

Software Support for Outboard Buffering and Checksumming

Karl Kleinpaste, Peter Steenkiste, Brian Zill*

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

Data copying and checksumming are the most expensive op-
erations when doing high-bandwidth network IO over a high-
speed network. Under some conditions, outboard buffering
and checksumming can eliminate accesses to the data, thus
making communication less expensive and faster. One of the
scenarios in which outboard buffering pays off is the common
case of applications accessing the network using the Berkeley
sockets interface and the Internet protocol stack. In this paper
we describe the changes that were made to a BSD protocol
stack to make use of a network adaptor that supports outboard
buffering and checksumming. Our goal is not only to achieve
“single copy” communication for application that use sock-
ets, but to also have efficient communication for in-kernel
applications and for applications using other networks. Per-
formance measurements show that for large reads and writes
the single-copy path through the stack is significantly more
efficient than the original implementation.

1 Introduction

For bulk data transfer over high-speed networks, the sending
and receiving hosts typically form the bottleneck, and it is im-
portant to minimize the communication overhead to achieve
high application-level throughput. The communication cost
can be broken up in per-packet and per-byte costs. The per-
packet cost can be optimized [3, 17], and for large packets,
this overhead is amortized over a lot of data. However, the
per-byte cost is not reduced by increasing the packet size.
Moreover, the per-byte cost depends strongly on the memory
bandwidth, which over time has not increased as quickly as

This research was supported by the Advanced Research Projects Agency/CSTO moni-
tored by the Space and Naval Warfare Systems Command under contract N00039-93-
C-0152.
* Brian Zill is currently with Microsoft

To be presented at SIGCOMM’95

CPU speed. As a result, it is mainly the per-byte costs that
make high speed communication over networks expensive
and that ultimately limit throughput as the network band-
width increases.

The per-byte overhead can be minimized by minimizing
the number of times the data is accessed by the host CPU
on its path through the network interface. The ideal sce-
nario is a single-copy architecture in which the data is copied
exactly once. For example for transmit, the data is copied
from where it was placed by the application directly to the
network adaptor, and the checksum is calculated during that
copy. In contrast, most host interfaces in use today copy
the data two or three times before it reaches the network.
For Application Programming Interfaces (APIs) with copy
semantics (e.g. sockets), the single-copy architecture might
require outboard buffering and checksum support [19], and
several projects have proposed or implemented network adap-
tors that include these features. [11, 20, 5, 8]. Alternatively,
it is possible to use APIs with share semantics [6, 7, 2].

Many applications use sockets for communication, and as
a result it is worthwhile to look at how they can be supported
efficiently. The adaptor hardware and the host software sup-
port needed for a single-copy host interface for sockets have
been widely described in the literature. However, implement-
ing the software in an existing OS, and have it interoperate
correctly with existing devices and applications turns out to
be surprisingly complicated. In this paper we describe our
implementation of a single-copy stack in the DEC OSF/1 op-
erating system running on an Alpha workstation, using the
Gigabit Nectar network adaptor.

The remainder of this paper is organized as follows. We
first briefly describe the Gigabit Nectar adaptor architecture
and the software requirements for using the adaptor effec-
tively (Section 2). In Sections 3, 4, and 5 we describe the
implementation of a single-copy path in a BSD protocol stack.
We look at the applicability of the changes for other network
interfaces in Section 6, and present performance results in
Section 7. We conclude in Section 8.

Network
Memory

Host
bus

access

SDMA

registers MAC

MDMA
checksum

MDMAXmit
checksum

TC

Figure 1: CAB adaptor architecture

2 Gigabit Nectar network adaptor

We briefly describe the architecture of the Gigabit Nectar
adaptor, which is called CAB for Communication Accelera-
tion Board, and the impact it has on the host software.

2.1 Adaptor architecture

Figure 1 shows a block diagram of the Gigabit Nectar CAB.
The core of the adaptor is a memory used for outboard buffer-
ing of packets (network memory). The memory is imple-
mented using DRAM and it feeds three DMA engines: one
system DMA engine (SDMA) for data transfers to and from
host memory, and two media DMA engines (MDMA) to
move data to and from the network. The SDMA engine has
a scatter/gather capability so it can collect the packet header
and data from different buffers; user data will typically also
be spread out over multiple VM pages that are not adjacent
in memory. All DMA engines can operate at the same time,
and they use time sharing to access network memory. The
register file is used to queue host requests and return CAB
responses. The host interface implements the bus protocol
for a specific IO bus, in our case the Turbochannel.

