
Design, Implementation, and Evaluation of a Software-based Real-Time

Ethernet Protocol

Chitra Venkatramani Tzi-cker Chiueh

Department of Computer Science

State University of New York at Stony Brook

email : fchitra, chiuehg@cs.sunysb.edu

Abstract

Distributedmultimedia applications require performance guar-
antees from the underlying network subsystem. Ethernet
has been the dominant local area network architecture in the
last decade, and we believe that it will remain popular be-
cause of its cost-e�ectiveness and the availability of higher-
bandwidth Ethernets. We present the design, implementa-
tion and evaluation of a software-based timed-token protocol
called RETHER that provides real-time performance guaran-
tees to multimedia applications without requiring any modi-
�cations to existing Ethernet hardware. RETHER features
a hybrid mode of operation to reduce the performance im-
pact on non-real-time network tra�c, a race-condition-free
distributed admission control mechanism, and an e�cient
token-passing scheme that protects the network against to-
ken loss due to node failures or otherwise. To our knowl-
edge, this is the �rst software implementation of a real-time
protocol over existing Ethernet hardware. Performance mea-
surements from experiments on a 10 Mbps Ethernet indicate
that up to 60% of the raw bandwidth can be reserved without
deteriorating the performance of non-real-time tra�c. Ad-
ditional simulations for high bandwidth networks and faster
workstation hardware indicate that the protocol allows reser-
vation of a greater percentage of the available bandwidth.

1 Introduction

With the growing trend towards distributed multimedia ap-
plications, it has become essential for the underlying sys-
tems to provide resource guarantees. Applications such as
LAN-based teleconferencing and video-on-demand services
require support for real-time data transport from the un-
derlying network to support real-time video playback. LAN-
based real-time transport also plays a critical role in extend-
ing WAN-based teleconferencing systems to the end-user's
display, which may be connected to the site's WAN inter-
face with a local area network. With the large existing base
of Ethernets, it is essential to support such applications on
the Ethernet. Our work addresses the problem of providing
bandwidth guarantees on an Ethernet-based network.

Ethernet has been the most popular LAN scheme used in
the last decade. It is simple, e�cient and its bus-based archi-
tecture is particularly useful for multimedia applications be-
cause it can easily support broadcast and multicast. Despite
recent trends towards ATM and FDDI-based high-speed net-
works, we believe that Ethernet will continue to be popular,
especially at the leaves of a hierarchy of inter-networks, for
the following reasons. Firstly, newer generations of Ether-
nets such as Grand Junction Networks' 100Base-X and HP's
100Base-VG provide a bandwidth of 100 Mb/sec, which is
comparable to those of other high-speed LANs, but at a
lower price. Secondly, the advent of switch-hubs has im-
proved the scalability of the Ethernet architecture by al-
lowing the interconnection of Ethernet segments into a lo-
cal inter-network. Hence, even for large-scale organizations,
Ethernet will remain a viable choice. Lastly, for the existing
base of 10 Mbps Ethernet users, the alternative of changing
to a new technology, and consequently replacing the wiring,
hubs, and network interfaces would be very expensive and
would almost certainly delay the deployment of distributed
real-time and multimedia applications.

Most existing approaches for supporting distributed mul-
timedia applications take a best-e�ort approach by dynam-
ically adapting applications' behavior to the available net-
work bandwidth. One of the advantages claimed is that
no additional support is required from the hardware. The
RETHER system described in this paper supports real-time
bandwidth guarantees without any modi�cation to existing
Ethernet hardware.

Providing bandwidth guarantees on an Ethernet is prob-
lematic for the following reasons. Firstly, its medium access
protocol is contention-based. All nodes requiring the use
of the channel, �rst sense it to determine if it is idle. If
so, they compete for the channel and on sensing collision,
backo� for a random time interval before attempting re-
transmission. This protocol performs well for non-real-time
tra�c under light load, by providing very quick access to
the channel. However, it causes nondeterministic access de-
lays to the network, which is usually unacceptable for trans-
port of temporally constrained data. Although the Ethernet
protocol speci�cation has a provision for prioritized access
arbitration, this mechanism does not in itself o�er guaran-
teed bandwidth to an arbitrary pair of nodes. Besides, most
commodity Ethernet controllers do not necessarily imple-
ment this feature.

Secondly, the Ethernet protocol is not \fair" [7]. We con-
ducted the following experiment to verify this. In this ex-
periment, a video-conferencing application was run over the
Ethernet without any bandwidth guarantees. The results



are shown in Table 1. Each stream stands for a connection
between a sender and a receiver. Each sender sends up to
3000 video frames at the rate of 30 frames/sec and 6400
bytes per frame (equals MPEG-I bandwidth of 1.5Mbps).
The main performance criterion for our evaluation is the
number of frames that arrive late at a receiver. Packets
are considered late if they arrive more than 2 msec after
their expected arrival time. Because the measured delay
of our experimental setup is the minimal overhead that the
client program has to experience, the choice of 2 msec as the
threshold seems reasonable. The results are not an average
of several runs, but are representative of a single experi-
ment. This preserves the skewed pattern of the experimental
results. Table 1 shows the scenario when there is no asyn-
chronous non-real-time tra�c, and data is copied only once
at the receiver side, from the network card to user space.
With only one or two such streams, no packets are delayed.
With three streams, 0.47% of the packets arrive late. With
four or �ve streams, the number of late frames for certain
streams increases dramatically. It is clear from this that
the packet delay behavior is asymmetric among the nodes.
That is, there is a tendency for a subset of nodes to mo-
nopolize the channel within a short period of time. This is
particularly bad for real-time video data transfer, since the
quality of certain video sequences will be signi�cantly worse
than others, and there is no way to identify these sequences
a priori.

