and delegates lower domains to individual universities, companies, and other organizations who wish to manage their own name space.

The delegation of subdomains by the SRI�NIC has grown steadily. In February of 1987, roughly 300 domains were delegated. As of March 1988, over 650 domains are delegated. Approximately 400 represent normal name spaces controlled by organizations other than the SRI�NIC, while 250 of these delegated domains represent network address spaces (i.e. parts of IN�ADDR.ARPA) no longer controlled by the NIC.

Two good examples of contemporary DNS use are the so called “root servers” which are the redundant name servers that support the top levels of the domain name space, and the Berkeley subdomain, which is one of the domains delegated by the SRI-NIC in the EDU domain.

3.1 Root servers

The basic search algorithm for the DNS allows a resolver to search “downward” from domains that it can access already. Resolvers are typically configured with “hints” pointing at servers for the root node and the top of the local domain. Thus if a resolver can access any root server it can access all of the domain space, and if the resolver is in a network partitioned from the rest of the Internet, it can at least access local names.

Although a resolver accesses root servers less as the resolver builds up cached information about servers for lower domains, the availability of root servers is an important robustness issue, and root server activity monitoring provides insights into DNS usage.

Since access to the root and other top level zones is so important, the root domain, together with other top�level domains managed by the SRI�NIC, is supported by seven redundant name servers. These root servers are scattered across the major long haul backbone networks of the Internet, and are also redundant in that three are TOPS�20 systems running JEEVES and four are UNIX systems running BIND.

The typical traffic at each root server is on the order of a query per second, with correspondingly higher rates when other root servers are down or otherwise unavailable. While the broad trend in query rate has generally been upward, day-to�day and month�to-month comparisons of load are driven more by changes in implementation algorithms and timeout tuning than growth in client population. For example, one bad release of popular domain software drove averages to over five times the normal load for extended periods. At present, we estimate that 50% of all root server traffic could be eliminated by improvements in various resolver implementations to use less aggressive retransmission and better caching.

The number of clients which access root servers can be estimated based on measurement tools on the TOPS�20 version. These root servers keep track of the first 200 clients after root server initialization, and the first 200 clients typically account for 90% or more of all queries at any single server. Coordinated measurements at the three TOPS�20 root servers typically show approximately 350 distinct clients in the 600 entries. The number of clients is falling as more organizations adopt strategies that concentrate queries and caching for accesses outside of the local organization.

The clients appear to use static priorities for selecting which root server to use, and failure of a particular root server results in an immediate increase in traffic at other servers. The vast majority of queries are four types: all information (25 to 40%), host name to address mappings (30–40%), address to host mappings (10 to 15%), and new style mail information called MX (less than 10%). Again, these numbers vary widely as new software distributions spread. The root servers refer 10–15% of all queries to servers for lower level domains.

3.2 Berkeley

UNIX support for the DNS was provided by the University of California, Berkeley, partially as research in distributed systems, and partially out of necessity due to growth in the campus network [Dunlap 86a, Dunlap 86b]. The result is the Berkeley Internet Name Domain (BIND) server. Berkeley serves as an example of a large delegated domain, though it is certainly more sophisticated and has more experience than most.

With BIND, Berkeley became the first organization on the DARPA Internet to bring up machines with all their network applications solely dependent on DNS for doing network host and address resolution. Berkeley started to install machines on campus dependent on the name server in the spring of 1985. In the fall of 1985, the two mail gateways to the DARPA Internet were converted to depend on the DNS, this meant the entire campus had to adopt domain�style mail addresses.

Educating even the sophisticated Berkeley user community on the new form of addressing turned out to be a major task. The single biggest objection from the user community was due to mail addresses which became obsolete, closely followed by the initial lack of shorthands and search rules in the initial implementation.

While the DNS transition was painful, the need was clear, as shown in the following table which gives the number of hosts, subnets, and finally subdomains in use at Berkeley over the last three years. For example, from January 1986 to February 1987, Berkeley added 735 hosts in 250 working days, an average of three new hosts each working day.

Date	Hosts	Subnets	Subdomains

January 1986	267	14

February 1987	1002	44

March 1988	1991	86	5

Note that Berkeley has recently divided its domain into multiple zones for admin�istrative convenience.

4. Surprises

Operation of the DNS has revealed several issues that came as surprises to the developers, but on reflection seem quite unsurprising.

4.1 Refinement of semantics

The main role of the DNS is to act as a repository for information, and the initial assumption was that the form and content of that information was well�understood. This turned out to be a bad assumption. Even existing common concepts such as IP host addresses were sources of problems; we knew that we would have to support multiple addresses for a single host, but we were drawn into long discus�sions of whether the addresses attached to a host name should be ordered, and if so, by what metric.

4.2 Performance

The performance of the underlying network was much worse than the original design expected. Growth in the number of networks overtaxed gateway mechanisms for keeping track of connectivity, leading to lost paths and unidirectional paths. At the same time, growth in load plus the addition of many lower speed links led to longer delays. These problems were manifest at the root servers, where logs reveal many instances of repeated copies of the same query from the same source. Even though the TOPS�20 root servers take less than 100 milliseconds to process the vast majority of queries, clients typically see response times of 500 milliseconds to 5 seconds, even for the closest root server, depending on their location in the Internet. The situation for queries to the delegated domains is often much worse, both because of network troubles, and because the name servers for these domains are often on heavily loaded hosts on less�central networks. Queries from the ARPANET to delegated domains typically take 3 to 10 seconds during prime time, with 30 to 60 second times as occasional worst cases. It is interesting to note that these times to access a remote name server are similar to those seen for the XEROX homogeneous name service [Larson 85].

A related surprise was the difficulty in making reasonable measurements of DNS performance. We had planned to measure the performance of DNS components in order to estimate costs for future enhancement and growth, and to guide tuning of existing retransmission intervals, but the measurements were often swamped by unrelated effects due to gateway changes, new DNS software releases, and the like. Many of the servers perform better as their load increases due to fewer page faults, but this is clearly not a stable situation over the long term, leading to concerns about behavior should network performance improve and be able to deliver higher loads to the servers.

The performance of lookups for queries that did not need network access was a pleasant surprise. We were replacing a fairly simple host table lookup with a more complicated database, so even if cache access worked very well, we might slow existing applications down a great deal. However, the new mechanisms are typically as good or better than the old, regardless of implementation. The reason for this is that the old mechanisms were created for a much smaller database and were not adjusted as the size of database grew explosively, while the new software was based on the assumption of a very large database.

4.3 Negative caching

The DNS provides two negative responses to queries. One says that the name in question does not exist, while the other says that while the name in question exists, the requested data does not. The first might be expected if a name were misspelled, while the second might result if a query asked for the host type of a mailbox or the mailing list members of a host. These responses were expected to be rare.

Initial monitoring of root server activity showed a very high percentage (20 to 60%) of these responses. Logs revealed that many of these queries were generated by programs using old�style host names, or names from other mail internets (e.g. UUCP). In the latter case, mailers would often use a call to the name to address conversion routines to test whether an address was valid in the DARPA Internet, even though this might be easily determined by other means. Since few UUCP mail addresses are valid domain names, this resulted in a negative response from a root server, coupled with a delay for the non-local query.

We expected that the negative responses would decrease, and perhaps vanish, as hosts converted their names to domain-�name format and as we asked mail software maintainers to modify their programs. Even though these steps were taken, negative responses stayed in the 10–50% range, with a typical percentage of 25%.

The reason is that the corrective measures were offset by the spread of programs which provided shorthand names through a search list mechanism. The search lists produce a steady stream of bad names as they try alternatives; a mistyped name may now lead to several name errors rather than one. Our conclusion is that any naming system that relies on caching for performance may need caching for negative results as well. Such a mechanism has been added to the DNS as an optional feature, with impressive performance gains in cases where it is supported in both the involved name servers and resolvers. This feature will probably become standard in the future.

5. Successes

5.1 Variable depth hierarchy

The variable�depth hierarchy is used a great deal and was the right choice for several reasons:

The spread of workstation and local network technology meant that organizations participating in the Internet were finding a need to organize within themselves.

The organizations were of vastly different size, and hence needed different numbers of organizational levels. For example, both large international companies and small startups are registered in the domain system.

The variable depth hierarchy makes it possible to encapsulate any fixed level or variable level system. For example, the UK’s own name service (NRS) and the DNS mutually encapsulate each other’s name space. This scheme may also be used in the future to interoperate with the directory service under development by the ISO and CCITT.

Many networks that do not use the DNS protocols and datatypes have standardized on the DNS hierarchical name syntax for mail addressing [Quarterman 86].

5.2 Organizational structuring of names

While the particular top�level organizational structure used by the current DNS is quite controversial, the principle that names are independent of network, topology, etc. is quite popular. The future structure of the top levels is likely to continue to be a subject of debate. Most proposals generate a roughly equivalent amount of support and condemnation. In the authors’ opinion, the only real possibility for wholesale change is a political decision to change the structure of the domain name space to resemble the name space proposed for the ISO/CCITT directory service. This is not a technical issue as the DNS is flexible enough to accommodate almost any political choice.

5.3 Datagram access

The use of datagrams as the preferred method for accessing name servers was successful and probably was essential, given the unexpectedly bad performance of the DARPA Internet. The restriction to approximately 512 bytes of data turns out not to be a problem, performance is much better than that achieved by TCP circuits, and OS resources are not tied up.

The only obvious drawback to datagram access is the need to develop and refine retransmission strategies that are already quite well developed for TCP. Much unnecessary traffic is generated by resolvers that were developed to the point of working, but whose authors lost interest before tuning, or by systems that imported well known versions of code but do not track tuning updates.

5.4 Additional section processing

When a name server answers a query, in addition to whatever information it uses to answer the question, it is free to include in the response any other information it sees fit, as long as the data fits in a single datagram. The idea was to allow the responding server to anticipate the next logical request and answer it before it was asked without significant added communication cost. For example, whenever the root servers pass back the name of a host, they include its address (if available), on the assumption that the host address is needed to use other information. Experiments show that this feature cuts query traffic in half.

5.5 Caching

The caching discipline of the DNS works well, and given the unexpectedly bad performance of the Internet, was essential to the success of the system.

The only problems with caching relate to databases and query strategies that make it less reliable or useful. For example, RRs of the same type at a particular node should have the same TTL so that they will time out simultaneously, but administrators sometimes assign TTLs in the mistaken idea that they are assigning some sort of priority. Administrators also are very fond of picking short TTLs so that their changes take effect rapidly, even if changes are very rare and do not need the timeliness.

A related concern is the security and reliability problems caused by indiscriminate caching. Several existing resolvers cache all information in responses without regard to its reasonableness. This has resulted in numerous instances where bad information has circulated and caused problems. Similar difficulties were encountered when one administrator reversed the TTL and data values, resulting in the distribution of bad data with a TTL of several years. While various measures have reduced the vulnerability to error, the security of the present system does depend on the integrity of the network addressing mechanism, and this is questionable in an era of local networks and PCs.

5.6 Mail address cooperation

Agreement between representatives of the CSNET, BITNET, UUCP, and DARPA Internet communities led to an agreement to use organizationally structured domain names for mail addressing and routing. While the transition from the messy multiply�encoded mail addresses of the past is far from complete, the possibility of cleaning up mail addresses has been clearly demonstrated.

6. Shortcomings

6.1 Type and class growth

When the draft DNS specifications were made available in 1983, the one nearly unanimous criticism was that the type and class data specifiers, which were 8 bits in the draft, should be expanded to 16, or even 32 bits, to allow for new definitions. Over the first five years of DNS use, two new types have been adopted, two types have been dropped, and two new classes have been allocated. Clearly, either the demand for new types and classes was completely misunderstood, or the current DNS makes new definitions too difficult.

While one problem is that almost all existing software regards types and classes as compile�time constants, and hence requires recompilation to deal with changes, a less tractable problem is that new data types and classes are useless until their semantics are carefully designed and published, applications created to use them, and a consensus is reached to use the new system across the Internet. This means that new types face a series of technical and political hurdles.

A methodology or guidelines to aid in the design of new types of information is needed. This is more complicated than just listing the values of interest for an application, since it often involves the design of special name space sections, TTL selections to produce acceptable performance and semantics, and decisions whether to produce a desired binding through one lookup or a sequence of smaller bindings. The single lookup method often seems overwhelmingly attractive to a particular application designer despite the fact that it may overlap or conflict with another application’s data. Another factor is that members of the Internet have different views on the proper assumptions or approach for a particular problem.

Mail is an example. After much debate, the MX data type and system [RFC 974] defined a standard method for routing mail, based on the DOMAIN part or a LOCAL-PART@DOMAIN mail address. MX represented a simple addition to the DNS itself, but required changes to all mail servers, and its benefits required a “critical mass” of mailers. Numerous suggestions have been made to extend the DNS to provide mail destination registry down to the individual user level, and the basics of such a service are within our understanding, but consensus for a single plan remains elusive. Part of the constituency demands that user level mail binding be an option on top of MX, while others advocate a fresh start, with lots of features for mail forwarding, list maintenance, etc. The best choice seems to be one in which agent binding is always a choice, but that a mailer which chooses to map to the mailbox level can do so if the mailbox data is also available.

6.2 Easy upgrading of applications

Converting network applications to use the DNS is not a simple task. It would be ideal if all the applications converting from HOSTS.TXT could be recompiled to use the DNS and have everything work, but this is rarely the case.

Part of the problem is transient failure. A distributed naming system, by its very nature, has periods that it can not access particular information. Applications must handle this condition appropriately. Mailers looking up mail destinations should not discard mail due to these transient failures, and can not afford to wait indefinitely. Even if such failures are anticipated to be quite rare once the DNS stabilizes, we face a chicken�and�egg problem in converting mailers to use the new software.

Another part of the problem is that access to the naming system needs to be integrated into the operating system to a much greater degree than providing system call to the resolver. Users need to be able to access these services at the shell level and specify search lists and defaults in a manner consistent with other system operations.

6.3 Distribution of control vs. distribution of expertise or responsibility

Distributing authority for a database does not distribute a corresponding amount of expertise. Maintainers fix things until they work, rather than until they work well, and want to use, not understand, the systems they are provided. Systems designers should anticipate this, and try to compensate by technical means. The DNS furnishes several examples of this principle:

The initial policy was that we would delegate a domain to any organization which filled out a form listing its redundant servers and other essentials. Instead we should have required that the organization demonstrate redundant servers with real data in them before we delegated the domain, and probably should have insisted that they be on different networks, rather than trusting assurances that the servers did not represent a single point of failure.

The documentation for the system used examples which were easily explained in the narration. Sample TTL values which mapped to an hour were always copied; text that said the values should be a few days was ignored. Documentation should always be written with the assumption that only the examples are read.

Debugging of the system was hampered by questions about software versions and parameters. These values should be accessible via the protocol.