The most natural place to calculate the checksum is while
the data is transferred to or from the network. This is how-
ever not possible on transmit since TCP and UDP place the
checksum in the header of the packet. As a result, the trans-
mit checksum is calculated when the data flows into network
memory, and it is placed in the header by the CAB in a loca-
tion that is specified by the host as part of the SDMA request.
On receive, the checksum is calculated when the data flows
from the network into network memory, so that it is available
to the host as soon as the message is available. Although this
organization requires two checksum engines instead of one,
it is desirable since it allows hosts to process packets as soon
as they are received.

Media access control is performed by hardware on the
CAB, under control of the host. This component of the CAB
is network-specific. Our implementation is for HIPPI [9],
which has a line rate of 100 MByte/second. The simplest
MAC algorithm for a switch-based network is to send pack-
ets in FIFO order. However, this does not make good use of

the network bandwidth because of the Head of Line (HOL)
problem: if the destination of the packet at the head of the
queue is busy, the node cannot send, even if the destinations
of other packets are reachable. Analysis shows that one can
utilize at most 58% of the network bandwidth, assuming ran-
dom traffic [10]. The CAB uses multiple “logical channels”,
queues of packets with different destinations, to get around
this problem [20].

2.2 Host view

From the viewpoint of the host system software, the CAB is
a large bank of memory accompanied by a means for trans-
ferring data into and out of that memory. The transmit half of
the CAB also provides a set of commands for issuing media
operations using data in the memory, while the receive side
provides notification that new data has arrived in the mem-
ory from the media and commands to DMA data into host
memory.

Several features of the CAB have an impact on the struc-
ture of the networking software. First, to insure full band-
width to the media, packets must start on a page boundary in
CAB memory, and all but the last page must be full pages.
This, together with the fact that checksum calculation for in-
ternet packet transmissions is performed during the transfer
into CAB memory, dictates that individual packets are fully
formed when they are transferred to the CAB.

To illustrate how host software interacts with the CAB
hardware in normal usage, we present a walk-through of a
typical send and receive (with copy semantics). To handle
a send, the system first examines the size of the message
and other factors and determines how many packets will be
needed on the media. It then creates the headers in kernel
space and issues SDMA requests to the CAB, one per packet.
The CAB transfers the data from the user’s address space to
the CAB network memory using DMA. In most cases, i.e. if
the TCP window is open, an MDMA request to perform the
actual media transfer can be issued at the same time, freeing
the processor from any further involvement with individual
packets. Only the final packet’s SDMA request needs to be
flagged to interrupt the host upon completion, so that the user
process can be scheduled. No interrupt is needed to flag the
end of MDMA of TCP packets, since the TCP acknowledge-
ment will confirm that the data was sent.

Upon receiving a packet from the network, the CAB au-
tomatically DMAs the first L words of the packet intoauto-
DMA buffers, i.e. preallocated buffers in host memory. The
value L can be selected by the host. The CAB then interrupts
the host, which performs protocol processing. For TCP and
UDP, only the packet’s header needs to be examined as the
data checksum has already been calculated by the hardware.
The packet is then logically queued for the appropriate user
process. A user receive is handled by issuing one or more
SDMA operations to copy the data out of network memory

2

Sockets

TCP/UDP

IP

Driver
Hardware

Transmit Receive

Original Modified Original Modified

copy data
into buffers

packetization, state
checksum, header

routing, header

copy to interface,
packet on wire

create descriptor
for data

packetization,
state, header

routing, header

copy, checksum,
packet on wire

copy data
into buffers

checksum, demux
header, state

routing, header

packet from wire,
copy to buffer

descriptor
for read

state, header,
demux

routing, header

checksum,
packet from wire

copy

Figure 2: Software architecture

into user buffers. The last SDMA operation is flagged to gen-
erate an interrupt upon completion so that the user process
can be scheduled.

3 Implementation in a BSD stack

To make the most efficient use of the CAB, data should be
transferred directly from user space to CAB memory and
vice-versa. This model is different from that found in Berke-
ley Unix operating systems, where data is channeled through
the system’s network buffer pool [13]. The difference in the
models, together with the restriction that data in CAB mem-
ory should be formatted into complete packets, means that
decisions about partitioning of user data into packets must be
made before the data is transferred out of user space. This re-
quires that some of the functionality in the “layered” protocol
stack be moved.

There are many ways of doing this reorganization, but the
least disruptive solution is to maintain the existing protocol
stack structure and to pass data descriptors representing the
data through the stack instead of kernel buffers holding the
data. Formatting operations on data, i.e. packetization, are
done “symbolically” on the descriptor and not by copying the
data. All data-touching operations are combined into a single
operation that is performed in the driver. Figure 2 shows the
control flow (grey arrows) through an original and a modified
stack: the black arrows show how the per-byte operations are
moved to the driver and hardware. To move the checksum
calculation, information about the checksum calculation is
associated with the data descriptor for the packet, thus al-
lowing the checksum to be set up or used in the transport
layer, but calculated in the driver. To support this software

organization, the network device driver has to provide rou-
tines to transfer packets between host and network memory,
copy in andcopyout, besides the traditionalinputandoutput
routines.