Number of Streams 1 2 3 4 5

Stream 1 0 0 0.00 16.47 32.47
Stream 2 x 0 0.00 0.13 98.33
Stream 3 x x 0.47 0.03 28.47
Stream 4 x x x 13.00 3.17
Stream 5 x x x x 69.33

Table 1: The percentage of delayed frames vs. the number
of concurrent video streams, assuming data is copied once
at the receiver. x means non-applicable.

The following points need to be kept in mind while inter-
preting the above results. First, the experiments are done on
a relatively idle network and therefore non-real-time tra�c
is at a minimum. Second, the maximumnumber of real-time
nodes on the network is relatively small, in this case, �ve.
Therefore, the loss of channel e�ciency due to collision does
not show up even when the tra�c load is as high as 45%.
As the number of hosts increases, collisions may become the
principal reason for packet delay. Third, the results reported
here only apply to a single segment network. When a video
connection spans multiple segments, the overall degradation
of end-to-end digital video transport would be the product
of the degradation due to each segment.

Given the above observations, the central goal of this
work is the implementation of a software-based protocol for
existing Ethernet hardware to provide real-time guarantees
to multimedia applications. The protocol, RETHER (Real-
time ETHERnet), adopts a contention-free deadline-driven
token-bus protocol to provide deterministic performance.
Some important design decisions to ensure that the protocol
works were driven by features unique to the Ethernet.

In this paper, we present the design and implementa-
tion of RETHER and analyze the measured performance re-
sults. We also analyze its performance under faster network
hardware{100-Mbps Ethernet{and faster workstations, us-

ing a simulator. Finally, we discuss scalability issues of
RETHER and the functioning of the protocol as part of the
Stony Brook Video Server (SBVS) project [10]. Our current
implementation runs on a network of �ve i486-based PCs
running FreeBSD v1.1.5.1 and using o�-the-shelf Ethernet
cards (SMC Elite), on a 10Mbps Ethernet. Initial perfor-
mance measurements indicate that it is possible to support
real-time tra�c utilizing up to 60% of the raw Ethernet
bandwidth without disrupting the timings of other operat-
ing system functions that use the network.

The remainder of the paper is organized as follows. Sec-
tion 2 describes the RETHER protocol. Section 3 describes
the implementation of the system and the procedural inter-
face provided to the user. Section 4 describes the measure-
ments of our implementation and their performance impli-
cations. Section 5 uses simulations to further evaluate the
performance of the RETHER protocol under larger networks
and faster hardware/links. Section 6 describes the Stony
Brook Video Server currently under development. Related
work is described in Section 7 and �nally, Section 8 presents
our conclusions from the experiments and also discusses fu-
ture directions in our research.

2 The RETHER Protocol

This section explains the protocol design in detail and is
organized as follows. Section 2.1 gives an overview of the
protocol. Section 2.2 �lls in the details. Our decentralized
admission control policy is described in Section 2.3, while
Sections 2.4 and 2.5 explain the fault-tolerance features and
the issues relating to extension of the protocol to multi-
segment Ethernets, respectively.

2.1 Overview

The RETHER protocol has the following features |

1. It allows applications to reserve bandwidth and guar-
antees the reservation throughout the lifetime of the
application.

2. It is implemented completely in software over o�-the-
shelf network hardware.

3. It adopts a hybrid scheme whereby the network oper-
ates using a timed token-bus protocol when there are
real-time sessions and using the original Ethernet [1]
protocol at all other times. This scheme reduces the
performance degradation of non-real-time tra�c, and
presents minimal disruption to existing network appli-
cations.

The network operates using the original Ethernet pro-
tocol (CSMA/CD) until a real-time request comes along.
When this happens, it switches to a token-bus mode. In
this mode, real-time data (like audio and video) is assumed
to be periodic and time is divided into cycles of one period.
For example, for video applications that require to send data
at 30 frames per sec, the cycle time would be 33.33 millisec.
In each cycle, channel access for all tra�c { real-time(RT)
and non-real-time(NRT) { is regulated by a token. RT traf-
�c is scheduled to be sent out �rst in each cycle and NRT
tra�c is allowed to use the channel in the remaining time.
Hence, in each cycle, all admitted RT nodes get to send
data. But, all nodes may or may not get to send NRT data,
depending on the time left in the cycle. When all the time
in the cycle is exhausted, the token returns to the �rst RT
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Figure 1: Transitions in the RETHER Protocol.

node and begins a new cycle. The details of how this time is
maintained and how the token is circulated are explained in
the following sections. When the last RT session terminates,
the network switches back to the CSMA mode.

2.2 Protocol Description

Figure 1 shows the di�erent modes and transitions in the
RETHER protocol and they are described below.

2.2.1 The CSMA Mode

Nodes compete for the channel using the generic Ethernet
protocol. This protocol performs well under light loads and
deteriorates only when the network is heavily loaded. Nodes
operate in this mode until the arrival of the �rst RT request
which initiates a switch to the RETHER-mode.

2.2.2 Switch to the RETHER Mode

When an application on a node generates an RT request
and the node is in the CSMA-mode, it becomes an Initiator
by broadcasting a Switch-to-RETHERmessage on the Eth-
ernet. Every node that receives this message responds by
setting its protocol mode to RETHER mode. It holds o�
sending any more data and awaits completion of transmis-
sion of the packet already in the transmission bu�er of its
network interface. Then it sends an acknowledgement back
to the initiator. As soon as the initiator receives all the ac-
knowledgements, it creates a token and begins circulating
it. This completes a successful switch to RETHER-mode.