7. Conclusions

Just as the classification of many of the previous issues into “successes”, “surprises”, and “shortcomings” is open to debate based on the perspective of the reader, so too is the question “Was the DNS a good idea?”

Modifications to the HOSTS.TXT scheme could have postponed the need for a new system, and reduced the quantitative arguments for the DNS. The DNS has probably not yet reduced the community-wide administrative, communication, or support load. However, the need to distribute functionality was, we believe, inexorable. This need, together with the new functionality and opportunities for future services must be the key criteria for judgment. From the authors’ perspective, they justify the DNS.

There are a lot of choices we might make differently if we were starting over, but the main pieces of advice which would have been valuable when we were starting are:

Caching can work in a heterogeneous environment, but should include features for caching negative responses as well.

It is often more difficult to remove functions from systems than it is to get a new function added. All of a community would not convert to a new service; instead some will stay with the old, some will convert to the new, and some will support both. This has the unfortunate effect of making all functions more complex as new features are added.

The most capable implementors lose interest once a new system delivers the level of performance they expect; they are not easily motivated to optimize their use of others’ resources or provide easily used guidelines for the administrators that use the systems. Distributed software should include a version number and table of parameters which can be interrogated. If possible, systems should include technical means for transferring tuning parameters, or at least defaults, to all installations without requiring the attention of system maintainers.

Allowing variations in the implementation structure used to provide service is a great idea; allowing variation in the provided service causes problems.

8. Directions for future work

Although the DNS is in production use and hence difficult to change, other research in naming systems, particularly the emerging ISO X.500 directory services, may provide the impetus for additions:

Support for X.500 style addresses for mail, etc. could be constructed as a layer on top of the DNS, albeit without the sophisticated protection, update, and structuring rules of X.500. Use of the data description techniques from the ISO standards might provide a better mechanism for adding data types than the present data structuring rules, while the proven DNS infrastructure could speed prototyping of ISO applications.

The value of a ubiquitous name service and consistent name space at all levels of the protocol suite and operating system seems obvious, but it is equally obvious that tradeoffs between performance, generality, and distribution require at least different styles of use at different levels. For example, a system suitable for managing file names on a local disk would be substantially different from a system for maintaining an internet wide mailing list. The challenge here is to develop an approach which, at least conceptually, structures the total task into layers or some other coherent organization.

Research in naming systems has typically resulted in proposals for systems which could replace or encapsulate all other systems, or systems which allow translations between separate name spaces, data formats, etc. Both approaches have advantages and drawbacks. The present DNS and efforts to unify its name space without special domains for specific networks, etc. place the DNS in the first category. However, its success is universal enough to be encouraging while not enough to solve the user’s difficulty with obscure encodings from other systems. Technical and/or political solutions to the growing complexity of naming will be a growing need.

References

[Birrell 82]	Birrell, A. D., Levin, R., Needham, R. M., and Schroeder, M. D., “Grapevine: An Exercise in Distributed Computing”, Commu�nica�tions of ACM 25, 4:260–274, April 1982.

[Dunlap 86a]	Dunlap, K. J., Bloom, J. M., “Ex�periences Implementing BIND, A Distributed Name Server for the DARPA Internet”, Proceedings USENIX Summer Conference, Atlanta, Georgia, June 1986, pages 172–181.

[Dunlap 86b]	Dunlap, K. J., “Name Server Op�erations Guide for BIND”, Unix Sys�tem Manager’s Manual, SMM�11. 4.3 Berkeley Software Distribution, Virtual VAX�11 Ver�sion. University of California, April 1986.

[IEN 116]	Postel, Jon, “Internet Name Serv�er”, IEN 116, August 1979.

[Larson 85]	Larson, Personal communication.

[Mills 88]	Mills, D. L., “The Fuzzball”, Pro�ceedings ACM SIGCOMM 88 Sym�posium, August, 1988.

[Oppen 83]	D. C. Oppen and Y. K. Dalal, “The Clearinghouse: A decentral�ized agent for locating named ob�jects in a distributed environ�ment”, ACM Transactions on Of�fice Information Systems 1(3):230–253, July 1983. An ex�panded version of this paper is available as Xerox Report OPD�T8103, October 1981.

[Quarterman 86]	Quarterman, John S., and Hoskins, Josiah C., “Notable Computer Networks”, Communications of the ACM, October 1986, volume 29, number 10.

[RFC 882]	P. Mockapetris, “Domain names—Concepts and Facilities,” RFC 882, USC/Information Sciences Insti�tute, November 1983. (Obso�lete, superseded by RFC 1034.)

[RFC 883]	P. Mockapetris, “Domain names—Implementation and Specifica�tion,” RFC 883, USC/Information Sciences Institute, November 1983. (Obsolete, superseded by RFC 1035.)

[RFC 920]	Postel, Jon, and Reynolds, Joyce, “Domain Requirements”, RFC 920, October 1984.

[RFC 973]	Mockapetris, Paul V., “Domain System Changes and Observa�tions”, RFC 973, January 1986.

[RFC 974]	Partridge, Craig, “Mail Routing and the Domain System”, RFC 974, January 1986.

[RFC 1031]	W. Lazear, “MILNET Name Do�main Transition”, RFC 1031, No�vem�ber 1987.

[RFC 1034]	P. Mockapetris, “Domain names �Concepts and Facilities,” RFC 1034, USC/Information Sciences Institute, November 1987.

[RFC 1035]	P. Mockapetris, “Domain names �Implementation and Specifica�tion,” RFC 1035, USC/Informa�tion Sciences Institute, November 1987.

[Stahl 87]	M. Stahl, “DDN Domain Naming—Administration, Regis�tra�tion, Proce�dures and Policy”, Second TCP/IP Interoperability Confer�ence, Decem�ber, 1987.

Note: In the above references, “RFC” refers to papers in the Request for Comments series and "IEN" refers to the DARPA Internet Experiment Notes. Both the RFCs and IENs may be obtained from the Network Information Center, SRI International, Menlo Park, CA 94025, or from the authors of the papers.

�� tc \l \f p “Measured Capacity of an Ethernet: Myths and Reality; D.R. Boggs, J.C. Mogul, C.A. Kent (Proc. SIGCOMM ‘88, Stanford, CA, August 1988)” � Measured Capacity of an Ethernet: Myths and Reality

D.R. Boggs, J.C. Mogul, C.A. Kent

(Originally Published in: Proc. SIGCOMM ‘88, Vol 18 No. 4, August 1988)

�� tc \l \f p “A Binary Feedback Scheme for Congestion Avoidance in Computer Networks with a Connectionless Network Layer; K.K. Ramakrishnan, R. Jain (Proc. SIGCOMM ‘88, Stanford, CA, August 1988)” � A Binary Feedback Scheme for Congestion Avoidance in Computer Networks with a Connectionless Network Layer

K.K. Ramakrishnan, R. Jain

(Originally Published in: Proc. SIGCOMM ‘88, Vol 18 No. 4, August 1988)

�� tc \l \f p “Congestion Avoidance and Control; V. Jacobson (Proc. SIGCOMM ‘88, Stanford, CA, August 1988)” � Congestion Avoidance and Control

V. Jacobson

(Originally Published in: Proc. SIGCOMM ‘88, Vol 18 No. 4, August 1988)

�Analysis and Simulation of a Fair Queueing Algorithm

Alan Demers�Srinivasan Keshav�Scott Shenker

Xerox PARC�3333 Coyote Hill Road�Palo Alto, CA 94304

(Originally published in Proceedings SIGCOMM ‘89, �CCR Vol. 19, No. 4, Austin, TX, September, 1989, pp. 1–12)���Abstract

We discuss gateway queueing algorithms and their role in controlling congestion in datagram networks. A fair queueing algorithm, based on an earlier suggestion by Nagle, is proposed. Analysis and simulations are used to compare this algorithm to other congestion control schemes. We find that fair queueing provides several important advantages over the usual first-come-first-serve queueing algorithm: fair allocation of band�width, lower delay for sources using less than their full share of bandwidth, and protection from ill-behaved sources.

1.	Introduction

Datagram networks have long suffered from performance degradation in the presence of congestion [Ger80]. The rapid growth, in both use and size, of computer networks has sparked a renewed interest in methods of congestion control [DEC87abcd, Jac88a, Man89, Nag87]. These methods have two points of implementation. The first is at the source, where flow control algorithms vary the rate at which the source sends packets. Of course, flow control algorithms are designed primarily to ensure the presence of free buffers at the destination host, but we are more concerned with their role in limiting the overall network traffic. The second point of implementation is at the gateway. Congestion can be controlled at gateways through routing and queueing algorithms. Adaptive routing, if properly implemented, lessens congestion by routing packets away from network bottlenecks. Queueing algorithms, which control the order in which packets are sent and the usage of the gateway’s buffer space, do not affect congestion directly, in that they do not change the total traffic on the gateway’s outgoing line. Queueing algorithms do, however, determine the way in which packets from different sources interact with each other which, in turn, affects the collective behavior of flow control algorithms. We shall argue that this effect, which is often ignored, makes queueing algorithms a crucial component in effective congestion control.

Queueing algorithms can be thought of as allocating three nearly independent quantities: bandwidth which packets get transmitted), promptness (when do those packets get transmitted), and buffer space (which packets are discarded by the gateway). Currently, the most common queueing algorithm is first-come-first-serve (FCFS). FCFS queueing essentially relegates all congestion control to the sources, since the order of arrival completely determines the bandwidth, prompt�ness, and buffer space allocations. Thus, FCFS inextricably intertwines these three allocation issues. There may indeed be flow control algorithms that, when universally implemented throughout a network with FCFS gateways, can overcome these limitations and provide reasonably fair and efficient congestion control. This point is discussed more fully in Sections 3 and 4, where several flow control algorithms are compared. However, with today’s diverse and decentralized computing environments, it is unrealistic to expect universal implementation of any given flow control algorithm. This is not merely a question of standards, but also one of compliance. Even if a universal standard such as ISO [ISO86] were adopted, malfunctioning hardware and software could violate the standard, and there is always the possibility that individuals would alter the algorithms on their own machine to improve their performance at the expense of others. Consequently, congestion control algorithms should function well even in the presence of ill-behaved sources. Unfortunately, no matter what flow control algorithm is used by the well-behaved sources, networks with FCFS gateways do not have this property. A single source, sending packets to a gateway at a sufficiently high speed, can capture an arbitrarily high fraction of the bandwidth of the outgoing line. Thus, FCFS queueing is not adequate; more discrimin�ating queueing algorithms must be used in conjunction with source flow control algorithms to control conges�tion effectively in noncooperative environments.

Following a similar line of reasoning, Nagle [Nag87, Nag85] proposed a fair queueing (FQ) algorithm in which gateways maintain separate queues for packets from each individual source. The queues are serviced in a round-robin manner. This prevents a source from arbitrarily increasing its share of the bandwidth or the delay of other sources. In fact, when a source sends packets too quickly, it merely increases the length of its own queue. Nagle’s algorithm, by changing the way packets from different sources interact, does not reward, nor leave others vulnerable to, anti-social behavior. On the surface, this proposal appears to have considerable merit, but we are not aware of any publish�ed data on the performance of datagram net�works with such fair queueing gateways. In this paper, we will first describe a modification of Nagle’s algorithm, and then provide simulation data comparing networks with FQ gateways and those with FCFS gateways.

The three different components of congestion control algorithms introduced above, source flow control, gateway routing, and gateway queueing algorithms, interact in interesting and complicated ways. It is impossible to assess the effectiveness of any algorithm without reference to the other components of conges�tion control in operation. We will evaluate our propos�ed queueing algorithm in the context of static routing and several widely used flow control algorithms. The aim is to find a queueing algorithm that functions well in current computing environments. The algorithm might, indeed it should, enable new and improved routing and flow control algorithms, but it must not require them.

We had three goals in writing this paper. The first was to describe a new fair queueing algorithm. In Section 2.1, we discuss the design requirements for an effective queueing algorithm and outline how Nagle’s original proposal fails to meet them. In Section 2.2, we propose a new fair queueing algorithm which meets these design requirements. The second goal was to provide some rigorous understanding of the performance of this algorithm; this is done in Section 2.3, where we present a delay-throughput curve given by our fair queueing algorithm for a specific configuration of sources. The third goal was to evaluate this new queue�ing proposal in the context of real networks. To this end, we discuss flow control algorithms in Section 3, and then, in Section 4, we present simulation data comparing several combinations of flow control and queueing algorithms on six benchmark networks. Section 5 contains an overview of our results, a discus�sion of other proposed queueing algorithms, and an analysis of some criticisms of fair queueing.

In circuit switched networks where there is explicit buffer reservation and uniform packet sizes, it has been established that round robin service disciplines allocate bandwidth fairly [Hah86, Kat87]. Recently Morgan [Mor89] has examined the role such queueing algorithms play in controlling congestion in circuit switched networks; while his application context is quite different from ours, his conclusions are qualitatively similar. In other related work, the DATAKIT™ queueing algorithm combines round robin service and FIFO priority service, and has been analyzed extensively [Lo87, Fra84]. Also, Luan and Lucantoni present a different form of bandwidth management policy for circuit switched networks [Lua88].

Since the completion of this work, we have learned of a similar Virtual Clock algorithm for gateway resource allocation proposed by Zhang [Zha89]. Furthermore, Heybey and Davin [Hey89] have simulated a simplified version of our fair queueing algorithm.

2.	Fair Queueing

2.1. Motivation What are the requirements for a queueing algorithm that will allow source flow control algorithms to provide adequate congestion control even in the presence of ill-behaved sources? We start with Nagle’s observation that such queueing algorithms must provide protection, so that ill-behaved sources can only have a limited negative impact on well behaved sources. Allocating bandwidth and buffer space in a fair manner, to be defined later, auto�matic�ally ensures that ill-behaved sources can get no more than their fair share. This led us to adopt, as our central design consideration, the requirement that the queueing algorithm allocate bandwidth and buffer space fairly. Ability to control the promptness, or delay, allocation somewhat independ�ently of the bandwidth and buffer allocation is also desirable. Finally, we require that the gateway should provide service that, at least on average, does not depend discontinuously on a packet’s time of arrival (this continuity condition will become clearer in Section 2.2). This requirement attempts to prevent the efficien�cy of source implementations from being overly sensitive to timing details (timers are the Bermuda Triangle of flow control algorithms). Nagle’s proposal does not satisfy these requirements. The most obvious flaw is its lack of consideration of packet lengths. A source using long packets gets more bandwidth than one using short packets, so bandwidth is not allocated fairly. Also, the proposal has no explicit promptness allocation other than that provided by the round-robin service discipline. In addition, the static round robin ordering violates the continuity requirement. In the following section we attempt to correct these defects.