We discuss how we implemented this software architec-
ture in a Net2 BSD protocol stack, as it exists in DEC OSF/1
v2.0. In the next section we focus on the single-copy path
through the stack. In Section 5 we look at correct and effi-
cient interoperation with in-kernel applications and interfaces
to other devices.

4 Single-copy path

When adding a single-copy path to the protocol stack, three
important design decisions follow directly from the CAB
architecture: single stack versus multiple stack implementa-
tion, implementation of the data descriptors, and checksum
handling. We discuss these design issues in this section, and
we also look at the implications on the host software of the
use of DMA and of the data alignment constraints imposed
by the CAB.

4.1 Single versus multiple stacks

Besides the CAB, hosts will typically also have to support
other interfaces ,i.e. other networks, loopback interface, ...
There are two very different approaches to dealing with mul-
tiple interfaces. First, add a new “single copy” protocol stack
to the system (Figure 3a). The new stack operates in parallel
with the original stack, and the appropriate stack is selected
based on which interface is used for communication. Al-
ternatively, one can modify the existing stack to support all

3

Sockets

Transport
Network
Layers

Drivers

Stack

(b)

Single
Copy
Stack

Regular
Stack

(a)

Figure 3: Single versus multiple stacks

interfaces, including “single copy” and traditional interfaces
(Figure 3b). With the first strategy, the single-copy architec-
ture can be implemented as new stack, but it has the disad-
vantage that two parallel stacks have to be maintained. In
the second case, we expect more complicated changes to an
existing stack, but only a single stack has to be maintained.

We opted for a single stack implementation for the fol-
lowing two functional reasons:

• On transmit, it is difficult to determine reliably what
interface will be used at the socket level, since the in-
terface selection is done in the network layer. Although
it is possible to determine what interface will be used,
certainly for connection-oriented protocols such at TCP,
it is possible for the interface that is used for a given
destination to change over time. This would require a
“stack switch”, which would be complicated to imple-
ment.

• It is not practical to keep the two stacks separate. Con-
sider routing packets between interfaces that use differ-
ent stacks: routing relies on a single stack, at least up to
the network layer. A slightly more subtle example has
to do with optimizing data transfers. Copy avoidance
only pays off for large transfers; for small transfers,
copying and potentially coalescing the data is simpler
and more efficient. Since a single connection has to
support both short and long reads/writes, the “single
copy” stack will have to support both a single-copy and
a traditional multiple-copy path, i.e. building a single
stack makes more sense.

In the following sections we describe the “single copy”
path through the stack in more detail. We address the issue of
interoperability with other network devices and applications
in Section 5.

4.2 Data descriptors

With a single stack implementation, data can flow through
the stack in three different formats:

• data in kernel buffers, i.e. traditional mbufs.

• data in user space: this format is used in the transmit
stack, before the data is transferred to the adaptor. It
is also used on receive to describe the memory area
specified in a read call.

• data in outboard buffers: this data shows up both in the
transmit stack (e.g. retransmit buffers) and in the re-
ceive stack (large packets coming in through the CAB).
Because of the characteristics of the CAB, this data is
formated as packets.

In our implementation, all data formats are represented
by mbufs, with the latter two formats relying on theexternal
mbufmechanism that was added to 4.3 BSD. External mbufs
make it possible to store data in buffers that are managed
separately from the regular pool of kernel mbufs. We created
two new mbuf types: one to represent data stored in the user’s
address space (MUIO mbuf) and another to represent data
stored in network memory (MWCAB mbuf). Both mbuf
types include a new data structure calleduiowCABhdrto store
information about the checksum location and the task that is-
sued the read or write (used for notification). The MWCAB
mbuf also includes awCABstructure with an identifier for
the packet in network memory, the packet checksum and in-
formation on how much of the outboard data is valid. The
M UIO mbuf type also includes auio structure that describes
the read/write memory area in the user’s address space.

On transmit, the format of the data changes as it trav-
els through the stack. After a write, the data travels down
the stack as regular or MUIO mbufs, depending on the data
size, and the mbuf type is changed to MWCAB after the
data has been copied outboard. The MWCAB mbufs can
be retransmitted by TCP and are freed when the data is ac-
knowledged. On receive, data travels up the stack as regular
or M WCAB mbufs, depending on whether the packet fits in
an auto-DMA buffer or not (Section 2.2), and it is freed after
the data is copied into user space.