Acknowledgements are crucial to the success of the pro-
tocol for two reasons. Firstly, acknowledgements signify the
willingness of the nodes to switch to RETHER-mode. Sec-
ondly, the fact that acknowledgements are successfully sent
out indicates that the nodes do not have any pending packet
in the backo� phase of the CSMA/CD protocol. The latter
is particularly important because in typical Ethernet cards,
software has no control over the data once it has been trans-
ferred to the network interface bu�er.

The protocol can robustly handle the following scenarios
that may a�ect the process of switching to RETHER-mode:

Multiple Initiators : This condition occurs when appli-
cations running on two or more di�erent nodes generate an
RT request simultaneously, and the corresponding nodes ini-
tiate a transition to RETHER mode. The race condition
occurs when all of these nodes have placed their Switch-to-
RETHER broadcast message in the network interface bu�er
and hence have no way of withdrawing it. We resolve this
condition by giving the node with the smaller ID, higher
priority. All the initiators contend for the channel and even-
tually one of them succeeds in broadcasting the switch mes-
sage. Since there are more initiators, the �rst node receives
a switch message from one of the other initiators. The �rst

node responds only if the ID of the new node is smaller
than its own. If not, it ignores the switch message. All nodes
(initiators and non-initiators) acknowledge a switch message
from an initiator with ID smaller than the one they already
acknowledged. Hence, only the initiator with the smallest
ID wins. It receives acknowledgements from all the other
nodes and completes the transition to RETHER-mode.

For example, if Node 1 and Node 3 were initiators and
Node 3 succeeds in broadcasting its message �rst. Then,
all other nodes except Node 1 send back acknowledgements.
This is because Node 1 knows that it is an initiator that
has priority over Node 3 to complete the transition. Hence,
Node 3 does not receive all the acknowledgements and can-
not complete the transition. Subsequently, when Node 1
succeeds in accessing the channel, all nodes, including Node
3, send back acknowledgements and Node 1 completes the
transition.

Other failures: Ideally, the initiator that gains control of
the transition will receive N � 1 acknowledgements, where
N is the number of nodes on the network, and complete the
transition. But, the following scenarios may occur{ i) some
of the nodes in the network are non-operational, ii) some of
the acknowledgements are lost, iii) some of the nodes do not
receive the Switch-to-RETHERmessage. The initiator sets a
timer while awaiting acknowledgements. In all of the above
cases, the initiator times out because it does not receive
all the acknowledgements. After a few retries, it concludes
that the nodes that did not acknowledge are dead. It then
informs all other \live" nodes about the current state of the
network by including the list of \dead" nodes in the token.

2.2.3 The RETHER Mode

In this mode, access to the channel is regulated by a token.
The token circulates among two sets of nodes | the RT-set
and the NRT-set. Only nodes that have made a bandwidth
reservation belong to the RT-set, while all nodes belong to
the NRT-set.

Real-time data is assumed to be periodic and the inter-
val between successive visits of the token to each node in
the RT-set is exactly one period. This period is also known
as the Token Rotation Time (TRT) and is a system con-
�guration parameter. The token visits the nodes in either
RT or NRT modes, when the node can hold the token for
an interval of time called the Token Holding Time (THT).
During this time, it can send the corresponding type of mes-
sage. Each RT process speci�es its required transmission
bandwidth as the amount of data it needs to send during
each TRT. This is translated into its THT using Equation
1, where S=W Overhead refers to software overheads and
ttoken referes to the token processing overhead. These are
discussed in detail in Section 4.2.

THTRT =
Data per TRT

Ethernet bandwidth
+ S=W Overhead + ttoken

(1)

THTNRT =
Message Size

Ethernet bandwidth
+S=W Overhead+ttoken

(2)
Equation 2 is used to determine the THT for NRT nodes.
While THTRT is predetermined based on the reservation re-
quest, THTNRT is computed each time the token visits an
NRT node, based on the size of the message to be sent.
By controlling the Message Size, it is possible to tune
THTNRT to get better performance. Each message could
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consist of one or more packets, each of which can have a
maximum size of an Ethernet Maximum Transmission Unit
(MTU). We can adopt di�erent policies for the transmission
of NRT data when the token arrives |

� transmit only one packet,

� transmit as many packets as possible, or

� transmit at most a �xed number packets.

The �rst policy is fair and allows each node a small share of
the residual bandwidth. However, since Ethernet tra�c is
usually bursty in nature, the second policy might be a better
choice since the response time will be shorter if as many of
the queued packets as possible could be transmitted. The
third policy only permits at most a �xed number of packets
to be sent. Depending on the characteristics of the tra�c
on the network, any one of the policies could be adopted
to improve performance. For simplicity, we adopt the �rst
policy in our prototype implementation.

In order to maintain the real-time guarantees, the in-
terval between two consecutive visits of the token to an RT
node must be one TRT. This time is maintained in the token
as a soft clock that holds the value of the residual time in
the current cycle. In each cycle, the token starts out with its
ResidualTime �eld set to one TRT. It visits all the RT nodes
in order. Each of these nodes sends one unit of RT data and
decrements the ResidualTime by its THTRT . Then, in the
remaining time, the token visits the NRT nodes in a round-
robin fashion, starting with the last unvisited NRT node in
the previous cycle. Each NRT node determines if there is
su�cient time to transmit data. If so, it sends out data using
one of the policies outlined earlier, decrements the Residu-
alTime �eld on the token by its THTNRT and passes the
token onto its neighbor. If not, it sends the token back to
the RT-set 
agging itself as the NRT node to be the �rst to
receive the token in the next cycle. The �rst RT node then
resets the ResidualTime to be equal to one TRT, thereby
beginning a new cycle. Hence, the token need not neces-
sarily visit all the nodes in the NRT-set in each cycle. It
may visit nodes in the RT-set multiple times before visiting
a node in the NRT-set. In this way, the nodes in the RT-set
are given priority over those in the NRT-set.