In stating our requirements for queueing algorithms, we have left the term fair undefined. The term fair has a clear colloquial meaning, but it also has a technical definition (actually several, but only one is considered here). Consider, for example, the allocation of a single resource among N users. Assume there is an amount (total of this resource and that each of the users re�quests an amount (i and, under a particular allocation, receives an amount (i. What is a fair allocation? The max-min fairness criterion [Hah86, Gaf84, DEC87d] states that an allocation is fair if (1) no user receives more than its request, (2) no other allocation scheme satisfying condition 1 has a higher minimum alloca�tion, and (3) condition 2 remains recursively true as we remove the minimal user and reduce the total resource accordingly, (total ((total – (min. This condition reduces to (i = MIN((fair, (i) in the simple example, with (fair, the fair share, being set so that � EMBED Equation.2 ���. This concept of fairness easily general�izes to the multiple resource case [DEC87d]. Note that implicit in the max-min definition of fairness is the assumption that the users have equal rights to the resource.

In our communication application, the bandwidth and buffer demands are clearly represented by the packets that arrive at the gateway. (Demands for promptness are not explicitly communicated, and we will return to this issue later.) However, it is not clear what constitutes a user. The user associated with a packet could refer to the source of the packet, the destination, the source-destination pair, or even refer to an individual process running on a source host. Each of these definitions has limitations. Allocation per source unnaturally restricts sources such as file servers which typically consume considerable bandwidth. Ideally the gateways could know that some sources deserve more bandwidth than others, but there is no adequate mechanism for establishing that knowledge in today’s networks. Allocation per receiver allows a receiver’s useful incoming bandwidth to be reduced by a broken or malicious source sending unwanted packets to it. Allocation per process on a host encourages human users to start several processes communicating simul�taneous�ly, thereby avoiding the original intent of fair allocation. Allocation per source-destination pair allows a malicious source to consume an unlimited amount of bandwidth by sending many packets all to different destinations. While this does not allow the malicious source to do useful work, it can prevent other sources from obtaining sufficient bandwidth.

Overall, allocation on the basis of source-destination pairs, or conversations, seems the best tradeoff between security and efficiency and will be used here. However, our treatment will apply to any of these interpretations of user. With our requirements for an adequate queueing algorithm, coupled with our definitions of fairness and user, we now turn to the description of our algorithm.

2.2	Definition of algorithm It is simple to allocate buffer space fairly by dropping packets, when neces�sary, from the conversation with the largest queue. Allocating bandwidth fairly is less straight�forward. Pure round-robin service provides a fair allocation of packets-sent but fails to guarantee a fair allocation of bandwidth because of variations in packet sizes. To see how this unfairness can be avoided, we first consider a hypothetical service discipline where transmission occurs in a bit-by-bit round robin (BR) fashion (as in a head-of-queue processor sharing discipline). This service discipline allocates bandwidth fairly since at every instant in time each conversation is receiving its fair share. Let � EMBED Equation.2 ��� denote the number of rounds made in the round-robin service discipline up to time t (� EMBED Equation.2 ��� is a continuous function, with the frac�tion�al part indicating partially completed rounds). Let � EMBED Equation.2 ��� denote the number of active conver�sations, i.e. those that have bits in their queue at time � EMBED Equation.2 ���. Then, � EMBED Equation.2 ���, where (is the linespeed of the gateway’s outgoing line (we will, for convenience, work in units such that � EMBED Equation.2 ���). A packet of size P whose first bit gets serviced at time � EMBED Equation.2 ��� will have its last bit serviced P rounds later, at time t such that � EMBED Equation.2 ���. Let � EMBED Equation.2 ��� be the time that packet i belonging to conversation (arrives at the gateway, and define the numbers � EMBED Equation.2 ��� and � EMBED Equation.2 ��� as the values of � EMBED Equation.2 ��� when the packet started and finished service. With � EMBED Equation.2 ��� denoting the size of the packet, the following rela�tions hold: � EMBED Equation.2 ��� and � EMBED Equation.2 ���. Since � EMBED Equation.2 ��� is a strictly monotonically increasing function whenever there are bits at the gateway, the ordering of the � EMBED Equation.2 ��� values is the same as the ordering of the finishing times of the various packets in the BR discipline.

Sending packets in a bit-by-bit round robin fashion, while satisfying our requirements for an adequate queueing algorithm, is obviously unrealistic. We hope to emulate this impractical algorithm by a practical packet-by-packet transmission scheme. Note that the functions � EMBED Equation.2 ��� and � EMBED Equation.2 ��� and the quantities � EMBED Equation.2 ��� and � EMBED Equation.2 ��� depend only on the packet arrival times � EMBED Equation.2 ��� and not on the actual packet transmission times, as long as we define a conversation to be active whenever � EMBED Equation.2 ��� for � EMBED Equation.2 ���. We are thus free to use these quantities in defining our packet-by-packet transmission algorithm. A natural way to emulate the bit-by-bit round-robin algorithm is to let the quantities � EMBED Equation.2 ��� define the sending order of the packets. Our packet-by-packet transmission algorithm is simply defined by the rule that, whenever a packet finishes transmission, the next packet sent is the one with the smallest value of � EMBED Equation.2 ���. In a preemptive version of this algorithm, newly arriving packets whose finishing number � EMBED Equation.2 ��� is smaller than that of the packet currently in transmission preempt the transmitting packet. For practical reasons, we have implemented the nonpreemptive version, but the preemptive algorithm (with resumptive service) is more tractable analytically. Clearly the preemptive and nonpreemptive packetized algorithms do not give the same instantaneous bandwidth allocation as the BR version. However, for each conversation the total bits sent at a given time by these three algorithms are always within � EMBED Equation.2 ��� of each other, where � EMBED Equation.2 ��� is the maximum packet size (this emulation discrepancy bound was proved by Greenberg and Madras [Gree89]). Thus, over sufficiently long conversations, the packetized algorithms asymptotically approach the fair bandwidth allocation of the BR scheme.

Recall that the user’s request for promptness is not made explicit. (The IP [Pos81] protocol does have a field for type-of-service, but not enough applications make intelligent use of this option to render it a useful hint.) Consequently, promptness allocation must be based solely on data already available at the gateway. One such allocation strategy is to give more promptness (less delay) to users who utilize less than their fair share of bandwidth. Separating the promptness allocation from the bandwidth allocation can be accomplished by introducing a nonnegative parameter (, and defining a new quantity, the bid � EMBED Equation.2 ���, via � EMBED Equation.2 ���. The quantities � EMBED Equation.2 ���, � EMBED Equation.2 ���, � EMBED Equation.2 ���, and � EMBED Equation.2 ��� remain as before, but now the sending order is determined by the B’s, not the F’s. The asymptotic bandwidth allocation is independent of (, since the F’s control the bandwidth allocation, but the algorithm gives slightly faster service to packets that arrive at an inactive conversation. The parameter (controls the extent of this additional promptness. Note that the bid � EMBED Equation.2 ��� is continuous in � EMBED Equation.2 ���, so that the continuity requirement mentioned in Section 2.1 is met.

The role of this term (can be seen more clearly by considering the two extreme cases � EMBED Equation.2 ��� and � EMBED Equation.2 ���. If an arriving packet has � EMBED Equation.2 ���, then the conversation (is active (i.e. the corresponding conversation in the BR algorithm would have bits in the queue). In this case, the value of (is irrelevant and the bid number depends only on the finishing number of the previous packet. However, if � EMBED Equation.2 ���, so that the (conversation is inactive, the two cases are quite different. With � EMBED Equation.2 ���, the bid number is given by � EMBED Equation.2 ��� and is com�plete�ly independent of the previous history of user (. With � EMBED Equation.2 ���, the bid number is � EMBED Equation.2 ��� and depends only the previous packet’s finishing number, no matter how many rounds ago. For intermediate values of (, scheduling decisions for packets arriving at inactive conversations depends on the previous packet’s finishing round as long as it wasn’t too long ago, and (controls how far back this dependence goes.

Recall that when the queue is full and a new packet arrives, the last packet from the source currently using the most buffer space is dropped. We have chosen to leave the quantities � EMBED Equation.2 ��� and � EMBED Equation.2 ��� unchanged when we drop a packet. This provides a small penalty for ill-behaved hosts, in that they will be charged for throughput that, because of their own poor flow control, they could not use.

2.3 Properties of Fair Queueing The desired bandwidth and buffer allocations are completely specified by the definition of fairness, and we have demonstrated that our algorithm achieves those goals. However, we have not been able to characterize the promptness allocation for an arbitrary arrival stream of packets. To obtain some quantitative results on the promptness, or delay, performance of a single FQ gateway, we consider a very restricted class of arrival streams in which there are only two types of sources. There are FTP-like file transfer sources, which always have ready packets and transmit them whenever permitted by the source flow control (which, for simplicity, is taken to be sliding window flow control), and there are Telnet-like interactive sources, which produce packets intermittently according to some unspecified generation process. What are the quantities of interest? An FTP source is typically transferring a large file, so the quantity of interest is the transfer time of the file, which for asymptotically large files depends only on the bandwidth allocation. Given the config�ura�tion of sources this bandwidth allocation can be computed a priori by using the fairness property of FQ gateways. The interesting quantity for Telnet sources is the average delay of each packet, and it is for this quantity that we now provide a rather limited result.

Consider a single FQ gateway with N FTP sources sending packets of size � EMBED Equation.2 ���, and allow a single packet of size � EMBED Equation.2 ��� from a Telnet source to arrive at the gateway at time t. It will be assigned a bid number � EMBED Equation.2 ���; thus, the dependence of the queueing delay on the quantities � EMBED Equation.2 ��� and (is only through the combination � EMBED Equation.2 ���. We will denote the queueing delay of this packet by � EMBED Equation.2 ���, which is a periodic function with period � EMBED Equation.2 ���. We are interested in the average queueing delay � EMBED Equation.2 ���

� EMBED Equation.2 ���

The finishing numbers � EMBED Equation.2 ��� for the N FTP’s can be expressed, after perhaps renumbering the packets, by � EMBED Equation.2 ��� where the l’s obey � EMBED Equation.2 ���. The queueing delay of the Telnet packet depends on the configuration of l’s whenever � EMBED Equation.2 ���. One can show that the delay is bounded by the extremal cases of � EMBED Equation.2 ��� for all (and � EMBED Equation.2 ��� for � EMBED Equation.2 ���. The delay values for these extremal cases are straightforward to calculate; for the sake of brevity we omit the derivation and merely display the result below. The average queueing delay is given by � EMBED Equation.2 ��� where the function A(P), the delay with � EMBED Equation.2 ���, is defined below (with integer k and small constant (, � EMBED Equation.2 ���, defined via � EMBED Equation.2 ���.

Preemptive

� EMBED Equation.2 ���

� EMBED Equation.2 ���

� EMBED Equation.2 ����� EMBED Equation.2 ���

Nonpreemptive

� EMBED Equation.2 ���

� EMBED Equation.2 ���

� EMBED Equation.2 ���

Now consider a general Telnet packet generation process (ignoring the effects of flow control) and characterize this generation process by the function � EMBED Equation.2 ��� which denotes the queueing delay of the Telnet source when it is the sole source at the gateway. In the BR algorithm, the queueing delay of the Telnet source in the presence of N FTP sources is merely � EMBED Equation.2 ���. For the packetized preemptive algorithm with � EMBED Equation.2 ���, we can express the queueing delay in the presence of N FTP sources, call it � EMBED Equation.2 ���, in terms of � EMBED Equation.2 ��� via the relation (averaging over all relative synchronizations between the FTP’s and the Telnet):

� EMBED Equation.2 ���

where the term � EMBED Equation.2 ��� reflects the extra delay incurred when emulating the BR algorithm by the preemptive packetized algorithm.

For nonzero values (, the generation process must be further characterized by the quantity � EMBED Equation.2 ��� which, in a system where the Telnet is the sole source, is the probability that a packet arrives to a queue which has been idle for time t. The delay is given by,

. � EMBED Equation.2 ���

where the last term represents the reduction in delay due the nonzero (. These expressions for � EMBED Equation.2 ���, which were derived for the preemptive case, are also valid for the nonpreemptive algorithm when � EMBED Equation.2 ���.

What do these forbidding formulae mean? Consider, for concreteness, a Poisson arrival process with arrival rate (, packet sizes � EMBED Equation.2 ���, a linespeed � EMBED Equation.2 ���, and an FTP synchronization described by � EMBED Equation.2 ���for � EMBED Equation.2 ���. Define (to be the average bandwidth of the stream, measured relative to the fair share of the Telnet; � EMBED Equation.2 ���. Then, for the nonpreemptive algorithm,

� EMBED Equation.2 ���

Figure 1: Delay vs. Throughput.

This graph describes the queueing delay of a single Telnet source with Poisson generation process of strength l, sending packets through a gateway with three FTP conversations. The packet sizes are � EMBED Equation.2 ���, the throughput is measured relative to the Telnet’s fair share, � EMBED Equation.2 ��� where m is the linespeed. The delay is measured in units of � EMBED Equation.2 ���. The FQ algorithm is nonpreemptive, and the FCFS case always has 15 FTP packets in the queue.

This is the throughput/delay curve the FQ gateway offers the Poisson Telnet source (the formulae for different FTP synchronizations are substantially more complicated, but have the same qualitative behavior). This can be contrasted with that offered by the FCFS gateway, although the FCFS results depend in detail on the flow control used by the FTP sources and on the surrounding network environment. Assume that all other communications speeds are infinitely fast in relation to the outgoing linespeed of the gateway, and that the FTP’s all have window size W, so there are always NW FTP packets in the queue or in transmission. Figure 1 shows the throughput/delay curves for an FCFS gateway, along with those for a FQ gateway with � EMBED Equation.2 ��� and � EMBED Equation.2 ���. For � EMBED Equation.2 ���, FCFS gives a large queueing delay of � EMBED Equation.2 ���, whereas FQ gives a queueing delay of � EMBED Equation.2 ��� for � EMBED Equation.2 ��� and P/2 for � EMBED Equation.2 ���. This ability to provide a lower delay to lower throughput sources, completely independent of the window sizes of the FTP’s, is one of the most important features of fair queueing. Note also that the FQ queueing delay diverges as � EMBED Equation.2 ���, reflecting FQ’s insistence that no conversation gets more than its fair share. In contrast, the FCFS curve remains finite for all � EMBED Equation.2 ���, showing that an ill-behaved source can consume an arbitrarily large fraction of the bandwidth.

What happens in a network of FQ gateways? There are few results here, but Hahne [Hah86] has shown that for strict round robin service gateways and only FTP sources there is fair allocation of bandwidth (in the multiple resource sense) when the window sizes are sufficiently large. She also provides examples where insufficient window sizes (but much larger than the communication path) result in unfair allocations. We believe, but have been unable to prove, that both of these properties hold for our fair queueing scheme.