An important result of working inside the mbuf frame-
work is that most of the changes related to copy optimization
are hidden inside the macros and functions that operate on
mbufs, and few changes had to be made to the transport and
network layers in the stack. The changes to the stack were
limited to:

• The socket code was changed to create UIO mbufs
(transmit) and to recognize WCAB mbufs (receive).

• In the TCP layer, the code that copies a packet’s worth
of data into an mbuf chain to be handed to the driver was
replaced by code that searches the transmit queue for a

4

block of data at a specific offset. Note that this search
routine has to operate on a list that includes mbufs of
different types, including MWCAB mbufs in the case
of retransmit.

• The checksum routines were modified to use outboard
checksumming (next section).

An alternative to using the existing mbuf framework would
have been to defined a new data structure to represent the dif-
ferent data formats. However, this would have required more
substantial changes to the code, and the data structure would
have ended up being fairly similar to external mbufs. In some
ways, our UIO mbufs are similar to pbufs [12]. Since we rely
heavily on the external mbuf format, adding a single-copy
path to a stack without external mbufs (i.e. pre-4.3 mbufs)
would have been more complicated.

4.3 Checksumming

The CAB has hardware to calculate the IP checksum for both
incoming and outgoing packets, but it does not “speak” IP,
i.e. IP headers, including the IP header checksum, have to be
provided by the host.

On transmit, the host routine that normally calculates the
checksum instead collects information that will be needed by
the CAB to do the checksum calculation in hardware. The
checksum routine places the offset of the checksum field and
the number of (four byte) words S that should be skipped
by the checksum engine in the UIO mbuf that describes the
packet data. It also places a seed that represents the checksum
of the first S words of the packet in the checksum field of the
packet. This allows the CAB to set up the DMA engine,
and to combine the calculated checksum with the seed in
the header to obtain the complete checksum after the SDMA
operation is done.

The host sets the value of S to the length of all the headers
(HIPPI and IP), i.e. the hardware calculates the checksum
over the user data, and the host is responsible for the fields in
the header (the TCP header and pseudo-header [14]). While
there are many other choices for S, this selection has the
advantage that it works correctly when retransmitting data.
Specifically, when retransmitting, the host provides a new
header, with a new checksum seed. The CAB DMAs the new
header on top of the old header and adds in the checksum of
the body of the packet, which it had saved from when the
packet was transferred the first time.

On receive, the CAB hardware starts calculating the check-
sum in at a fixed offset in the packet. The offset is selectable
by the host software and is set to 20 words in our implementa-
tion, i.e. the HIPPI and IP header are skipped. The checksum
is passed up the stack together with the first 176 words of the
packet (data size of the mbuf). The checksum calculation
routine of TCP/UDP adjusts the checksum calculated by the
CAB by adding/subtracting the fields of the TCP header and

pseudo-header, and then compares it with the checksum in
the header.

A final detail of the checksum support is related to the dif-
ference between TCP and UDP checksums. The hardware al-
ways calculates a “TCP checksum”, i.e. a ones-complement
add. For UDP packets, this creates the risk that the checksum
will add up to 0, in which case it would have to be changed
to 0xffff to avoid confusion with the case that no checksum
is specified. In practice this is not an issue, since a ones-
complement add can only be 0 if all terms are 0, which will
never happen for a checksum since some of the header fields
included are guaranteed to be non-zero (e.g. the address
fields).

4.4 DMA

DMA is used on many devices to achieve high throughput
over burst-oriented buses. In general, the device driver is
responsible for the management of the DMA engine and for
setting up transfers between kernel buffers and the device.
What makes the DMA required for the single-copy stack dif-
ferent is that the DMA engine transfers data directly between
the application’s address space and the device. In this section
we discuss how this influences the host software.

4.4.1 Pinning and address translation

The use of DMA requires pinning/unpinning of pages and
virtual-physical address translation. Both of these tasks are
normally performed by the device driver, and when DMAing
to or from kernel buffers, this means that the driver performs
VM operations on pages in its address space. In contrast,
when the DMA is to or from an application address space, the
driver (or kernel) has to perform VM operations on pages in
a different address space. Unfortunately, operating systems
do not support this in a uniform way. We briefly describe im-
plementations for Mach [16] and DEC OSF/1, and compare
them in terms of complexity and performance.

In Mach, the required VM operations can be performed
on a different address by specifying the appropriate Mach
port [21] for the target address space. The invoking process
can be the kernel, or in the case of a Mach 3.0 microkernel
[16], the Unix server. Using these features, it is possible to
do address translation and pinning of pages in the application
address space in the driver, i.e. DMA support is localized.