It is also possible to have multiple senders or receivers
per node. For instance, if a node has two senders, the token
visits the node in the RT mode twice in each token cycle.

Figure 2 shows a sample con�guration of a network.
Here, the italicized nodes 1, 3 and 6 belong to the RT-set.
During each TRT, the token visits the nodes 1, 3 and 6
and then the NRT nodes in the remaining time. A possible
sequence in two token rotation cycles would be{

1 � 3 � 6 � 1� 2� 3� 4� 5� 6� 7�

1 � 3 � 6 � 7� 8� 9� 10� 11� 1� 2 :::

Besides the ResidualTime, the token carries the following
information vital to the functioning of the protocol:

� RT-set information: This is an up-to-date list of all
the currently active RT sessions and their bandwidth
reservations. This information is required by the ad-
mission control algorithm.

� Network state information: This is an up-to-date list
of all the nodes in the network that are currently non-
operational. This data structure determines which
nodes the token should visit as it circulates around the
network. Section 2.4 describes how this list is main-
tained.

2.2.4 Switch to the CSMA Mode

The last node to terminate its RT session destroys the token
and sends out a Switch-to-CSMA broadcast message. All
the nodes switch back to CSMA-mode in response to this
message.

2.3 Admission Control

We adopt a simple decentralized admission control policy to
admit new RT sessions. Each node determines whether or
not to admit its own application's reservation request. A
new session with a reservation THTRTnew can be admitted
if and only if X

i2RT set

THTRTi

!
+ THTRTnew + TNRT � TRT (3)

where TNRT is the time in each cycle set aside for NRT
tra�c. It basically sets an upper bound on the time be-
tween consecutive visits of the token to an NRT node and
hence determines the starvation characteristics of NRT traf-
�c. The minimum value for TNRT should be such that the
worst case NRT network access latency is less than the time-
out values of higher layer protocols. As explained in Section
2.2.3, the token returns to an NRT node when it has visited
all the other nodes in NRT-set, in a round-robin fashion.
This happens when the sum of the residual times in X cy-
cles is greater than or equal to to the time to visit all the
NRT nodes once and transmit NRT data from them. This
is indicated in Equation 4 where THTNRTavg is the aver-
age time that an NRT node holds the token, over X cycles,
and N is the number of nodes in the network. Hence, the
worst case network access latency is X cycles, as indicated
in Equation 5.

X � TNRT � N � THTNRTavg (4)

Worst Case Net: Access Latency = X � TRT (5)

If 5% NRT tra�c needs to be supported on the network,
then N � (THTNRTavg � ttoken) = 0:05 �X � TRT . Substi-
tuting this back in Equation 4, we get

TNRT �
N � ttoken

X
+ 0:05 � TRT (6)

X can be determined from Equation 5, given a worst case
network access latency and the minimum value of TNRT can
be determined from Equation 6.

If a request is admitted, it is added to the RT-set infor-
mation on the token and hence, it can start sending RT data



from the next cycle, when the token arrives in the RT mode.
If not, the request returns to the user process with an error.
The user may keep trying until the request is admitted.

In our implementation, admission decision at a node
is postponed until that node receives the token. In other
words, a process' request to initiate an RT connection does
not return until the associated node receives the token. This
is because the token contains the most up-to-date infor-
mation about the RT-set and the bandwidth reservations.
We make this decision because the only other alternative is
to maintain this information at each node. However, this
may lead to incorrect admission decisions when two or more
nodes receive RT requests simultaneously and each node ad-
mits its request without the knowledge of admission deci-
sions made at other nodes. Given the number of nodes on
a 10Mbps Ethernet and the number of RT sessions that can
be supported on it (around �ve MPEG-I streams), including
the RT-set information in the token seems reasonable.

When an RT session terminates, the node merely re-
moves it from the RT-set information on the token, when
it receives the token.

2.4 Failure and Addition of Nodes

Since nodes in a network of workstations environment are
likely to crash or get rebooted without any warning to other
nodes, it is essential to have a mechanism that can detect
this, recon�gure the token bus and regenerate the token if it
is lost. The RETHER protocol is designed to be robust
enough to handle these events transparently. Hardware-
based token passing schemes such as FDDI, however, have
built-in hardware to detect node shut-down and act accord-
ingly.

When the network operates in the RETHER-mode, each
node monitors the state of its logical successor. Each node,
after sending the token to its successor, sets an Acknowl-
edgement Timer. If the successor is alive, it holds the token
for the duration of its THT and then sends the token to
its successor and also an acknowledgement to its predeces-
sor. On receiving this, the monitoring predecessor cancels
its timer. If, on the other hand, the successor is dead, the
monitoring node times out and assumes that its successor is
dead. It then updates the list of \dead" nodes on the token,
modi�es the RT-set information if the failed node had any
reservation and sends the token to the next \live" successor.

The value of the Acknowledgement Timer is chosen to be
equal to the residual time on the token. This is because, the
successor should de�nitely transmit the token within this in-
terval. Also, in order to reduce the performance penalty due
to acknowledgements, we piggyback the acknowledgement,
with the token passed to the successor. This is possible be-
cause Ethernet hardware supports multicast based on group
destination addresses. This scheme detects failed nodes and
maintains the current state of the network in the token.