3. Flow Control Algorithms

Flow control algorithms are both the benchmarks against which the congestion control properties of fair queueing are measured, and also the environment in which FQ gateways will operate. We already know that, when combined with FCFS gateways, these flow control algorithms all suffer from the fundamental problem of vulnerability to ill-behaving sources. Also, there is no mechanism for separating the promptness allocation from the bandwidth and buffer allocation. The remaining question is then how fairly do these flow control algorithms allocate bandwidth. Before proceed�ing, note that there are really two distinct problems in controlling congestion. Congestion recovery allows a system to recover from a badly con�gest�ed state, whereas congestion avoidance attempts to prevent the congestion from occurring. In this paper, we are focusing on congestion avoidance and will not discuss congestion recovery mechanisms at length.

A generic version of source flow control, as implemented in XNS’s SPP [Xer81] or in TCP [USC81], has two parts. There is a timeout mechan�ism, which provides for congestion recovery, whereby packets that have not been acknowledged before the timeout period are retransmitted (and a new timeout period set). The timeout periods are given by (rtt where typically � EMBED Equation.2 ��� and rtt is the exponentially averaged estimate of the round trip time (the rtt estimate for retransmitted packets is the time from their first transmission to their acknowledge�ment). The congestion avoidance part of the algorithm is sliding window flow control, with some set window size. This algorithm has a very narrow range of validity, in that it avoids congestion if the window sizes are small enough, and provides efficient service if the windows are large enough, but cannot respond adequately if either of these conditions is violated.

The second generation of flow control algorithms, exemplified by Jacobson and Karels’ (JK) modified TCP [Jac88a] and the original DECbit proposal [DEC87a-c], are descendants of the above generic algorithm with the added feature that the window size is allowed to respond dynamically in response to network congestion (JK also has, among other changes, substantial modifications to the timeout calculation [Jac88a,b, Kar87]). The algorithms use different signals for congestion; JK uses timeouts whereas DECbit uses a header bit which is set by the gateway on all packets whenever the average queue length is greater than one. These mechanisms allocate window sizes fairly, but the relation Throughput = Window/RoundTrip implies that conversations with different paths receive different bandwidths.

The third generation of flow control algorithms are similar to the second, except that now the congestion signals are sent selectively. For instance, the selective DECbit proposal [DEC87d] has the gateway measure the flows of the various conversations and only send congestion signals to those users who are using more than their fair share of bandwidth. This corrects the previous unfairness for sources using different paths (see [DEC87d] and section 4), and appears to offer reasonably fair and efficient congestion control in many networks. The DEC algorithm controls the delay by attempting to keep the average queue size close to one. However, it does not allow individual users to make different delay/throughput tradeoffs; the collective tradeoff is set by the gateway.

4. Simulations

In this section we compare the various congestion control mechanisms, and try to illustrate the interplay between the queueing and flow control algorithms. We simulated these algorithms at the packet level using a network simulator built on the Nest network simulation tool [Nes88]. In order to compare the FQ and FCFS gateway algorithms in a variety of settings, we selected several different flow control algorithms; the generic one described above, JK flow control, and the selective DECbit algorithm. To enable DECbit flow control to operate with FQ gateways, we developed a bit-setting FQ algorithm in which the congestion bits are set whenever the source’s queue length is greater than � EMBED Equation.2 ��� of its fair share of buffer space (note that this is a much simpler bit-setting algorithm than the DEC scheme, which involves complicated averages; however, the choice of � EMBED Equation.2 ��� is completely ad hoc). The Jacob�son/Karels flow control algorithm is defined by the 4.3bsd TCP implementation. This code deals with many issues unrelated to congestion control. Rather than using that code directly in our simulations, we have chosen to model the JK algorithm by adding many of the congestion control ideas found in that code, such as adjustable windows, better timeout calculations, and fast retransmit to our generic flow control algorithm. The various cases of test algorithms are labeled in table 1.

Label�Flow Control�Queueing Algorithm��G/FCFS�Generic�FCFS��G/FQ�Generic�FQ��JK/FCFS�JK�FCFS��JK/FQ�JK�FQ��DEC/DEC�DECbit�Selective DECbit��DEC/FQbit�DECbit�FQ with bit setting��Table 1: Algorithm Combinations

Rather than test this set of algorithms on a single representative network and load, we chose to define a set of benchmark scenarios, each of which, while some�what unrealistic in itself, serves to illuminate a different facet of congestion control. The load on the network consists of a set of Telnet and FTP conversa�tions. The Telnet sources generate 40 byte packets by a Poisson process with a mean interpacket interval of 5 seconds. The FTP’s have an infinite supply of 1000 byte packets that are sent as fast as flow control allows. Both FTP’s and Telnet’s have their maximum window size set to 5, and the acknowledgement (ACK) packets sent back from the receiving sink are 40 bytes. (The small size of Telnet packets relative to the FTP packets makes the effect of d insignificant, so the FQ algorithm was implemented with � EMBED Equation.2 ���). The gateways have finite buffers which, for convenience, are measured in packets rather than bytes. The system was allowed to stabilize for the first 1500 seconds, and then data was collected over the next 500 second interval. For each scenario, there is a figure depicting the corresponding network layout, and a table containing the data. There are four performance measures for each source: total throughput (number of packets reaching destination), average round trip time of the packets, the number of packet retransmissions, and number of dropped packets. We do not include confidence intervals for the data, but repetitions of the simulations have consistent�ly produced results that lead to the same qualitative conclusions.

We first considered several single-gateway networks. The first scenario has two FTP sources and two Telnet sources sending to a sink through a single bottleneck gateway. Note that, in this underloaded case, all of the algorithms provide fair bandwidth allocation, but the cases with FQ provide much lower Telnet delay than those with FCFS. The selective DECbit gives an intermediate value for the Telnet delay, since the flow control is designed to keep the average queue length small.

� EMBED Paint.Picture ���

Scenario � SEQ Scenario * ARABIC �1�: Underloaded Gateway

Scenario 2 involves 6 FTP sources and 2 Telnet sources again sending through a single gateway. The gateway, with a buffer size of only 15, is substantially overloaded. This scenario probes the behavior of the algorithms in the presence of severe congestion.

When FCFS gateways are paired with generic flow control, the sources segregate into winners, who consume a large amount of bandwidth, and losers, who consume very little. This phenomenon develops because the queue is almost always full. The ACK pack�ets received by the winners serve as a signal that a buffer space has just been freed, so their packets are rarely dropped. The losers are usually retransmitting, at essentially random times, and thus have most of their packets dropped. This analysis is due to Jacobson [Jac88b], and the segregation effect was first pointed out to us in this context by Sturgis [Stu88]. The combination of JK flow control with FCFS gateways produces fair bandwidth allocation among the FTP sources, but the Telnet sources are almost completely shut out. This is because the JK algorithm ensures that the gateway’s buffer is usually full, causing most of the Telnet packets to be dropped.

� EMBED Paint.Picture ���

Scenario � SEQ Scenario * ARABIC �2�: Overloaded Gateway

When generic flow control is combined with FQ, the strict segregation disappears. However, the bandwidth allocation is still rather uneven, and the useful bandwidth (rate of nonduplicate packets) is 12% below optimal. Both of these facts are due to the inflexibility of the generic flow control, which is unable to reduce its load enough to prevent dropped packets. This not only necessitates retransmissions but also, because of the crudeness of the timeout congestion recovery mechanism, prevents FTP’s from using their fair share of bandwidth. In contrast, JK flow control combined with FQ produced reasonably fair and efficient alloca�tion of the bandwidth. The lesson here is that fair queueing gateways by themselves do not provide ade�quate congestion control; they must be combined with intelligent flow control algorithms at the sources.

� EMBED Paint.Picture ���

Scenario � SEQ Scenario * ARABIC �3� : Ill-Behaved Sources

The selective DECbit algorithm manages to keep the bandwidth allocation perfectly fair, and there are no dropped packets or retransmissions. The addition of FQ to the DECbit algorithm retains the fair bandwidth allocation and, in addition, lowers the Telnet delay by a factor of 9. Thus, for each of the three flow control algorithms, replacing FCFS gateways with FQ gate�ways generally improved the FTP performance and dramatically improved the Telnet performance of this extremely overloaded network.

In scenario 3 there is a single FTP and a single Telnet competing with an ill-behaved source. This ill-behaved source has no flow control and is sending packets at twice the rate of the gateway’s outgoing line. With FCFS, the FTP and Telnet are essentially shut out by the ill-behaved source. With FQ, they obtain their fair share of bandwidth. Moreover, the ill-behaved host gets much less than its fair share, since when it has its packets dropped it is still charged for that throughput. Thus, FQ gateways are effective firewalls that can protect users, and the rest of the network, from being damaged by ill-behaved sources.

� EMBED Paint.Picture ���

Scenario � SEQ Scenario * ARABIC �4�: Mixed Protocols

We have argued for the importance of considering a heterogeneous set of flow control mechanisms. Scenario 4 has single gateway with two pairs of FTP sources, employing generic and JK flow control re�spectively. With a FCFS gateway, the generic flow controlled pair has higher throughput than the JK pair. However, with a FQ gateway, the situation is reversed (and the generic sources have segregated). Note that the FQ gateway has provided incentive for sources to implement JK or some other intelligent flow control, whereas the FCFS gateway makes such a move sacrificial.

Certainly not all of the relevant behavior of these algorithms can be gleaned from single gateway net�works. Scenario 5 has a multinode network with four FTP sources using different network paths. Three of the sources have short nonoverlapping conversations and the fourth source has a long path that intersects each of the short paths. When FCFS gateways are used with generic or JK flow control, the conversation with the long path receives less than 60% of its fair share. With FQ gateways, it receives its full fair share. Furthermore, the selective DECbit algorithm, in keep�ing the average queue size small, wastes roughly 10% of the bandwidth (and the conversation with the long path, which should be helped by any attempt at fair�ness, ends up with less bandwidth than in the generic/FCFS case).

� EMBED Paint.Picture ���

Scenario � SEQ Scenario * ARABIC �5�: Multihop Path

Scenario 6 involves a more complicated network, combining lines of several different bandwidths. None of the gateways are overloaded so all combinations of flow control and queueing algorithms function smoothly. With FCFS, sources 4 and 8 are not limited by the available bandwidth, but by the delay their ACK packets incur waiting behind FTP packets. The total throughput increases when the FQ gateways are used because the small ACK packets are given priority.

� EMBED Paint.Picture ���

Scenario � SEQ Scenario * ARABIC �6�: Complicated Network

For the sake of clarity and brevity, we have presented a fairly clean and uncomplicated view of network dynamics. We want to emphasize that there are many other scenarios, not presented here, where the simula�tion results are confusing and apparently involve complicated dynamic effects. These results do not call into question the efficacy and desirability of fair queueing, but they do challenge our understanding of the collective behavior of flow control algorithms in networks.

5. Discussion

In an FCFS gateway, the queueing delay of packets is, on average, uniform across all sources and directly proportional to the total queue size. Thus, achieving ambitious performance goals, such as low delay for Telnet-like sources, or even mundane ones, such as avoiding dropped packets, requires coordination among all sources to control the queue size. Having to rely on source flow control algorithms to solve this control problem, which is extremely difficult in a maxi�mally cooperative environment and impossible in a noncooperative one, merely reflects the inability of FCFS gateways to distinguish between users and to allocate bandwidth, promptness, and buffer space independently.

In the design of the fair queueing algorithm, we have attempted to address these issues. The algorithm does allocate the three quantities separately. Moreover, the promptness allocation is not uniform across users and is somewhat tunable through the parameter d. Most import�antly, fair queueing creates a firewall that pro�tects well-behaved sources from their uncouth brethren. Not only does this allow the current generation of flow control algorithms to function more effectively, but it creates an environment where users are rewarded for devising more sophisticated and responsive algorithms. The game-theoretic issue first raised by Nagle, that one must change the rules of the gateway’s game so that good source behavior is encouraged, is crucial in the design of gateway algorithms. A formal game-theoretic analysis of a simple gateway model (an exponential server with N Poisson sources) suggests that fair queueing algorithms make self-optimizing source behavior result in fair, protective, nonmanipulable, and stable networks; in fact, they may be the only reasonable queueing algorithms to do so [She89a].

Our calculations show that the fair queueing algorithm is able to deliver low delay to sources using less than their fair share of bandwidth, and that this delay is insensitive to the window sizes being used by the FTP sources. Furthermore, simulations indicate that, when combined with currently available flow control algorithms, FQ delivers satisfactory congestion control in a wide variety of network scenarios. The combination of FQ gateways and DECbit flow control was particularly effective. However, these limited tests are in no way conclusive. We hope, in the future, to investigate the performance of FQ under more realistic load conditions, on larger networks, and interacting with routing algorithms. Also, we hope to explore new source flow control algorithms that are more attuned to the properties of FQ gateways.

In this paper we have compared our fair queueing algorithm with only the standard first-come-first-serve queueing algorithm. We know of three other widely known queueing algorithm proposals. The first two were not intended as general purpose congestion control algorithms. Prue and Postel [Pru87] have proposed a type-of-service priority queueing algorithm, but allocation is not made on a user-by-user basis, so fairness issues are not addressed. There is also the Fuzzball selective preemption algorithm [Mill87,88] whereby the gateways allocate buffers fairly (on a source basis, over all of the gateway’s outgoing buffers). This is very similar to our buffer allocation policy, and so can be considered a subset of our FQ algorithm. The Fuzzballs also had a form of type-of-service priority queueing but, as with the Prue and Postel algorithm, allocations were not made on a user-by-user basis. The third policy is the Random-Dropping (RD) buffer management policy in which, when the buffer is overloaded, the packet to be dropped is chosen at random [Per89, Jac88ab]. This algorithm greatly alleviates the problem of segregation. How�ever, it is now generally agreed that the RD algorithm does not provide fair bandwidth allocation, is vulnerable to ill-behaved sources, and is unable to provide reduced delay to conversations using less than their fair share of bandwidth [She89b, Zha89, Has89].

There are two objections that have been raised in conjunction with fair queueing. The first is that some source-destination pairs, such as file server or mail server pairs, need more than their fair share of bandwidth. There are several responses to this. First, FQ is no worse than the status quo. FCFS gateways already limit well-behaved hosts, using the same path and having only one stream per source destination pair, to their fair share of bandwidth. Some current band�width hogs achieve their desired level of service by opening up many streams, since FCFS gateways implicitly define streams as the unit of user. Note that that there are no controls over this mechanism of gaining more bandwidth, leaving the network vulnerable to abuse. If desired, however, this same trick can be introduced into fair queueing by merely changing the notion of user. This would violate layering, which is admittedly a serious drawback. A better approach is to confront the issue of allocation directly by generalizing the algorithm to allow for arbitrary bandwidth priorities. Assign each pair a number � EMBED Equation.2 ��� which represents how many queue slots that conversation gets in the bit-by-bit round robin. The new relationships are � EMBED Equation.2 ��� with the sum over all active conversations, and � EMBED Equation.2 ��� is set to be � EMBED Equation.2 ��� times the true packet length. Of course, the truly vexing problem is the politics of assigning the priorities � EMBED Equation.2 ���. Note that while we have described an extension that provides for different relative shares of bandwidth, one could also define these shares as absolute fractions of the bandwidth of the outgoing line. This would guarantee a minimum level of service for these sources, and is very similar to the Virtual Clock algorithm of Zhang [Zha89].