In DEC OSF/1, as in most Unix systems, performing the
VM operations on application pages requires a context that
is only present when that application process is scheduled.
Since packet transmission is often triggered by kernel events
(e.g. arrival of a window update), the application context will
in general not be present, and to perform the VM operations
in the driver would require scheduling the application pro-
cess for every packet. This implementation would not only be
complicated but also inefficient. Our solution is to have the

5

socket layer, which is always executed in the application con-
text, map the data to be sent into kernel space, so that it can be
handled in an appropriate way by the driver. This mapping is
performed incrementally, one “socket buffer” worth at a time,
as data is handed down to the transport layer. The equivalent
problem does not exist on receive, since thecopy in func-
tion is initiated by the socket layer, which has the appropriate
context.

Implementing the mapping in the socket layer (OSF/1) is
less attractive than performing it in the driver (Mach). Not
only is it more complicated since the support for the DMA
device is no longer localized to the driver, but it also adds
mapping overhead when using other devices, i.e. if the stack
is not used in single-copy mode. Note that the mapping
would also be needed if PIO were used on the CAB, since
the PIO operation in the driver would also need access to the
application address space.

Pinning and mapping increases the cost of each DMA
operation (Section 7). For applications that reuse the same set
of buffers repeatedly, this overhead can be avoided by keeping
the buffers pinned and mapped so the overhead is amortized
over several IO operations; buffers can be unpinned lazily,
thus limiting the number of pages that an application can
have pinned at one time. Even though the API still has copy
semantics, performance will be best if a limited set of buffers
are used for communication, e.g. the usage of the API has
share semantics (e.g [6]).

4.4.2 Synchronization

The copy semantics of the socket interfaces requires that the
application is only allowed to continue after a copy has been
made of the data (transmit), or after the incoming data is avail-
able (receive). Application wakeup requires synchronization
between the driver, which controls the DMA, and the socket
layer, which controls the application. This synchronization is
implemented by including in the UIO mbuf the socket buffer
pointer, which can be used by the driver to wake up the ap-
plication; this is done as part of the end-of-DMA interrupt
handling.

Since data is DMAed one packet at the time, large writes
will be broken up in a number of DMAs. To make sure the
process is woken up at the right time, the socket layer keeps
track of the outstanding DMAs using a UIO counter. It is
incremented every time a packet is separated from the UIO
mbuf describing the data in user space, and it is decremented
every time the driver receives an end-of-DMA notification.
Note that an interrupt is only needed for the last DMA of a
write; all other end-of-DMA notifications can be handled at
that time. The receive side has a similar structure: the UIO
count is used to keep track of outstanding DMA requests,
and the application process is rescheduled after all DMA
operations of incoming packets have finished.

Once the host has issued a DMA operation to the CAB, it

cannot be be canceled. This means that when a read or write
operation is interrupted (say because of an alarm signal), the
process will only be allowed to restart after all outstanding
DMA operations have completed.

4.4.3 Optimization based on packet size

The tradeoff between programmed IO and DMA are well
understood (e.g. [15]). PIO has typically a higher per-byte
overhead while DMA has a higher per-transfer overhead; as
a result PIO is typically more efficient for short transfers,
and DMA for longer transfers. Since the CAB only supports
DMA, this is not an issue. However, there is a similar trade-
off: data can be transferred using DMA between user space
and the device, or using a memory-memory copy followed
by DMA between kernel space and the device. The former
is more efficient for large transfers, while the latter should
be used for short transfers. On transmit, the socket layer can
optimize the transfer by formatting the data either as a UIO
or as a regular mbuf, depending on the size of the write. On
receive, the size of the auto-DMA buffer determines the size
of the smallest packet for which copy-avoidance is used.

4.5 Alignment issues

The CAB DMA engines place several restrictions on the
source and destination addresses in host and CAB memory,
lengths, and burst size combinations that can be supported.
These restrictions stem both from features of the TcIA chip
[4] that is used as the interface to the Turbochannel, and from
the architecture of network memory, which was designed for
high-bandwidth streaming of data. Most of these restrictions
can be worked around by the host and CAB software, and
only have an impact on the efficiency of the DMA. However,
the restriction that starting addresses in host memory have
to be (32 bit) word aligned, cannot be hidden from the user,
since we are DMAing directly in and out of the user’s ad-
dress space. As a result, the single-copy path can only be
used for read/write requests that are word aligned, and the
traditional path is used for unaligned accesses, i.e. data is
copied through kernel buffers.

Note that on transmit, it is possible to align the bulk of
the data by first sending a short packet. For example, if a
write starts at an address that is a 16 bit boundary (but not a
32 bit boundary), we can send a first packet of 16 bits, which
will have to be copied, but the remainder of the data can be
DMAed since it is now word aligned. This might pay off
for very large writes, although we have not implemented this
optimization. This flexibility does not exist on receive.