When a node boots up, it broadcasts a message identi-
fying itself. If the network is in RETHER-mode, the node
with the token removes this new node from the list of \dead"
nodes on the token. The new node then waits for the to-
ken to arrive. The quantity TNRT in Equation 3 guarantees
that the token will reach the new node within a certain
interval. If the token does not arrive within this interval,
the new assumes that the network is in the CSMA mode.
The broadcast message may introduce a slip in the protocol
timings because it may collide with the node attempting to
access the network. However, the slack bandwidth TNRT ,
absorbs this slippage.

 UDP
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  TCP   Transport  Layer

Network  Layer
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Ethernet Driver

 CSMA  / RETHER

NRT applications RT applications

Figure 3: Interface Provided by RETHER in the UNIX Net-
work Subsystem.

2.5 Extension to Multi-Segment Ethernet

One popular method to boost the performance of Ethernet
is to partition a segment into multiple segments and connect
them through bridges or routers. The RETHER protocol,
as described above, guarantees real-time bandwidth to net-
work connections within a single Ethernet segment. To ex-
tend this protocol to multi-segment Ethernet environments,
a real-time connection among nodes on di�erent segments
is decomposed into multiple real-time sub-connections, each
of which corresponds to one of the segments that physically
connect the two communicating nodes. Due to this, the fact
that Ethernet does not support broadcast across multiple
segments does not a�ect the protocol. Hence, the RETHER
protocol can easily support bandwidth reservations in multi-
segment Ethernets as long as all the network nodes run the
RETHER system, and the intermediate routers observe the
real-time schedules associated with each of the segments to
which they are connected. However, unlike single-segment
Ethernets, there are two issues related speci�cally to multi-
segment Ethernets. The �rst is that latency guarantees are
harder because the real-time schedule on each segment is
determined completely independently of the others. As a
result, extra bu�ering must be provided on intermediate
routers to accommodate the discrepancy of these schedules.
These bu�ering delays create interactivity problems for real-
time teleconferencing applications, which according to er-
gonomical studies can have a maximum delay of 100-150
milliseconds. This means that the number of hops that such
a real-time connection can cross is bounded. The second
is the issue of connection setup time. In the worst case,
each of the participating segments needs to switch from the
CSMA to the RETHER mode. Therefore, the connection
setup time in this case is roughly the maximum of the mode
switch time associated with each segment since multiple seg-
ments can switch to RETHER mode in parallel.

3 Implementation

Figure 3 shows the organization of a UNIX network subsys-
tem that includes the RETHER software. RETHER func-
tions directly above the hardware interface layer and all pro-
tocol processing is performed by special network interrupt
service routines. Real-time applications can directly access
the services of the RETHER subsystem. For conventional
TCP/IP applications, the token-bus scheme in RETHER is
completely transparent.

The implementation of the protocol is modular and can
be partitioned into two parts{the �rst part deals with the
procedural interface provided to the user along with initial



setup required by the protocol, while the second is the actual
low-level implementation of the token passing protocol.

3.1 Procedural Interface

RETHER services can be accessed by applications either
directly or through a user-level library.

� retherOpenRTsession(bufAddressVector, bufLength, num-
Bufs, sessionId, 
ag, receiverId) : Maps all the user
bu�ers of length bufLength speci�ed in bufAddressVec-
tor to kernel address space and locks them in physical
memory. The parameter 
ag determines if the caller
is a sender or a receiver. If it is a sender process, the
system call takes the receiver node Id and returns a
unique sessionId. If the caller is a receiver process,
the call takes a sessionId, which is the unique Id of
the corresponding sender. This call allows the user to
specify multiple bu�ers, to allow users to use schemes
like double-bu�ering.

� retherCloseRTsession(sessionId): Awaits the RT to-
ken and when it arrives, terminates this RT session by
removing it from the RT-set information maintained
on the token. It also unlocks the bu�ers from physical
memory and unmaps them from kernel address space.

� retherAdmit(sessionId): Performs the admission con-
trol test for the session when the NRT token arrives.
If this session is the �rst RT session, then this call also
initiates a switch to the RETHER mode.

� retherSend(sessionId, blockFlag): This can be called
in the blocking or non-blocking mode depending upon
the value of blockFlag. In the blocking mode, this call
blocks until one of the bu�ers is emptied by the kernel,
when the RT token arrives. This may be called when
all send bu�ers are full. When the kernel receives an
RT token, it sends the contents of the next bu�er with
valid data.

� retherRecv(sessionId, blockFlag): This can be called in
the blocking or non-blocking mode, depending upon
the value of blockFlag. In the blocking mode, this
blocks until one of the bu�ers is �lled by the kernel.
This system call may be made when all the receive
bu�ers are empty. On receiving a frame, the kernel
copies it into the next bu�er, overwriting its contents
if it still has valid data, thereby giving priority to newer
data.

� Utility functions: Other utility functions for initializa-
tion, getting and setting RETHER state information
and collecting statistics are also provided.

We have built a library over the system call interface
to do the bu�er management. The user only speci�es the
number of bu�ers required and the library allocates them,
makes the appropriate RETHER system calls to map the
bu�ers and keeps track of full/empty bu�ers. Since the data
bu�ers are mapped in user and kernel address spaces, bu�er
status can be checked and updated by both.

3.2 Protocol Implementation

Our implementation of the RETHER protocol is in the ker-
nel and bypasses all upper-layer protocols like TCP/IP. By
mapping the user bu�ers to kernel address space, we are
able to copy data directly from user bu�er to the Network

Interface Card (NIC) at the sender side and from the re-
ceive bu�er on the NIC to the user bu�er at the receiver
side. This address remapping is a performance optimization
that minimizes data copy overhead. This part of the im-
plementation depends upon certain functions and interfaces
provided by the virtual memory module of the kernel.