The other objection is that fair queueing requires the gateways to be smart and fast. There is technological question of whether or not one can build FQ gateways that can match the bandwidth of fibers. If so, are these gateways economically feasible? We have no answers to these questions, and they do indeed seem to hold the key to the future of fair queueing.

6. Acknowledgements

The authors gratefully acknowledge H. Murray’s important role in designing an earlier version of the fair queueing algorithm. We wish to thank A. Dupuy for assistance with the Nest simulator. Fruitful discussions with J. Nagle, E. Hahne, A. Greenberg, S. Morgan, K. K. Ramakrishnan, V. Jacobson, M. Karels, D. Greene and the End-to-End Task Force are also appreciated. In addition, we are indebted to H. Sturgis for bringing the segregation result in section 4 to our attention, and to him and R. Hagmann and C. Hauser for the related lively discussions. We also wish to thank the group at MIT for freely sharing their insights: L. Zhang, D. Clark, A. Heybey, C. Davin, and E. Hashem.

7. References

 [DEC87a]	R. Jain and K. K. Ramakrishnan, “Congestion Avoidance in Computer Networks with a Connectionless Network Layer, Part I-Concepts, Goals, and Alternatives”, DEC Technical Report TR-507, Digital Equipment Corporation, April 1987.

 [DEC87b]	K. K. Ramakrishnan and R. Jain, “Congestion Avoidance in Computer Networks with a Connectionless Network Layer, Part II-An Explicit Binary Feedback Scheme”, DEC Technical Report TR-508, Digital Equipment Corporation, April 1987.

 [DEC87c]	D.-M. Chiu and R. Jain, “Congestion Avoidance in Computer Networks with a Connectionless Network Layer, Part III-Analysis of Increase and Decrease Algor�ithms”, DEC Technical Report TR-509, Digital Equipment Corporation, April 1987.

 [DEC87d]	K. K. Ramakrishnan, D.-M. Chiu, and R. Jain “Congestion Avoidance in Computer Networks with a Connectionless Network Layer, Part IV-A Selective Binary Feed�back Scheme for General Topologies”, DEC Technical Report TR-510, Digital Equipment Corporation, November 1987.

 [Fra84]	A. Fraser and S. Morgan, “Queueing and Framing Disciplines for a Mixture of Data Traffic Types”, AT&T Bell Laboratories Technical Journal,Volume 63, No. 6, pp 1061-1087, 1984.

 [Gaf84]	E. Gafni and D. Bertsekas, “Dynamic Control of Session Input Rates in Com�mun�i�cation Networks”, IEEE Trans�ac�tions on Automatic Control, Volume 29, No. 10, pp 1009-1016, 1984.

 [Ger80]	M. Gerla and L. Kleinrock, “Flow Control: A Comparative Survey”, IEEE Transac�tions on Communications, Volume 28, pp 553-574, 1980.

 [Gre89]	A. Greenberg and N. Madras, private communication, 1989.

 [Hah86]	E. Hahne, “Round Robin Scheduling for Fair Flow Control in Data Communication Networks”, Report LIDS-TH-1631, Laboratory for Information and Decision Systems, Massachusetts Institute of Technology, Cambridge, Massachusetts, December, 1986.

 [Has89]	E. Hashem, private communication, 1989.

 [Hey89]	A. Heybey and C. Davin, private communication, 1989.

 [ISO86]	International Organization for Standard�iza�tion (ISO), “Protocol for Providing the Connectionless Mode Network Service”, Draft International Standard 8473, 1986.

 [Jac88a]	V. Jacobson, “Congestion Avoidance and Control”, ACM SigComm Proceedings, pp 314-329, 1988.

 [Jac88b]	V. Jacobson, private communication, 1988.

 [Jai86]	R. Jain, “Divergence of Timeout Algorithms for Packet Retransmission”, Proceedings of the Fifth Annual Interna�tion�al Phoenix Conference on Computers and Communications, pp 1162-1167, 1987.

 [Kar87]	P. Karn and C. Partridge, “Improving Round-Trip Time Estimates in Reliable Transport Protocols”, ACM SigComm Proceedings,pp 2-7, 1987.

 [Kat87]	M. Katevenis, “Fast Switching and Fair Control of Congested Flow in Broadband Networks”, IEEE Journal on Selected Areas in Communications,Volume 5, No. 8, pp 1315-1327, 1987.

 [Lo87]	C.-Y. Lo, “Performance Analysis and Application of a Two-Priority Packet Queue”, AT&T Technical Journal,Volume 66, No. 3, pp 83-99, 1987.

 [Lua88]	D. Luan and D. Lucantoni, “Throughput Analysis of an Adaptive Window-Based Flow Control Subject to Bandwidth Management”, Proceedings of the International Teletraffic Conference, 1988.

 [Man89]	A. Mankin and K. Thompson, “Limiting Factors in the Performance of the Slo-start TCP Algorithms”, preprint.

 [Mor89]	S. Morgan, “Queueing Disciplines and Passive Congestion Control in Byte-Stream Networks”, IEEE INFOCOM ‘89 Proceedings, pp 711-720, 1989.

 [Mil87]	D. Mills and W.-W. Braun, “The NSFNET Backbone Network”, ACM SigComm Proceedings,pp 191-196, 1987.

 [Mil88]	D. Mills, “The Fuzzball”, ACM SigComm Proceedings,pp 115-122, 1988.

 [Nag84]	J. Nagle, “Congestion Control in IP/TCP Networks, Computer Communication Review, Vol 14, No. 4,pp 11-17, 1984.

 [Nag85]	J. Nagle, “On Packet Switches with Infinite Storage”, RFC 896 1985.

 [Nag87]	J. Nagle, “On Packet Switches with Infinite Storage”, IEEE Transactions onCommunications,Volume 35, pp 435-438, 1987.

 [Nes88]	D. Bacon, A. Dupuy, J. Schwartz, and Y. Yemini, “Nest: A Network Simulation andPrototyping Tool”, Dallas Winter 1988 Usenix Conference Proceedings, pp.71-78, 1988.

 [Per89]	IETF Performance and Congestion Control Working Group, “Gateway Congestion Control Policies”, draft, 1989.

 [Pos81]	J. Postel, “Internet Protocol”, RFC 791 1981.

 [Pru88]	W. Prue and J. Postel, “A Queueing Algorithm to Provide Type-of-Service for IP Links”, RFC1046, 1988.

 [She89a]	S. Shenker, “Game-Theoretic Analysis of Gateway Algorithms”, in preparation, 1989.

 [She89b]	S. Shenker, “Comments on the IETF Performance and Congestion Control Working Group Draft on Gateway Conges�tion Control Policies”, unpublished, 1989.

 [Stu88]	H. Sturgis, private communication, 1988.

 [USC81]	USC Information Science Institute, “Transmission Control Protocol”, RFC 793, 1981.

 [Xer81]	Xerox Corporation, “Internet Transport Protocols”, XSIS 028112, 1981.

 [Zha89]	L. Zhang, “A New Architecture for Packet Switching Network Protocols”, MIT Ph. D. Thesis, forthcoming, 1989.

�� tc \l \f p “A Control-Theoretic Approach to Flow Control; S. Keshav (Proc. SIGCOMM ‘91, Zürich, Switzerland, September 1991)” � A Control-Theoretic Approach to Flow Control

S. Keshav

(Originally Published in: Proc. SIGCOMM ‘91, Vol. 24, No. 1, August 1991)

�� tc \l \f p “On the Self-Similar Nature of Ethernet Traffic; W.E. Leland, M.S. Taqqu, W. Willinger, D.V. Wilson (Proc. SIGCOMM ‘93, San Francisco, CA, September 1993)” � On the Self-Similar Nature of Ethernet Traffic

W.E. Leland, M.S. Taqqu, W. Willinger, D.V. Wilson

(Originally Published in: Proc. SIGCOMM ‘93, Vol. 23, No. 4, October 1993)

�� tc \l \f f “In Memory of Walt Kosinski”� In Memory of Walt Kosinski

by Jim Adams

�

Walter J. Kosinski, the founder and first chairman of SIGCOMM, died of cancer on December 14, 1994, in Greenwich, Connecticut, at the age of 63. Walt was born and raised in Greenwich and graduated from the University of Connecticut in 1953 with a degree in mathematics. He entered the computer field in the mid-fifties and spent most of his early career in southern California and Arizona where he developed data communications systems and applications for his own and other high-tech companies.

In 1982 Walt returned to Connecticut as an independent consultant with frequent teaching positions at universities in the U.S. and overseas. At the time of his death he was on a special assignment in the computer science department at the University of Silessia in Poland.

An innovative thinker and organizer, Walt was actively involved as an ACM volunteer throughout his professional life. He was a popular speaker at chapter meetings and conducted some of ACM's earliest full-day professional development seminars on time-sharing systems. In 1969 he organized SIGCOMM and chaired its first conference on the Optimization of Data Communications Systems. He spearheaded the revitalization of the Westchester-Fairfield chapter in 1986 and served as its chairman. In 1987 he chaired the SIGCOMM Workshop on Frontiers in Computer Communications Technology in Stowe, Vermont.

Walt is survived by his son Kevin and daughters Bridget, Kara, Erin and Molly, all residents of California, and his sister Frances Posluzny of Greenwich.

�Bibliography of Recent Publications on Computer Communication�tc \l \f f "Bibliography of Recent Publications in Computer Communication"�

The bibliography attempts to list the majority of papers, books, technical reports, and reviews on computer communication printed since the previous issue. Because journals are often printed and mailed several months after their ostensible publication date, not all publications listed here are from journals dated in the past few months.

Where available, abstracts or short descriptions of the document have been included with the citation. Reviews are indicated by reprinting the citation of the work reviewed, along with a sub-citation of the review.

It is assumed that readers have easy access to a few major publications in the field. To conserve space, articles in these publications are listed without an abstract. The journals are:

ACM Operating Systems Review	computer communications�Computer Communication Review	Computer Networks and ISDN Systems�ConneXions	Distributed Computing�Electronic Networking	IEEE Journal on Selected Areas of Communications�IEEE Network Magazine	IEEE Transactions on Communications�IEEE/ACM Transactions on Networking	InternetworkingInternet Requests for Comment (RFCs)�Journal of High Speed Networks	networks, an international journal

This bibliography is compiled from the journals and conference proceedings that the editor regularly receives plus any contributions from readers. Anyone wishing to contribute an entry to the bibliography may mail it to the editor (oran@lkg.dec.com). All entries should contain the complete citation and a copy of the abstract. For books, send a one paragraph description of the contents. Electronic mail submissions are preferred.

Addresses for Ordering

Butterworth-Heinemann Ltd. (computer commounications), Linacre House, Jordan Hill, Oxford OX2 8DP, UK

ConneXions, 480 San Antonio Road, Suite 100, Mountain View, CA 94040, (415) 949-3399

ELSEVIER Science Publishing Company, Inc., 52 Vanderbilt Ave., New York, NY 10017, U.S.A. (North-Holland is also at this address)

IEEE Computer Society Press, 1730 Massachusetts Avenue, Washington DC 20036-1903

IOS Press, Van Diemenstraat 94, 1013 CN Amsterdam, Netherlands

RFCs can be obtained via FTP from FTP.NISC.SRI.COM with the pathname rfc/rfcnnnn.txt or rfc/rfcnnnn.ps (where "nnnn" refers to the number of the RFC). Login with FTP username “anonymous” and password “guesta”. To obtain the RFC Index, use the pathname rfc/rfc-index.txt. SRI also provides an automatic mail service for those sites which cannot use FTP. Address the request to MAIL-SERVER@NISC.SRI.COM and in the body of the message indicate the RFC to be sent: "send rfcNNNN" or "send rfcNNNN.ps" where NNNN is the RFC number. Multiple requests may be included in the same message by listing the "send" commands on separate lines. To request the RFC Index, the command should read: send rfc-index.

Meckler Corporation (Electronic Networking) 11 Ferry Lane West, Westport CT 06880, (203) 226-6967, email: meckler@jvnc.net

Springer-Verlag New York, Inc., Service Center Secaucus, 44 Hartz Way, Secaucus, NJ 07094 U.S.A. (201) 348-4033.

John Wiley & Sons Ltd, Baffins Lane, Chichester, West Sussex PO19 1UD England.

Hardbound and softbound copies of doctoral dissertations from major universities can be ordered for a fee from University Microfilms Incorporated, 300 N. Zeeb Road, Ann Arbor, MI 48106. (800) 521-3044. In Michigan, Alaska and Hawaii, call collect (313) 761-4700.

��� INCLUDETEXT \\\\MSBSRV1\\ORAN$\\CCR\\JAN95\\BIB.DOC �Books

Articles and Technical Reports

Applications

Braid, A., “From BABEL to EIDL: the evolution of a standard for document delivery,” Computer Networks and ISDN Systems, Vol. 27, No. 3, December 1994, pp. 367–374.

De Bra, P.D.E., Post, R.D.J., “Information retrieval in the World-Wide Web: Making client-based searching feasible,” Computer Networks and ISDN Systems, Vol. 27, No. 2, November 1994, pp. 183–192.

Drakos, N., “From text to Hypertext: A post-hoc rationalization of LaTeX2HTML,” Computer Networks and ISDN Systems, Vol. 27, No. 2, November 1994, pp. 215–224.

Eichman, D., McGregor, T., Danley, D., “Integrating structured databases into rhe Web: The MORE system,” Computer Networks and ISDN Systems, Vol. 27, No. 2, November 1994, pp. 281–288.

Ibrahim, B., “World-wide algorithm animation,” Computer Networks and ISDN Systems, Vol. 27, No. 2, November 1994, pp. 255–266.

Karduck, A., “TeamBuilder: a CSCW tool for identifying expertise and team formation,” computer communication, Vol 17, No. 11, November 1994, pp. 777–787.

Mascha, M., Seaman, G., “Interactive education: Transitioning CD-ROMs to the Web,” Computer Networks and ISDN Systems, Vol. 27, No. 2, November 1994, pp. 267–272.

Pullen, J.M., “Networking for Distributed Virtual Simulation,” Computer Networks and ISDN Systems, Vol. 27, No. 3, December 1994, pp. 387–394.

Putz, S., “Interactive information services using World-Wide Web hypertext,” Computer Networks and ISDN Systems, Vol. 27, No. 2, November 1994, pp. 273–280.