The net effect is that unaligned reads and writes will run
slower, but that is the case for operations in computer systems.
Performance conscious programmers should do aligned reads
and writes. Since compilers andmalloc() always align the
data structures they allocate, we expect unaligned reads and

6

User
Application

In-Kernel
Application

CAB Ethernet

Sockets

Transport
Network
Layers

Drivers

single-copy

not affected

affected

conversion for
interoperability

Figure 4: Paths through the protocol stack

writes to be rare.

5 Other devices and in-kernel applications

The previous section focussed on applications using sockets
to transmit or receive through the CAB. Two more important
cases have to be supported:

• Besides regular user applications, many in-kernel ap-
plications make use of the network. They include IO
intensive applications such as file servers, and applica-
tions with low bandwidth requirements such as ICMP.
They use TCP or UDP over IP, or raw IP.

• Hosts often have network interfaces other than the CAB,
and these interfaces typically do not support single-
copy communication.

Figure 4 shows the different paths through the protocol
stack. The single-copy path described in this paper is shown
in black. Given the nature of the changes to the protocol
stack described in the previous section, in-kernel applications
communicating through existing interfaces should not be af-
fected (thick grey arrow in Figure 4): both the applications
and the drivers directly exchange mbufs with the protocol
stack, which still handles “regular” mbufs.

However, in-kernel applications communicating through
the CAB and applications using the socket interface com-
municating through existing interface might create problems
(thin arrows in Figure 4), both as a result of the new mbuf
types and as a result of the asynchronous DMA copies. Mak-
ing these paths work should not require modifying in-kernel
applications or drivers for existing devices. Not only would
this significantly increase the amount of code that has to be
modified and maintained, but in many cases it is impossible

because applications are distributed in binary form only, i.e.
even recompilation is not an option.

We look at the transmit and receive paths for both in-
kernel applications and drivers for existing devices, resulting
in four scenarios:

• transmit through existing devices: packets containing
UIO mbufs representing data in the user address space
will not be recognized by the device driver. The solution
is to add a thin layer of code at the entry point to the
driver to convert UIO mbufs into regular mbufs using a
memory-memory copy. Note that this does not increase
the number of copies compared with a regular stack: a
copy has merely been delayed.

• receive from existing device: existing devices will only
create regular mbufs, which are still supported by the
modified stack, i.e. this case is handled automatically.

• in-kernel applications transmit: data is specified as a
chain of regular (or cluster) mbufs, which are still han-
dled by the modified stack. One potential problem is
that the structure of the mbufs might not be acceptable
to the CAB driver, specifically, they might not be able to
accommodate the larger mbuf headers that are needed
when the conversion to WCAB mbufs takes place. This
is handled by simply checking the format, and changing
it if needed. Note that since the communication API of
in-kernel applications often has share semantics, with
the mbufs being the shared buffers, we automatically
get single-copy communication with the CAB: the data
is copied once using DMA, and the checksum is calcu-
lated during that checksum.

• in-kernel applications receive: WCAB mbufs, which
are passed up the stack by the CAB driver, will not
be handled correctly by existing in-kernel applications.
The solution is obvious: convert them to regular mbufs
before they enter the application. The fact that the copy
has to be done using DMA, i.e. asynchronously, adds
some complexity since the application has to resyn-
chronize with the driver when the DMA terminates.
An additional concern is packet reordering, specifi-
cally the reordering of (long) packets that require DMA
and (short) packets that do not require DMA. Although
maintaining packet order is not a strict requirement (IP
does not guarantee in order delivery), frequent reorder-
ing of packets could confuse clients or reduce their per-
formance, for example by triggering retransmits.

6 Applicability to other systems

An important question is how closely the single-path opti-
mizations are tied to the details of the CAB architecture.
[19] presents a taxonomy of host interfaces as a function of

7

PIO
PIO_C

programmed IO
(with checksum)

DMA
DMA_C

direct memory access
(with checksum)