Individual Ethernet packets belonging to one RT session
carry sequence numbers to aid reassembly at the receiver
end. If the receiver receives an incomplete frame, the user
process is informed accordingly. We do not retransmit lost
data since it is not important for data like video and audio
and would lead to violation of the performance guarantees.

The implementation of the token-bus protocol itself is in-
dependent of any other part of the kernel code. This module
processes the various events in the protocol and maintains
the state of the token bus. It involves modi�cations to the
low-level data structures pertaining to the Ethernet driver
software and the hardware interface layer of the UNIX net-
work software. Because of its modularity, eventually we plan
to distribute our implementation as a network driver with
well-de�ned interfaces so that it can be easily integrated
with other UNIX derivatives.

4 Performance Measurements and Analysis

In this section we describe the experimental setup, the per-
formance measurements we made on the token passing over-
head, the delay as seen by NRT packets, and the bandwidth
guarantees available to RT sessions.

4.1 Experimental Setup

We have the implementation running on a network of �ve
i486 PCs running the FreeBSD v1.1.5.1 kernel. The CPU
runs at a clock rate of 66 MHz and the Ethernet card is
on an ISA I/O bus. Data copy from the NIC memory to
physical memory is done using programmed-I/O. The limit
of �ve nodes is due to resource constraints on the number
of PC's.

We �rst conducted various latency measurements to ac-
count for software overhead and token passing overhead.
These are reported in Section 4.2. We then conducted ex-
periments to measure the e�ect of bandwidth reservation
on NRT tra�c under di�erent amounts of bandwidth reser-
vation and di�erent number of sessions. The average time
between NRT token visits to a node was used as the met-
ric to measure the impact of the protocol on NRT tra�c.
This metric re
ects the average network access latency of
a node. The NRT load on the network was arti�cially in-
troduced by having two arbitrary nodes exchange packets
of di�erent sizes continuously. This workload simulates a
heavily-loaded Ethernet. So the NRT packet delay mea-
surement reported here is on the conservative side because
typical Ethernet loads are below 10-15%. The total real-
time bandwidth reservation ranged between 5% and 75% of
the raw Ethernet bandwidth, which is 10 Mbits/sec. The
results are reported in Section 4.3.

We have also developed a prototype video-conferencing
application that is directly built on top of RETHER. Since
our applications required to send data at the rate of 30
frames per second, the token-bus was con�gured to oper-
ate with an TRT of 33.33 ms.



4.2 Latency Measurements

Since the RETHER protocol is implemented in software, it
is important to reduce the protocol overhead to the min-
imum. Our current implementation achieves this goal by
embedding the protocol processing directly within the in-
terrupt handlers, and thus avoiding unnecessary bu�ering
and scheduling overheads. Table 2 shows the components
of the time spent by a token on a node when there is noth-
ing to send on that node. It is broken up into sender and
receiver sides. The total time for a token to visit a node is
approximately 247�sec.

Time
No. Operation Taken

(�sec)

1 Receiver preprocessing 27
2 Copy token from NIC to memory 31
3 Receiver postprocessing 12
4 RETHER Protocol processing 15
5 Sender preprocessing 30
6 Copy token from memory to NIC 29
7 Sender postprocessing 15
8 Transmission delay +

Receive Interrupt +
Context switch +
Schedule interrupt 88

Total 247

Table 2: Breakdown of the Token Passing Overhead

Software has no control over Item 8. With faster ma-
chines and faster links, this overhead will reduce. The other
major components are the time for data copies and the time
for interrupt handling in the Ethernet driver. In our cur-
rent implementation, all RETHER packets go through a thin
layer of driver software before reaching the RETHER code.
We are in the process of moving the RETHER protocol pro-
cessing into the Ethernet driver, whereby, the interrupt han-
dling overhead will be reduced to a minimum. Other than
these, the RETHER protocol processing takes only 15�sec,
or around 6% of the total token overhead.

The values for THT s are determined using Equations 1
and 2. The S=W Overhead in these equations was deter-
mined using empirical measurements on an idle network.
The time to send a real-time packet to the receiver includes
two main parts. One is the time to copy the data from main
memory to the Ethernet card and the other is the time to
put the packet on the wire. With the PC's and the network
that we used, the time to transmit the packet over the wire
is larger than the time to copy the packet to the Ethernet
card. Since each RT data unit is composed of a number of
Ethernet MTU packets, the overall transmission time per
RT data unit was determined predominantly by the time to
transmit the data, since data copy and data transmission
overlap. Our empirical measurements yielded the following
formula {

Transmission Time =
Packet Size

Ethernet Bandwidth
+a�n+b (7)

where a is a constant processing overhead per packet. It in-
cludes processing of the transmission completion interrupt
and initiation of the transmission of the next packet. This
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Figure 4: E�ect of Network Size on Switch Time.

was determined to be 140�sec. n is the number of Ether-
net packets and b is the processing and data copy overhead
for the �rst packet, measured to be 650�sec for an MTU
packet. The data copy overhead is high because the ma-
chines we use do not support DMA to/from network cards.
All the data copy operations between memory and the NIC
use programmed-I/O. The quantity (a � n+ b) in Equation
7 corresponds to the S=W Overhead.

For heterogeneous networks, these constants and the to-
ken overhead would have to be measured for each architec-
ture separately.

Because the goal of the RETHER protocol is to pro-
vide real-time bandwidth guarantee, we measured the tem-
poral distance between consecutive arrivals of the token to
an RT node, under various RT/NRT workload conditions.
By choosing the protocol parameters as described above, we
observed that during our experiments, the bandwidth reser-
vations were indeed guaranteed in all cases. Therefore, for
the rest of this section, our focus is mainly on minimizing the
performance impact of the protocol on non-real-time tra�c.