Rousseau, B., Ruggier, M., “Writing documents for paper and WWW,” Computer Networks and ISDN Systems, Vol. 27, No. 2, November 1994, pp. 205–214.

Slater, A.F., “Controlled by the Web,” Computer Networks and ISDN Systems, Vol. 27, No. 2, November 1994, pp. 289–296.

Takada, T., “Multilingual information exchange through the World-Wide Web,” Computer Networks and ISDN Systems, Vol. 27, No. 2, November 1994, pp. 235–242.

ATM/B-ISDN Networks

Abdelaziz, M., Stavrakakis, I, “Some Optimal Traffic Tegulation Schemes for ATM Networks: A Markov Decision Approach,” IEEE/ACM Trans. on Networks, Vol 2, No. 5, October 1994, pp. 508–519.

Chlamtac, I., Faragó, A., Zhang, T., “Optimizing the system of Virtual Paths,” IEEE/ACM Trans. on Networks, Vol 2, No. 6, December 1994, pp. 581–587.

Huang, C.C., Leon-Garcia, A., “separation Principle of Dynamic Transmission and Enqueueing Priorities for Real- and Nonreal-Time Traffic in ATM Multiplexers,” IEEE/ACM Trans. on Networks, Vol 2, No. 6, December 1994, pp. 588–601.

Ndousse, T.D., “Fuzzy Neural Control of Voice Cells in ATM Networks,” IEEE Journal on Selected Areas in Com�mun�i�ca�tion, Vol 12, No. 9, December 1994, pp. 1488–1494.

Broadcast and Multicast

Coding and Compression

Arakawa, K., “Fuzzy Rule-based Signal Processing and Its Application to Image Restoration,” IEEE Journal on Selected Areas in Com�mun�i�ca�tion, Vol 12, No. 9, December 1994, pp. 1495–1502.

Mahieux, Y., Petit, J.P., “High-Qulaity Audio Transform Coding at 64 kbps,” IEEE Trans. on Com�muni�ca�tions, Vol. 42, No. 11, November 1994, pp. 3010–3019.

Roli, F., Serpico, S.B., Vernazza, G., “Intelligent Control of Signal Processing Algorithms in Communications,” IEEE Journal on Selected Areas in Com�mun�i�ca�tion, Vol 12, No. 9, December 1994, pp. 1553–1565.

Sitatam, V.S., Huang, C.-M, Israelson, P.D., “Efficient Codebooks for Vector Quantization Image Compression with an Adaptive Tree Search Algorithm,” IEEE Trans. on Com�muni�ca�tions, Vol. 42, No. 11, November 1994, pp. 3027–3033.

Yu, P., Venetsanopoulos, A.N., “Hierarchical Finite-State Vector Quantization for Image Coding,” IEEE Trans. on Com�muni�ca�tions, Vol. 42, No. 11, November 1994, pp. 3020–3026.

Conformance/Interoperability Testing

Miller, R.E., Paul, S., “Structural Analysis of Protocol Specifications and Generation of Maximal Fault Coverage Conformance Test Sequences,” IEEE/ACM Trans. on Networks, Vol 2, No. 5, October 1994, pp. 457–470.

Congestion and Flow Control

Elwalid, A.I., Mitra, D., “Statistical Multiplexing with Loss Priorities I Rate-Based Congestion Control of High-Speed Networks,” IEEE Trans. on Com�muni�ca�tions, Vol. 42, No. 11, November 1994, pp. 2989�–3002.

CONS/X.25/Frame Relay

Chang, C.-J., Dai,M.-D., “Analysis of Packet-Switched Data in a New Basic Rate User-Network Interface of ISDN,” IEEE Trans. on Com�muni�ca�tions, Vol. 42, No. 12, December 1994, pp. 3129–3136.

Datalink Protocols

Sklower, K.; Lloyd, B.; McGregor, G.; Carr, D., “The PPP Multilink Protocol (MP),” Internet Request for Comments No. 1717, 1994 November; 21 p.

Directory Services

Farrell, C.; Schulze, M.; Pleitner, S.; Baldoni, D., “DNS Encoding of Geographical Location,” Internet Request for Comments No. 1712, 1994 November; 7 p.

Manning, B.; Colella, R., “DNS NSAP Resource Records,” Internet Request for Comments No. 1706, 1994 October; 10 p.

Romao, A., “Tools for DNS debugging,” Internet Request for Comments No. 1713, 1994 November; 13 p.

Distributed Databases

Distributed File Systems

Distributed Systems

El-Kadi, A., “Tap processes,” computer communication, Vol 17, No. 10, October 1994, pp. 708–716.

Fielding, R.T., “Maintaining distributed hypertext infostructures: Welcome to MOMspider’s Web,” Computer Networks and ISDN Systems, Vol. 27, No. 2, November 1994, pp. 193–204.

Katz, E.D., Butler, M., McGrath, R., “A scalable HTTP server: The NCSA prototype,” Computer Networks and ISDN Systems, Vol. 27, No. 2, November 1994, pp. 155–164.

Saleh, K., Ural, H., Agarwal, A., “Modified distributed snapshots algorithm for protocol stabilization,” computer communication, Vol 17, No. 12, December 1994, pp. 863–870.

Szperski, C., Ventre, C., “Guaranteed quality of service for efficient multiparty communication,” computer communication, Vol 17, No. 10, October 1994, pp. 739–749.

Yau, S.S., Bae, D.-H., “Object-oriened and functional software design for distributed real-time systems,” computer communication, Vol 17, No. 10, October 1994, pp. 691–698.

Electronic Mail

Bonetti, P., Allochio, C., Ghiselli, “Distribution of RFC 1327 mapping rules via the Internet DNS: the INFNet distributed gateway system,” Computer Networks and ISDN Systems, Vol. 27, No. 3, December 1994, pp. 461–470.

Houttuin, J., “Classifications in E-mail Routing,” Internet Request for Comments No. 1711, 1994 October; 19 p.

Myers, J.; Rose, M. “Post Office Protocol - Version 3,” Internet Request for Comments No. 1725, 1994 November; 18 p.

Formal Specification

Humor

Local Area Networks

Li, S.-Y.R., “A 100% Efficient Media Access Protocol for Multichannel LAN,” IEEE Trans. on Com�muni�ca�tions, Vol. 42, No. 10, October 1994, pp. 2803–2814.

Mastichiadis, T., Economou, E., Davies, A., “Design principles and performancs for flooding routing topology spread spectrum LANs,” computer communication, Vol 17, No. 11, November 1994, pp. 762–770.

Metropolitan Area Networks

Huang, N.-F., Chen, K.-S., “A Distributed Paths Migration Scheme for IEEE 802.6 Based Personal Communication Networks,” IEEE Journal on Selected Areas in Com�mun�i�ca�tion, Vol 12, No. 8, October 1994, pp. 1401–1414.

Leung, V.C.M., Qian, N., Malyan, A.D., Donaldson, R.W., “Call Control and Traffic Transport for Connection-oriented High-Speed Wireless Personal Communications Over Metropolitan Area Networks,” IEEE Journal on Selected Areas in Com�mun�i�ca�tion, Vol 12, No. 8, October 1994, pp. 1376–1388.

Miscellaneous

Issacs, M., “Approaches to network training with particular reference to a perceived need for self-help materials,” Computer Networks and ISDN Systems, Vol. 27, No. 3, December 1994, pp. 345–352.

Jerman-Blazic, B., “Tool supporting the internationalization of the generic network services,” Computer Networks and ISDN Systems, Vol. 27, No. 3, December 1994, pp. 429–436.

Mathis, M., “Windowed ping: an IP layer performance diagnostic,” Computer Networks and ISDN Systems, Vol. 27, No. 3, December 1994, pp. 449–460.

Rose, M., “Principles of Operation for the TPC.INT Subdomain: Radio Paging -- Technical Procedures,” Internet Request for Comments No. 1703, 1994 October; 9 p.

Shrikumar, H., Post, R., “Thinternet: life at the end of a tether,” Computer Networks and ISDN Systems, Vol. 27, No. 3, December 1994, pp. 375–386.

Weider, C., “Wild beasts and unapproachable bogs,” Computer Networks and ISDN Systems, Vol. 27, No. 3, December 1994, pp. 361–366.

Mobile Networks

Acampora, A.S., Naghshineh, M., “An Architecture and Methodology for Mobile-Executed Handoff in Cellular ATM Networks,” IEEE Journal on Selected Areas in Com�mun�i�ca�tion, Vol 12, No. 8, October 1994, pp. 1365–1375.

Gua, N., Morgera, S.D., “Frequency-Hopped ARQ for Wireless Network Data Services,” IEEE Journal on Selected Areas in Com�mun�i�ca�tion, Vol 12, No. 8, October 1994, pp. 1324–1337.

Jain, R., Lin, Y.-B., Lo, C., Mohan, S., “A Caching Strategy to Reduce Network Impacts of PCS,” IEEE Journal on Selected Areas in Com�mun�i�ca�tion, Vol 12, No. 8, October 1994, pp. 1434–1444.

Nanda, S., Ejzak, Doshi, B.T., “A Retransmission Scheme for Circuit-Mode Data on Wireless Links,” IEEE Journal on Selected Areas in Com�mun�i�ca�tion, Vol 12, No. 8, October 1994, pp. 1338–1352.

Perkins, C., Myles, A., Johnson, D.B., “IHMP: A mobile host protocol for the Internet,” Computer Networks and ISDN Systems, Vol. 27, No. 3, December 1994, pp. 479–492.

Raychaudhuri, D., Wilson, N.D., “ATM-based Transport Architecture for Multiservices Wireless Personal Communication Networks,” IEEE Journal on Selected Areas in Com�mun�i�ca�tion, Vol 12, No. 8, October 1994, pp. 1401–1414.

Modeling and Formal Methods

Addie, R.G., Zukerman, M., “An Approximation of Performance Evaluation of Single Server Queues,” IEEE Trans. on Com�muni�ca�tions, Vol. 42, No. 12, December 1994, pp. 3150–3160.

Chang, K.C., Sandhu, D., “Delay Analyses of Token-Passing Protocols with Limited Token Holding Times,” IEEE Trans. on Com�muni�ca�tions, Vol. 42, No. 10, October 1994, pp. 2833–2842.

Luciana, J.V., Chen, C.Y.R., “An Analytical Model for Partially Blocking Finite-Buffered Switching Networks,” IEEE/ACM Trans. on Networks, Vol 2, No. 5, October 1994, pp. 533–540.

Mitra, D., Morrison, J.A., “Erlang Capacity and Uniform Approximations for Shared Unbuffered Resources,” IEEE/ACM Trans. on Networks, Vol 2, No. 6, December 1994, pp. 558–570.

Multimedia

Buddhikot, M.M., Parulkar, G.M., Cox Jr., J.R., “Design of a large scale multimedia storage server,” Computer Networks and ISDN Systems, Vol. 27, No. 3, December 1994, pp.503–518.

Leung, Y.-W., Yum, T.-S., “A Modular Multirate Video Distribution System – Design and Dimensioning,” IEEE/ACM Trans. on Networks, Vol 2, No. 6, December 1994, pp. 549–557.

Lu, G.J., Pung, H.K., Chua, T.S., Chan, S.F., “Temporal synchronization upport for distributed multimedia information systems,” computer communication, Vol 17, No. 12, December 1994, pp. 852–862.

Turletti, T., “The INRIA Videoconferencing System (IVS) ,” ConneXions, Vol. 8, No. 10, October 1994, pp. 20–24.

Network Architecture

Carlson, R.; Ficarella, D., “Six Virtual Inches to the Left: The Problem with Ipng,” Internet Request for Comments No. 1705, 1994 October; 27 p.

Demizu, N., Yamaguchi, S., “DDT – A versatile tunneling technology,” Computer Networks and ISDN Systems, Vol. 27, No. 3, December 1994, pp. 493–502.

Hinden, R., “Simple Internet Protocol Plus White Paper,” Internet Request for Comments No. 1710, 1994 October; 23 p.

Huitema, C., “The H Ratio for Address Assignment Efficiency,” Internet Request for Comments No. 1715, 1994 November; 4 p.

McGovern, M.; Ullmann, R., “CATNIP: Common Architecture for the Internet,” Internet Request for Comments No. 1707, 1994 October; 16 p.

Network Management

Gaïti, D., “Introducing intelligence in distributed systems management,” computer communication, Vol 17, No. 10, October 1994, pp. 729–738.

Hoffman, E., Mankin, A., Perez, M., Marsh, S.J., “Vince: Vendor independent (and architecture flexible) network control,” Computer Networks and ISDN Systems, Vol. 27, No. 3, December 1994, pp. 471–478.

Jordan, S., Varaiya, P.P., “Control of Multiple Service, Multiple Resource Communication Networks,” IEEE Trans. on Com�muni�ca�tions, Vol. 42, No. 11, November 1994, pp. 2979–2988.

Tschamer, V., Magedanz, T., Tschicholz, M., Wolisz, A., “Cooperatie management in open distributed systems,” computer communication, Vol 17, No. 10, October 1994, pp. 717–728.

Network Measurement

Yamamoto, Y., Inumaru, F., Akers, S.D., Nishimura, K.-I., “Transmission Performance of 64 kbps Switched Digital International ISDN Connections,” IEEE Trans. on Com�muni�ca�tions, Vol. 42, No. 12, December 1994, pp. 3215–3220.

Optical Networks

Labourdette, J.-F.P., Hart, G.W., Acampora, A.S., “Branch-Exchange Sequences for Reconfiguration of Lightwave Networks,” IEEE Trans. on Com�muni�ca�tions, Vol. 42, No. 10, October 1994, pp. 2822–2832.

Policy/Pricing/Tariffs/Funding

Hallgren, M.M., “Funding an Internet public good: definition and example,” Computer Networks and ISDN Systems, Vol. 27, No. 3, December 1994, pp. 403–410.

Ingvarson, D., Marinova, D., Newman, P., “Electronic networking: Social and policy aspects of a rapidly growing technology. Electronic networking: Policy aspects for Australia,” Computer Networks and ISDN Systems, Vol. 27, No. 3, December 1994, pp. 411–418.

Kelly, B., “Becoming an information provider on the World Wide Web,” Computer Networks and ISDN Systems, Vol. 27, No. 3, December 1994, pp. 353–360.

Kuo, F., Ding, J., Zheng, C., Hussain, F., “Issues in academic networking in the PRC,” Computer Networks and ISDN Systems, Vol. 27, No. 3, December 1994, pp. 419–428.

Pitkow, J., Recker, M., “Results from the First World-Wide Web user survey,” Computer Networks and ISDN Systems, Vol. 27, No. 2, November 1994, pp. 243–254.

Protocol Implementation

Lye, K.M., Chan, L., Chua, K.C., “Performance of a network protocol processor,” computer communication, Vol 17, No. 11, November 1994, pp. 771–776.