Read_C checksum calculation

two copy architecture

copy plus checksum

single copy architecture

Copy_C copy with checksum

other

API

Copy

Copy

Shared

Shared

Checksum

Header

Trailer

Header

Trailer

PIO

Copy_C
PIO

Copy_C
PIO

Read_C
PIO

PIO_C

DMA

Copy_C
DMA

Copy_C
DMA

Read_C
DMA

Read_C
DMA

DMA +
Checksum

Copy_C
DMA

Copy_C
DMA

Read_C
DMA

DMA_C

No Outboard Buffering

PIO

Copy
PIO_C

Copy
PIO_C

PIO_C

PIO_C

DMA

Copy_C
DMA

Copy_C
DMA

Read_C
DMA

Read_C
DMA

DMA +
Checksum

Copy_C
DMA

Copy_C
DMA

DMA_C

DMA_C

Packet Buffering

PIO

PIO_C

PIO_C

PIO_C

PIO_C

DMA

Read_C
DMA

Read_C
DMA

Read_C
DMA

Read_C
DMA

DMA +
Checksum

DMA_C

DMA_C

DMA_C

DMA_C

Outboard Buffering

Table 1: Host interface taxonomy

three parameters: the API to the application (copy or share
semantics), the characteristics of the transport-level check-
sum (placed in header or in trailer), and the architecture of
the adaptor. The latter covers data movement support (pro-
grammed IO versus DMA), data checksumming support, and
nature of the data buffering (outboard buffering, no buffering,
or single packet buffering that allows insertion of a checksum
in the header). The paper shows how the minimum number
of bus transfers that are performed as part of an IO operation
is a direct function of these three host interface features.

Table 1 summarizes some of the results: its entries list
the nature of the copy operations and memory accesses that
have to be performed for the different host interface classes.
The types of data accesses are: programmed IO (PIO), direct
memory access (DMA), and memory-memory copy (COPY),
all of which can be combined with a checksum calculation
(PIO C, DMA C, and COPYC), and checksum calculation
(ReadC). The most efficient interfaces are single copy inter-
faces: they perform one copy of the data using programmed
IO or DMA, and the checksum calculation takes place during
this transfer. Some interfaces require a separate read of the
data to calculate the checksum (dotted box), either because
the checksum calculation cannot be merged with the copy
(i.e. DMA only support), or because the checksum cannot
be inserted in the packet header if it is. Finally, some inter-
faces require an extra memory-memory copy to implement
the copy semantics of the API without outboard buffering
support (dashed box). Note that in some cases this can be a
“logical” copy, i.e. using remapping or copy on write.

The top entry in the last column has been the focus of
this paper: user and in-kernel applications communicating
through the CAB. However, the software implementation will
also apply to all scenarios in the outboard buffering case, with
the exception that the checksum optimization is only needed
for the single-copy scenarios, i.e. when the checksum can
be handled during the device copy. Similar mechanisms are

needed for the single-copy and copy+read scenarios for the
other adaptor architectures, although the lack of outboard
buffering and an API with sharing semantics will simplify
the implementation.

Another example of a single-copy interface is the Gigabit
Nectar HIPPI interface [18], which has hardware support for
protocol processing similar to that of the provided by the
CAB. The mechanisms it implements are very similar to the
ones we described, although they were implemented in a
proprietary runtime system, and not in a Unix environment,
and the iWarp interface uses an API with sharing semantics

7 Performance

We compare the performance of a single-copy stack with that
of an unmodified stack.

7.1 Implementation and measurements

The single-copy stack was implemented in an OSF/1 v2.0
kernel running on a DEC Alpha 3000/400 with 64 MByte of
memory. The OSF/1 protocol stack is based on Net2 BSD
and also supports TCP window scaling [1]. The network
device used is the CAB [20] and the Maximum Transmission
Unit (MTU) is 32 KBytes. For all tests, the TCP window
size is 512 KBytes. The implementation of the single-copy
stack currently supports user-level and in-kernel applications
communicating through Ethernet (Section 5) and user-level
applications communicating through the CAB.

While the CAB hardware is designed for bandwidths up
to 300 Mbit/second, the microcode currently limits through-
put to less than half of that. The bottleneck is the transfer
of data across the Turbochannel, which is managed by the
TcIA chip [4]. The TcIA architecture and the way the chip is
used on the CAB make it very hard to pipeline the DMA en-
gines and to use large burst sizes (larger than 8 words), both

8

B

B

B

B B
B

B
B

B B

J
J

J

J

J

J

J
J

J J

H

H

H

H

H

H

H

1 2 4 8 16 32 64 128 256 512
0

20

40

60

80

100

120

140

T
hr

ou
gh

pu
t (

M
bs

)

Read/write size (KBytes)

B Unmodified

J Modified

H Raw HIPPI

B B B
B

B

B B
B

B B

J J
J

J

J
J

J
J J

J

1 2 4 8 16 32 64 128 256 512
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

U
til

iz
at

io
n

Read/write size (KBytes)

B
B

B
B B B B B B B

J J

J

J

J

J

J

J
J

J

1 2 4 8 16 32 64 128 256 512
0

50

100

150

200

250

300

350

400

450

500

E
ffi

ci
en

cy
 (

M
bs

)

Read/write size (KBytes)

(a) Throughput

(b) Utilization (c) Efficiency

Figure 5: Throughput, utilization and efficiency as a function of read/write size

of which are needed to achieve high throughput. The cur-
rent microcode does not yet program the SDMA engines in
an optimal way. An additional source of overhead is dealing
with alignment constraints imposed by the TcIA and network
memory, which often requires the use of short burst to prop-
erly align larger transfers. We are continuing the optimization
of the microcode.