4.3 Results and Analysis

Because the RETHER protocol features a hybrid-mode op-
eration, it is important that the overhead of switching be-
tween these two modes be reduced to the minimum. We �rst
measured the time taken to switch to the RETHER mode
from the CSMA mode. Figure 4 depicts the e�ect of the
number of physical nodes in the network on the switch time
from the CSMA to the RETHER mode. Network nodes
will operate using the RETHER protocol when there is at
least one RT session active between any two nodes. As
the number of nodes on the network increases, an Initiator
needs to collect more acknowledgements before completing
the switch to the RETHER mode, thus potentially increas-
ing the switch time. Also, it takes additional time to empty
the packets already on the network card when the RT session
request arrives. The worst case scenario would be when all
the nodes have full-length bu�ered packets at the interface
and acknowledgements need to be sent. But, since a typical
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Figure 5: Non-Real-Time Packet Delay vs. Session Size,
Maintaining a Constant Number of Sessions.

Ethernet is idle most of the time, this delay should be quite
small. As expected, Figure 4 shows a positive slope indicat-
ing that the switch-time increases with the number of nodes
on the network. This is mainly because of the interrupt and
processing overheads due to handling the various acknowl-
edgements. Part of the reason for this could also be the
inevitable collisions that occur when all the nodes simulta-
neously try to send acknowledgements back to the initiator.
To avoid this, we can use a strategy where each node waits
for a time interval proportional to its ID before acknowledg-
ing the Switch-to-RETHER message. The results in Figure
4, however, do not re
ect this optimization.

Next we examine the e�ect of di�erent numbers of RT
sessions with di�erent session sizes on the NRT access delay,
in a heavily-loaded network. In each of the plots, RT session
size stands for the amount of data to be sent per TRT. For
instance, an RT session with a bandwidth reservation of 1.5
Mbps (MPEG-I stream) would send 6.25 kilobytes of data
per TRT of 33.33 ms.

Figure 5 displays the e�ect of the amount of bandwidth
reserved per RT session on the NRT packet delay. It shows
that given a tolerable access delay of 10ms, we can reserve
up to 28KBytes per frame (KBpf) (69% of raw Ethernet
bandwidth) for one session, and up to a total of 26KBpf
(64% of Ethernet bandwidth) for four sessions. The session
sizes chosen are for transmitting compressed digital video
data at MPEG-I or MPEG-II rates. As expected, the to-
tal percentage of bandwidth that can be reserved decreases
slightly with the number of sessions, because the protocol
overhead due to token passing increases. If greater delays in
NRT tra�c can be tolerated, then more bandwidth can be
reserved. Note that the design goal of the RETHER pro-
tocol is to support real-time connections without causing
unnecessary time-outs in higher level applications like NFS,
that use the network. Therefore, it is acceptable to have
longer NRT packet delays as long as it is within the bounds
of time-out values.

Figure 6 shows the variation in NRT packet delays as the
number of sessions is increased, keeping the total reserved
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bandwidth constant. This experiment e�ectively measures
the protocol overhead due to the token passing scheme. As
is apparent from the graph, the e�ect of the number of ses-
sions is noticeable only when the total bandwidth reserved
is very high | 32 KBpf or around 75%. This implies that
the protocol overhead is not very signi�cant in the normal
range of operation (under 50%-60% of Ethernet bandwidth
reserved).

5 Scalability Simulation Study

Our initial simulations results reported in [9] were done with
transmission times determined using the Packet Internet
Groper (ping) program. Values obtained from later low-
level measurements reported in Section 4.2 were lower than
those obtained using ping and were used in the simulator
to validate it. A comparison of the results obtained from
the simulator and those obtained from the implementation
is shown in Figure 7. In order to be consistent with the ex-
perimental setup used to obtain the implementation results,
the simulator was run with a network of 5 nodes. All results
are averaged over 100 runs. Each real-time session reserves
bandwidth enough to transmit an MPEG-I stream of 1.5
Mbit per second and lasts for �ve minutes. For comparison
purposes, both implementation and simulation results were
obtained for an idle network. Figure 7 indicates that the
results from the simulator are very close to those obtained
from the implementation.

5.1 Overhead due to Token Passing

Because of the hardware constraints in our lab, our perfor-
mance results are limited to small-scale networks. To study
the scalability behavior of the RETHER protocol, we used a
realistic simulator that took values from real measurements,
as con�guration parameters. Figure 8 plots the NRT net-
work access delay in a lightly loaded network against the
size of the network, assuming that there are two MPEG-I
streams. The protocol overhead increases linearly with the
size of the network. For LANs supporting up to 20 nodes on
a 10 Mbps Ethernet, a network access latency of 8ms seems
to be reasonable for production operation.

5.2 Faster Hardware/Links

Here, we investigate the impact of faster network adap-
tor hardware and faster links on the performance of the
RETHER protocol. Simulations were done for a network
using 100 Mbps Ethernet and PCs with local buses (with
132 Mbytes/sec peak data rate). To simulate the 100Mbps
Ethernet, transmission times were reduced by a factor of 10
from those used for the 10 Mbps Ethernet. For the local-bus
architecture, in which the network card is on the CPU bus,
the data copy overhead was reduced by a factor of 7, which
is calculated by taking the ratio of the time for memory-
to-network-card copy and that for memory-to-network-card
copy.