Protocol Specifications

Radio Communication

Chlamtac, I., Faragó, A., Ahn, H.Y., “A Topology Transparent Link Activation Protocol for Mobile CDMA Radio Networks,” IEEE Journal on Selected Areas in Com�mun�i�ca�tion, Vol 12, No. 8, October 1994, pp. 1426–1433.

Chuang, J., C.-I., Sollenberger, N.R., “Perform�ance of Autonomous Dynamic Channel Assignment and Power Control for TDMA/FDMA Wireless Access,” IEEE Journal on Selected Areas in Com�mun�i�ca�tion, Vol 12, No. 8, October 1994, pp. 1314–1323.

Fuzjaeger, A.W., Iltis, R.A., “Acquisition of Timing ad Doppler-Shift in a Direct-Sequence Spread-Spectrum System,” IEEE Trans. on Com�muni�ca�tions, Vol. 42, No. 10, October 1994, pp. 2870–2880.

LaMaire, R.O., Krishna, A., Ahmadi, H., “Analysis of a Wireless MAC Protocol with Client-Server Traffic and Capture,” IEEE Journal on Selected Areas in Com�mun�i�ca�tion, Vol 12, No. 8, October 1994, pp. 1299�–1313.

Madhow, U., Honig, M.L., “MMSE Interference Suppression for Direct-Sequence Spread-Spectrum CDMA,” IEEE Trans. on Com�muni�ca�tions, Vol. 42, No. 12, December 1994, pp. 378–3188.

Noneaker, D.L., Pursley, M.B., “Selection of Spreading Sequences for Direct-Sequence Spread-Spectrum Communication over a Doubly Selective Fading Channel,” IEEE Trans. on Com�muni�ca�tions, Vol. 42, No. 12, December 1994, pp. 3171–3177.

Papavassiliou, S., Tassiulas, L., Tandon, P., “Meeting QoS Requirements in a Cellular Network with Reuse Partitioning,” IEEE Journal on Selected Areas in Com�mun�i�ca�tion, Vol 12, No. 8, October 1994, pp. 1389–1400.

Robinson, R.C., Ha, T.T., “Effect of capture on throughput of variable length packet Aloha systems,” computer communication, Vol 17, No. 12, December 1994, pp. 836–842.

Viterbi, A.J., Viterbi, A.Am, Gilhousen, K.S., Zehavi,E., “Soft Handoff Extends CDMA Cell Coverage and Increases Reverse Link Capacity,” IEEE Journal on Selected Areas in Com�mun�i�ca�tion, Vol 12, No. 8, October 1994, pp. 1281–1288.

Wei, P., Zeidler, J.R., Ku, W.H., “Adaptive Interference Suppression for CDMA Overlay Systems,” IEEE Journal on Selected Areas in Com�mun�i�ca�tion, Vol 12, No. 9, December 1994, pp. 1510–1523.

Woerner, B.D., Stark, W.E., “Trellis-Coded Direct Sequence Spread-Spectrum Communication,” IEEE Trans. on Com�muni�ca�tions, Vol. 42, No. 12, December 1994, pp. 3161–3170.

Zorzi, A., Rao, R.R., “Capture and Retrans�mission Control in Mobile Radio,” IEEE Journal on Selected Areas in Com�mun�i�ca�tion, Vol 12, No. 8, October 1994, pp. 1289–1298.

Reliability and Error Control

Bataineh, S., Al-Ibrahim, M., “Effect of fault tolerance and communication delay on response in a multiprocessor system with a bus topology,” computer communication, Vol 17, No. 12, December 1994, pp. 843–851.

Fantacci, R., “Generalized Error Control Techniques for Integrated Services Packet Networks,” IEEE Trans. on Com�muni�ca�tions, Vol. 42, No. 10, October 1994, pp. 2815–2821.

Kim, K.H., “Fair distribution of concerns in design of fault-tolerant distributed compoter systems,” computer communication, Vol 17, No. 10, October 1994, pp. 699–707.

Lee, T.-H., Chou, J.-J., “Diganosis of Single Faults in Bitonic Sorters,” IEEE/ACM Trans. on Networks, Vol 2, No. 5, October 1994, pp. 497–507.

Logothetis, D., Trivedi, K.S., “Reliability Analysis of the Double Counter-Rotating Ring with Concentrator Attachments,” IEEE/ACM Trans. on Networks, Vol 2, No. 5, October 1994, pp. 520–532.

Resource Discovery

Schwartz, M.F., Pu, C., “Applying an Information Gathering Architecture to Netfind: A White Pages Tool for a Changing and Growing Internet,” IEEE/ACM Trans. on Networks, Vol 2, No. 5, October 1994, pp. 426–439.

Routing

Bahk, S., El-Zarki, M., “Congestion control based dynamic routing in ATM networks,” computer communication, Vol 17, No. 12, December 1994, pp. 826–835.

Francis, P., “Comparison of geographical and provider-rooted Internet addressing,” Computer Networks and ISDN Systems, Vol. 27, No. 3, December 1994, pp. 437–448.

Hanks, S.; Li, T.; Farinacci, D.; Traina, P., “Generic Routing Encapsulation over IPv4 networks,” Internet Request for Comments No. 1702, 1994 October; 4 p.

Hanks, S.; Li, T.; Farinacci, D.; Traina, P., “Generic Routing Encapsulation (GRE),” Internet Request for Comments No. 1701, 1994 October; 8 p.

Kastenholz, F.,ed.; Almquist, P., “Towards Requirements for IP Routers,” Internet Request for Comments No. 1716, 1994 November; 186 p.

Malkin, G., “RIP Version 2 Carrying Additional Information,” Internet Request for Comments No. 1723, 1994 November; 9 p.

Malkin, G., “RIP Version 2 Protocol Analy�sis,” Internet Request for Comments No. 1721, 1994 November; 4 p.

Malkin, G., “RIP Version 2 Protocol Applicability Statement,” Internet Request for Comments No. 1722, 1994 November; 5 p.

Malkin, G.; Baker, F., “RIP Version 2 MIB Extension,” Internet Request for Comments No. 1724, 1994 November; 18 p.

Yu, J., Chen, E., Joncheray, L., “A Routing Design for the Initial ATM NAP Architecture,” ConneXions, Vol. 8, No. 11, November 1994, pp. 2–13.

Satellite Communication

Subasinghe-Dias, D., Feher, K., “Baseband Pulse Shaping for (/4 FQPSK in Nonlinearly Amplified Mobile Channels,” IEEE Trans. on Com�muni�ca�tions, Vol. 42, No. 10, October 1994, pp. 2843–2852.

Scheduling and Real Time

Funabiki, N., Takefuji, Y., “A Parallel Algorithm for Time-Slot Assignment Problems in TDM Hierarchical Switching Systems,” IEEE Trans. on Com�muni�ca�tions, Vol. 42, No. 10, October 1994, pp. 2890–2898.

LaMaire, R.O., Serpanos, D.N., “Two-Dimensional Round-Robin Schedulers for Packet Switches with Multiple Input Queues,” IEEE/ACM Trans. on Networks, Vol 2, No. 5, October 1994, pp. 471–482.

Leung, Y.-W., “Neural Scheduling Algorithms for Time-Multiplex Switches,” IEEE Journal on Selected Areas in Com�mun�i�ca�tion, Vol 12, No. 9, December 1994, pp. 1481–1487.

Security

Haller, N.; Atkinson, R., “On Internet Authentication,” Internet Request for Comments No. 1704, 1994 October; 17 p.

Türkheimer, F., “Privacy and the Internet: The next step,” Computer Networks and ISDN Systems, Vol. 27, No. 3, December 1994, pp. 395–402.

Simulation and Analysis of Protocols

Jung, W.Y., Un, C.K., “Analysis of a Finite-Buffer Polling System with Exhaustive Service Based on Virtual Buffering,” IEEE Trans. on Com�muni�ca�tions, Vol. 42, No. 12, December 1994, pp. 3144–3149.

Standards

IETF Secretariat; Malkin, G., “The Tao of IETF A Guide for New Attendees of the Internet Engineering Task Force,” Internet Request for Comments No. 1718, 1994 November; 23 p.

Reynolds, J.; Postel, J., “ASSIGNED NUMBERS,” Internet Request for Comments No. 1700, 1994 October; 230 p.

Switching

Bassi, S., Décima, M., Giacomazzi, P., Pattavina, A., “Multistage Shuffle Networks with Shrtest Path and Deflection Routing for High Performance ATM Switching: The Open-Loop Shuffleout,” IEEE Trans. on Com�muni�ca�tions, Vol. 42, No. 10, October 1994, pp. 2881–2889.

Chen, D.X., Mark, J.W., “A Buffer Management Scheme for the SCOQ Switch Under Nonuniform Traffic Loading,” IEEE Trans. on Com�muni�ca�tions, Vol. 42, No. 10, October 1994, pp. 2899–2907.

Chien, M.V., Oruç, A.Y., “High Performance Concentrators and Superconcentrators Usng Multiplexing Schemes,” IEEE Trans. on Com�muni�ca�tions, Vol. 42, No. 11, November 1994, pp. 3045–3050.

Cohen, R., Ofek, Y., “Self-Termination Mechanism for Label-Swapping Routing,” IEEE/ACM Trans. on Networks, Vol 2, No. 5, October 1994, pp. 541–545.

Décima, M., Giacomazzi, P., Pattavina, A., “Multistage Shuffle Networks with Shortest Path and Deflection Routing for High-Performance ATM Switching: The Closed-Loop Shuffleout,” IEEE Trans. on Com�muni�ca�tions, Vol. 42, No. 11, November 1994, pp. 3034–3044.

Kim, H.S., “Design and Performance of Multinet Switch: A Multistage ATM Switch Architecture with Partially Shared Buffers,” IEEE/ACM Trans. on Networks, Vol 2, No. 6, December 1994, pp. 571–580.

Li, J.-J., Weng, C.-M., “Self-routing multistage switch with repeated contention resolution algorithm for B-ISDN,” computer communication, Vol 17, No. 11, November 1994, pp. 788–798.

Mehmet Ali, M.K., Youssefi, M., Nguyen, H.T., “The Performance analysis and Implementation of an Input Access Scheme in a High-Speed Packet Switch,” IEEE Trans. on Com�muni�ca�tions, Vol. 42, No. 12, December 1994, pp. 3189–3199.

Park, Y.K., Cherkassky, V., Lee, G., “Omega Network-Based ATM Switch with Neural Network-Controlled Bypass Queueing and Multiplexing,” IEEE Journal on Selected Areas in Com�mun�i�ca�tion, Vol 12, No. 9, December 1994, pp. 1471–1480.

Seo, S.-W., Feng, T.-y., “Modified composie Banyan network with an enhanced terminal reliability,” computer communication, Vol 17, No. 10, October 1994, pp. 750–757.

Sharony, J., Stern, T.E., Li, Y., “The Universality of Multidimensional Switching Networks,” IEEE/ACM Trans. on Networks, Vol 2, No. 6, December 1994, pp. 602–611.

Stamoulis, G.D., Tsitsiklis, J.N., “The Efficiency of Greddy Routing in Hypercubes and Butterflies,” IEEE Trans. on Com�muni�ca�tions, Vol. 42, No. 11, November 1994, pp. 3051–3061.

Traffic Characterization

Cimini Jr., L.J., Forschini, G.J, Shepp, L.A., “Single-Channel User-Capacity Calculations for Self-Organizing Cellular Systems,” IEEE Trans. on Com�muni�ca�tions, Vol. 42, No. 12, December 1994, pp. 3137–3143.

Leung, K.K., Massey, W.A., Whitt, W., “Traffic Models for Wireless Communication Networks,” IEEE Journal on Selected Areas in Com�mun�i�ca�tion, Vol 12, No. 8, October 1994, pp. 1353–1364.

Transport Protocols

Amer, P.D., Chassot, C., Connolly, T.J., Diaz, M., Conrad, P., “Partial-Order Transport Service for Multimedia and Other Applications,” IEEE/ACM Trans. on Networks, Vol 2, No. 5, October 1994, pp. 440�–456.

Peha, J.M., Tobagi, F.A., “Specification and Analysis of the SNR High-Speed Transport Protocol,” IEEE/ACM Trans. on Networks, Vol 2, No. 5, October 1994, pp. 483–496.

Upper Layer Protocols

Furniss, P., “Octet Sequences for Upper-Layer OSI to Support Basic Communications Applications,” Internet Request for Comments No. 1698, 1994 October; 29 p.

Glassman, S., “A caching relay for the World Wide Web,” Computer Networks and ISDN Systems, Vol. 27, No. 2, November 1994, pp. 165–174.

Gowin, D., “NTP PICS PROFORMA For the Network Time Protocol Version 3,” Internet Request for Comments No. 1708, 1994 October; 13 p.

Luotonen, A., Altis, K., “World-Wide Web proxies,” Computer Networks and ISDN Systems, Vol. 27, No. 2, November 1994, pp. 147–154.

Raggett, D., “A review of the HTML+ document format,” Computer Networks and ISDN Systems, Vol. 27, No. 2, November 1994, pp. 135–146.

Whitcroft, A., Wilkinson, T., “A tangled Web of Deceit,” Computer Networks and ISDN Systems, Vol. 27, No. 2, November 1994, pp. 225–234.

Williamson, S.; Kosters, M., “Referral Whois Protocol (Rwhois),” Internet Request for Comments No. 1714, 1994 November; 46 p.

Case Studies

Jones, R., “Digital’s World-Wide Web server: A case study,” Computer Networks and ISDN Systems, Vol. 27, No. 2, November 1994, pp. 297–306,

Tutorials

Stallings, W., “Cryptographic Algorithms Part II: Pubic-key Encryption and Secure Hash Functions,” ConneXions, Vol. 8, No. 10, October 1994, pp. 2–11.

Vaudreuil, G., “Networked Voice Messaging,” ConneXions, Vol. 8, No. 11, November 1994, pp. 25–27.

Willinger, W., Wilson, D.V., Leland, W.E., Taqqu, M.S., “On Traffic Measurements that Defy Traffic Models (and vice versa): Self-Similar Traffic Modeling for High-Speed Networks,” ConneXions, Vol. 8, No. 11, November 1994, pp. 14–24.

��

�

�tc \l \f f "SIGCOMM Calendar of Events"�� INCLUDETEXT \\\\MSBSRV1\\ORAN$\\CCR\\JAN95\\CALENDAR.DOC �SIGCOMM Calendar of Events

�January, 1995

MASCOTS ‘ 95 International Workshop on Modeling, Analysis and Simulation of Computer and Telecommunication Systems�January 18–20, 1995�Durham, NC�Sponsored by: IEEE (Computer Society, TCCA, TCSIM), Duke University, �In cooperation with: ACM SIGSM, SIGARCH, SIGMETRICS�For further information contact: Erol Gelenbe, Electrical Engineering Dept., Duke University, Durham, NC 27708-0291, Email: erol@egr.duke.edu, Phone: +1 919 660 5442, Fax: +1 919 660 5293.