Size (bytes) 100 500 1000 1500
Mem. to Mem. Copy(�s) 12 34 61 89
Mem. to NIC Copy(�s) 51 210 402 604

Table 3: Time in �sec to copy data over the CPU bus vs.
over the I/O bus.
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Figure 8: Scalability of RETHER with the Network Size.

Table 3 shows the speed di�erence between these two
types of copy operations. Figure 9 shows the performance
of the RETHER protocol under di�erent combinations of
fast/slow hardware/network-links. The �gure demonstrates
that faster link is more important than faster bus in terms
of improving the overall performance. This is because the
data transmission time dominates and the data copy time
can often be masked through pipelining.

Considering the transport of compressed MPEG-I video
data with an average bit-rate of 1.5 Mbits/sec, we found
from simulations, that this con�guration can support a max-
imum of 40 MPEG-I streams.

6 Stony Brook Video Server (SBVS)

SBVS is a videoserver currently under development. It uses
a client-server architecture where a dedicated video server
provides real-time delivery of video data to nodes on a LAN,
from the storage subsystem. The kernel running on the
server has two major parts { one that fetches data from
the storage subsystem into the bu�ers in memory at the
server and the other that empties data from the bu�ers into
the network, in real-time. The latter part uses RETHER
to get deterministic access to the network. All the nodes
on the network, including the clients and the server run the
RETHER kernel. The server reserves adequate bandwidth
for each RT request that it has to service. In each cycle, the
token visits the server once for every RT stream. At this
time, the server delivers the data to the appropriate client.

7 Related Work

The idea of token passing was used in both IEEE 802.4 and
IEEE 802.5 standards. In particular, the IEEE 802.4 [3]
standard describes a token bus protocol and the use of a
token as a means to resolve collisions has also been adopted
by the IEEE 802.5 token ring [2] and the FDDI [4] proto-
cols. These protocols, however, require specialized hardware
and cannot be implemented over commodity Ethernet cards
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using the CSMA/CD protocol. These schemes have �xed to-
ken rotation cycles in which the token visits all the nodes in
a speci�c order. Our protocol is an enhancement of the to-
ken bus protocol in that it adopts a mechanism that allows
the token to visit a real-time node before its deadline ex-
pires, even if it has not yet visited all the other non-real-time
nodes. The IEEE 802.4 standard does provide for assigning
priorities (levels 0, 2, 4 or 6 with 6 being the highest) to
di�erent streams of tra�c at each node. However the token
visits all nodes in each cycle and the token holding times are
maintained by timers in hardware. The most signi�cant dif-
ference between RETHER and previous token-based proto-
cols is the provision of distributed admission control, which
extends the scope of the RETHER protocol from medium
access to end-to-end bandwidth guarantee.

Earlier work in the area of supporting synchronous or
real-time tra�c on multi-access LANs can be found in [14],
[18], [19]. These are window protocols which assume a slot-
ted time axis. Implementation of this would again require
hardware support, in particular global synchronized clocks.
A lot of work has been done in the area of timed-token
protocols since it was �rst proposed by Grow [13] in 1982.
Protocols for guaranteeing synchronous deadlines based on
timed-token protocols can be found in [5], [8], [16], [17].
These protocols assume an underlying token bus MAC pro-
tocol. Our work, however, is the software implementation
of such a protocol over commodity network hardware, with
enhancements to cater to applications with periodic channel
access requirements. Also, RETHER addresses reliability is-
sues and adopts solutions, the choices of which have been
driven by the characteristics of an Ethernet-based network.
Other implementation e�orts are described in [11], [12], [15].
They also need specialized hardware in order to provide de-
terministic channel access.

In summary, although there have been numerous works
on real-time local area network protocols, to our knowledge,
our implementation is the �rst complete prototype that suc-
cessfully demonstrates guaranteed bandwidth reservation on
existing Ethernet hardware. The fact that there is a large in-

stalled base of Ethernet means that our completely software-
based protocol provides an attractive and instant solution
to support real-time applications on existing Ethernet-based
LAN environments.

8 Conclusion

Most distributed multimedia applications such as videoservers
and teleconferencing require resource guarantees from the
underlying network. In this paper, we address this problem
in the context of Ethernet, because it is the most prevalent
LAN architecture. The Ethernet architecture is inherently
incapable of providing deterministic network access because
of its contention-based medium access protocol. In contrast,
our protocol, RETHER, uses a timed token-bus approach
to provide real-time performance guarantees to applications
that require it. From the measurements of our implementa-
tion on a 10Mbps Ethernet, we found that it is possible to
provide bandwidth guarantees to applications without sig-
ni�cantly a�ecting the performance of non-real-time tra�c,
when up to 60% of the raw Ethernet bandwidth is reserved.
In addition, the timeout values of higher-layer protocols in
the operating system are preserved when no more than 60%
of the bandwidth was reserved for real-time tra�c. The
RETHER protocol therefore can provide real-time perfor-
mance guarantees required for higher-layer protocols such
as the one described in [6]. It also permits distributed mul-
timedia applications to run without any changes to exist-
ing hardware. Compared to other network-adaptive applica-
tions, our approach hides user-level programmers from the
details of underlying network dynamics without specialized
hardware support. The main contributions of this work are
thus the design, implementation, and detailed evaluation
of a distributed real-time bandwidth reservation protocol
speci�cally for Ethernet.

In the future, we plan to extend this work in the fol-
lowing directions. First, we are currently integrating the
RETHER subsystem with the Stony Brook Video Server
(SBVS) project. Second, we will extend the RETHER pro-
tocol to run across bridges and routers so that real-time
local-area inter-networking is possible. Finally, we are im-
plementing the token monitoring and regeneration mecha-
nism to handle node failures in a more robust fashion.
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