May 1995

SIGMETRICS ‘95�May 15–19, 1995�Ottawa, Otario, Canada�Sponsored by: ACM SIGMETRICS�For further information contact: Murray Woodside, Real-Time & Dist. Syst. Group. Dept., of Syst. and Comp. Engineering, Carleton University, 1125 Colonel by Drive, Ottawa, Ontario K1S 5B6, Canada�Tel: 613 788 5721�Email: cmu@sce.carleton.ca

May 1995

JENC6, The 6th Joint European Networking Conference�Conference Theme: Bringing the World to the Desktop�May 15-18, 1995�Tel Aviv, Israel.�Sponsored by: RARE�For further information, contact: RARE Secretariat, Singel 466-468, NL-1017 AW AMSTERDAM, �Tel. +31-20-639-1131�Fax. +31-20-639-3289�Email: jenc6-sec@rare.nl or jenc6-request@rare.nl (for distribution list)

June 1995

ACM SIGPLAN Workshop on Language, Compiler and Tool Support for Real-Time Systems (collocated with PLDI '95/PEPM '95) �June 21-22, 1995 �Hyatt Regency La Jolla, CA USA �Sponsored by ACM SIGPLAN. �For further information contact: Tom Marlowe, Dept. of Math and Computing Science, Seton Hall University, South Orange, NJ 07079 USA; �tel: 1-201-761-9784; �e-mail: marlowe@cs.rutgers.edu

August 1995

PODC '95: 14th Annual ACM Symposium on Principles of Distributed Computing�August 20-23, 1995�Ottawa, Ontario Canada�Sponsored by: ACM SIGOPS and SIGACT�For further information contact: James Anderson, Department of Computer Science, University of North Carolina, Chapel Hill, NC 27599-3175 USA�Tel.:1-919-962-1767; �Email: anderson@cs.unc.edu

New Security Paradigms Workshop IV �August 22 - 25, 1995 �Residence Inn La Jolla, CA USA �Sponsored by ACM SIGSAC. �For further information contact: Hilary Hosmer, Data Security, Inc., 58 Wilson Road, Bedford, MA 01730 USA; �tel: 1-617-275-8231; �e-mail: hosmer@dockmaster.ncsc.mil

September 1995

6th IFIP International Conference On High Performance Networking, HPN '95�September 11–15, 1995�Palma De Mallorca, Balearic Islands, Spain�Sponsored by: IFIP�For further information, contact: Ramon PUIGJANER Universitat de les Illes Balears Departament de Ciencies Matematiques i Informatica Carretera de Valldemossa km. 7.6 07071 PAALMA (Spain) �Phone : +34-71-173288 (direct line) +34-71-173401 (secretary) �Fax : +34-71-173003; �Email: putxi@ps.uib.es

November 1995

ACM Mulitmedia '95: The Third International Conference on Multimedia �November 6 - 11, 1995 �Hyatt Regency Embarcadero San Francisco, CA USA �Sponsored by ACM and Special Interest Groups Multimedia, GRAPH, COMM, IR, OIS, BIO and LINK. �For further information contact: Bob Allen, Bellcore, 445 South Street, Morristown, NJ 07962 USA; �tel: 1-201-829- 4315; �fax: 1-201-829-5981; �Email: rba@bellcore.com

December 1995

15th ACM Symposium on Operating Systems Principles �December 3-6, 1995 �Copper Mountain Resort, Copper Mountain, CO USA �Sponsored by ACM SIGOPS �For further information contact: John K. Bennett, Dept. of Electrical and Computer Engineering, Rice University, P.O. Box 1892, Houston, TX 77251 USA; �tel: 1-713-527-4025; �e-mail: jkb@rice.edu

February 1996

1996 International Zurich Seminar on Digital Communications - Broadband Communications: Networks, Services, Applications, Future Directions �February 19–23, 1996�Swiss Federal Institute of Technology (ETH), Zurich, Switzerland. �Deadline for Submissions: May 15, 1995. �For further information, contact: Prof. Dr. Plattner, TIK, ETHZ, 8092 Zurich,�E-Mail: izs96-pc-chair@tik.ethz.ch, �Fax: +41 1 632 10 35

��� tc \l \f b “SIGCOMM ‘95” �INSERT SIGCOMM 95 Announcement here

��tc \l \f b " Wireless Networks Journal"�INSERT Wireless Networks Advertisement HERE

�� tc \l \f b “Mobile Computing & Networking 1995”�INSERT Mobile Computing and Networking 1995 Conference Announcement here��tc \l \f b "Application for ACM and SIGCOMM Membership"�INSERT SIGCOMM MEMBERSHIP APPLICATION HERE�SIGCOMM Chairmen (1969-1991)

Walter Kosinski�1969-71*�David C. Wood�1981-83��Edward Fuchs�1971-73�Gene Hilborn�1983-85��Wesley W. Chu�1973-77�Michael J. Ferguson�1985-87��Franklin F. Kuo�1977-79�Vinton G. Cerf�1987-91��Robert E. Kahn�1979-81�A. Lyman Chapin�1991-��SIGCOMM Vice-Chairmen (1969-1991)

David J. Farber�1969-71*�David C. Wood�1979-81��Wesley W. Chu�1971-73�Carl A. Sunshine�1981-83��Maurice Karnaugh�1973-75�Helen M. Wood�1983-85��Franklin F. Kuo�1975-77�A. Lyman Chapin�1985-91��Robert E. Kahn�1977-79�Raj Jain�1991-��SIGCOMM CCR Editors (1970-1991)

Edward Fuchs�1970-71�Peter Sevcik�1979-83��John E. Suich�1972-73�Paul J. Santos�1983-84��J. Walter Bond�1973-75�John C. Burrus�1984-88��David C. Walden�1975-77�Craig Partridge�1988-91��Alexander A. McKenzie�1977-79�David R. Oran�1991-��SIGCOMM Secretaries, Treasurers and Board Members** (1969-1991)

J. Walter Bond (1975-78)�A. Lyman Chapin (1983-85)�W. Chou (1977-79)��K. Duncan (1977-79)�John Esbin (1979)�Rebecca Hutchings (1983-85)��Peter E. Jackson (1971-73)�Robert E. Kahn (1975-77)�Malcolm G. Lane (1985-1990)��Joy Nance (1969-71)�Alan Okinaka (1979)�Larry Roberts (1975-77)��Carl Sunshine (1979-81)�Helen M. Wood (1981-83)�Ella P. Gardner (1991)����Chris Edmondson-Yurkanan (1991-)��SIGCOMM Award Winners

1989�Paul Baran�1992�Alexander G. Fraser��1990�David D. Clark***�1993�Robert E. Kahn��1990�Leonard Kleinrock***�1994�Paul Green��1991�Hubert Zimmerman����*In 1969, SIGCOMM was called SICCOMM, the Special Interest Committee on Data Communications

**Chairmen who served as board members after their term as Chairman are not listed

***Joint winners

�This work was supported by the Advanced Research Projects Agen�cy, ARPA/CSTO, under Contract J-FBI-93-112 “Computer Aided Design of High Performance Network Wireless Networked Sys�tems and under Contract DABT-63-C-0080 “Transparent Virtual Mobile Environment”.

� Moreover, one may have more than a single “home base”; in fact, there may be no well-defined “home base” at all.

� Some of the ideas presented in this section were developed with two groups with which the author has collaborated in work on nomadic computing and communications. One of these is the Nomadic Working Team (NWT) of the Cross Industrial Working Team (XIWT); the author is the chairman of the NWT [4]. The second group is a set of his colleagues at the UCLA Computer Science Department who are working on an ARPA supported effort known as TRAVLER, of which he is Principal Investigator.

� Wireless LANs come in a variety of forms. Some of them are centrally controlled, and therefore have some of the same control issues as cellular systems with base stations, while others have distributed control in which case they behave more like the no-base-station systems we discuss in this section.

(1)	Cerf, V. G. and Kahn, R. E., "A Protocol for Packet Network Intercommunication," IEEE Transactions on Communications, Vol. COM-22 #5, May 1974, pp. 637-648.

* This research was sponsored by the Defense Advanced Research Projects Agency under ARPA Order No. 3941, and by the Defense Communications Agency (OoD), Contract No. MDA903-78-C-0129, monitored by DSSW. The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily representing the official policies, either express or implied, of the Defense Advanced Research Projects Agency, the Defense Communications Agency, or the United States Government

1.	This problem is not seen in the pure ARPANET case because the IMPs will block the host when the count of packets outstanding becomes excessive, but in the case where a pure datagram local net [such as an Ethernet) or a pure datagram gateway (such as an ARPANET/MILNET gateway) is involved, it is possible to have large numbers of tiny packets outstanding.

2.	ARPANET RFC 792 is the present standard. We are advised by the Defense Communications Agency that the description of ICMP in MIL-STD-1777 is incomplete and will be deleted from future revision of that standard.

3.	This follows the control engineering dictum Griever bother with proportional control unless bang�bang doesn't worked

�This work was supported in part by the Defense Advanced Research Projects Agency (DARPA) under Contract No. N00014-83-K-0125

�This use of EOL was properly called "Rubber EOL" but its detractors quickly called it "rubber baby buffer bumpers" in an attempt to ridicule the idea. Credit must go to the creator of the idea, Bill Plummer, for sticking to his guns in the face of detractors saying the above to him ten times fast.

*This research was supported by the Defense Ad�vanced Research Projects Agency under contract MDA903�87�C�0719. Views and conclusions con�tained in this report are the authors’ and should not be interpreted as representing the official opinion or policy of DARPA, the U.S. government, or any per�son or agency connected with them.

Permission to copy without fee all or part of this material is granted provided that the copies are not made or distributed for direct commercial advantage, the ACM copyright notice and the title of the publication and its date appear, and notice is given that copying is by permission of the Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission.

� INCLUDEPICTURE \\\\MSBSRV1\\ORAN$\\CCR\\ACMPRESS.TIF * MERGEFORMAT ���

Computer�Communication�Review

a quarterly publication of the special interest group on data communication

COMPUTER COMMUNICATION REVIEW (ISSN 0146-4833) is published five times a year (January, April, July, and two issues in October) by the ACM, Inc., 1515 Broadway, New York, NY 10036. Annual subscription cost of $16.71 is included in the member dues of $50.00 (for students, the cost is included in $24.00); the non-member annual subscription is $37.00. �Second-class postage paid at New York, NY 10001, and at additional mailing offices.

Postmaster: Send address changes to ACM COMPUTER COMMUNICATION REVIEW, 1515 Broadway, New York, NY 10036.

ACM SIGCOMM	-�PAGE�9�-	Computer Communication Review

ACM SIGCOMM	�SYMBOL 45 \f "Symbol"��PAGE�35��SYMBOL 45 \f "Symbol"�	Computer Communication Review

ACM SIGCOMM	-�PAGE�36�-	Computer Communication Review

ACM SIGCOMM	-�PAGE�65�-	Computer Communication Review

ACM SIGCOMM	-�PAGE�88�-	Computer Communication Review

ACM SIGCOMM	-�PAGE�111�-	Computer Communication Review

ACM SIGCOMM	-�PAGE�112�-	Computer Communication Review

ACM SIGCOMM	-�PAGE�157�-	Computer Communication Review

ACM SIGCOMM	-�PAGE�223�-	Computer Communication Review

ACM SIGCOMM	�SYMBOL 45 \f "Symbol"��PAGE�228��SYMBOL 45 \f "Symbol"�	Computer Communication Review

�.	V. Cerf, and R. Kahn, "A Protocol for Packet Network Intercommunication", IEEE Transactions on Communications, Vol. 22, No. 5, May 1974, pp. 637�648.

�.	ISO, "Transport Protocol Specification", Tech. report IS�8073, International Organization for Standard�iza�tion, September 1984.

�.	ISO, "Protocol for Providing the Connection�lessMode Network Service'', Tech. report DIS8473, International Organization for Standardization, 1986

�.	R. Callon, "Internetwork Protocol'', Proceedings of the IEEE, Vol. 71, No. 12, December 1983, pp. 1388�1392.

�.	Jonathan B. Postel "Internetwork Protocol Approaches", IEEE Transactions on Com�muni�cations, Vol. Com�28, No. 4, April 1980, pp. 605�611.

�.	Jonathan B. Postel, Carl A. Sunshine, Danny Cohen, "The ARPA Internet Protocol'', Computer Networks 5, Vol. 5, No. 4, July 1981, pp. 261�271.

�.	Alan Sheltzer, Robert Hinden, and Mike Brescia, "Connecting Different Types of Networks with Gateways", Data Communications, August 1982.

�.	J. McQuillan and D. Walden, "The ARPA Network Design Decisions", Computer Networks, Vol. 1, No. 5, August 1977, pp. 243�289.

�.	R .E. Kahn, S .A. Gronemeyer, J. Burdifiel , E. V. Hoversten, "Advances in Packet Radio Technology'', Proceedings of the IEEE, Vol. 66, No. 11, November 1978, pp. 1408–1496.

�.	B.M. Leiner, D.L. Nelson, F.A. Tobagi, ''Issues in Packet Radio Design", Proceedings of the IEEE, Vol. 75, No. 1. January 1987, pp. 6�20.

�.	-, ''Transmission Control Protocol RFC�793", DDN Protocol Handbook, Vol. 2, September 1981, pp. 2.179�2.198.

�.	Jack Haverty, "XNET Formats for Internet Protocol Version 4 IEN 158'', DDN Protocol Handbook, Vol. 2, October 1980, pp. 2�345 to 2–348.

�.	Jonathan Postel, “User Datagram Protocol NICRFC�768”, DDN Protocol Handbook, Vol. ' . August 1980, pp. 2.175–2.177.

�.	I. Jacobs, R. Binder, and E. Hoversten, General Purpose Packet Satellite Networks", Proceedings of the IEEE, Vol. 66, No. 11, November 1978, pp. 1448�1467.

�.	C. Topolcic and J. Kaiser, "The SATNET Monitoring System'', Proceedings of tile IEEE MILCOM, Boston, MA, October 1985, pp. 26.1.1�26.1.9.

�.	W.Edmond. S Blumenthal. A.Echenique, S.Storch, T.Calderwood, and T.Rees, ''The Butterfly Satellite IMP for the Wideband Packet Satellite Network'', Proceedings of the ACM SIGCOMM '86, ACM, Stowe, Vt., August 1986, pp. 194�203.

�.	David D. Clark, ''Window and Acknowledgment Strategy in TCP NIC�RFC�813", DDN Protocol Handbook, Vol. 3, July 1982, pp. 3�5 to 3�26.

�.	David D. Clark, "Name, Addresses, Ports, and Routes NIC�RFC�814' ', DDN Protocol Handbook, Vol. 3, July 1982, pp. 3�27 to 3�40.