Which protocol stack is used will affect the efficiency of
the communication, i.e. how much overhead does communi-
cation introduce, and depending on the specific adaptor and
host, the stack might also have an impact on the through-
put. For this reason, we will use boththroughputandsystem
utilization as performance measures. Throughput is mea-
sured usingttcp, which measures user process to user pro-
cess throughput. Estimating the utilization accurately is more
difficult. The CPU utilization ofttcp is not a good indicator,
since certain communication overheads (e.g. ACK handling
and any transmits it triggers) are not charged to the process
for which the action is performed (ttcp in our case), but to
the process that happens to be active when the interrupt takes
place. To solve this problem, we ran a compute-bound low-
priority process calledutil at the same time as ttcp on both the
sending and the receiving node. Theutil program is started

up and killed byttcpand uses any cycles that are not used by
ttcp, i.e. it can be viewed as a user program doing useful work
while communication is taking place. When calculating the
utilization due to communication, we charge any system time
accumulated byutil to ttcp.

When using this method, we discovered that the sum of
the CPU times charged toutil and ttcp does not add up to
the elapsed time of the tests. Consistently, about 7-8% of the
time is unaccounted for. This time is likely spent in various
background processes, including the idle process, and we will
assume that it should charged proportionally toutil andttcp,
so our estimate for CPU utilization to support communication
is calculated as:

utilization =
tccp(user) + ttcp(sys) + util(sys)

tccp(user) + ttcp(sys) + util(sys) + util(user)

7.2 Experimental results

Figures 5(a) and (b) show the throughput and utilization as a
function of the read/write size. The utilization results are for
the sender, but the results on the receiver are similar. Figure
5(a) includes the throughput for raw HIPPI reads and writes.
The raw HIPPI throughput test generates well-formed packets

9

B

B

B B B

B

B B B B

J
J

J

J

J

J
J

J
J

J

H

H

H

H

H

H

H

1 2 4 8 16 32 64 128 256 512
0

20

40

60

80

100

120

T
hr

ou
gh

pu
t (

M
bs

)

Read/write size (KBytes)

B Unmodified

J Modified

H Raw HIPPI

B
B

B B B
B

B B B B

J
J

J

J

J

J

J
J

J J

1 2 4 8 16 32 64 128 256 512
0

50

100

150

200

250

E
ffi

ci
en

cy
 (

M
bs

)

Read/write size (KBytes)

B
B B B B B

B
B B

B

J J

J
J

J
J

J
J J J

1 2 4 8 16 32 64 128 256 512
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

U
til

iz
at

io
n

(b) Uti lizati on

Read/write size (KBytes)

(a) Throughput

(c) Efficiency

Figure 6: Throughput, utilization and efficiency on an Alpha 3000/300

that can be handled very efficiently by the microcode, so the
raw HIPPI results represent the highest throughput one can
expect for a given packet size. Note that the measurements
for the modified stack always use the single-copy path (i.e.
it does not fall back to “regular” path for small writes as
described in Section 4.4.3) and does not coalesce the MUIO
mbufs generated by multiple writes into a single packet.

The throughput results show that for small writes the
single-copy stack is faster than the original stack. This is
a result both of a higher efficiency (see below) and the lack
of coalescing in the single-copy stack. For larger reads and
writes the two stacks give similar throughputs. The utiliza-
tion result show however that the modified stack uses fewer
CPU cycles to provide that throughput, i.e. it leaves more
cycles to applications.

To better evaluate the overhead we define the communica-
tion efficiencyas how many Mbit/second of communication
can be supported if the full CPU were utilized for communi-
cation, i.e. the ratio of the throughput and efficiency graphs
in Figure 5(a) and (b). Figure 5(c) shows the efficiency for
the both implementations of the stack. We see that the single-
copy stack is significantly more efficient than the unmodified
stack for large writes, but less efficient for small writes. The

cross over point is between 8 and 16 KByte, indicating that
the single-copy stack will pay off for writes of 16 KByte
and higher. Note that the efficiency is a rough estimate of the
communication throughput that the host can sustain, ignoring
limitations imposed by the network or the adaptor.

Figure 6 shows the throughput, utilization and efficiency
for an Alpha 3000/300LX, a 125 MHz system with a half
speed Turbochannel. This system is only about half as pow-
erful as the Alpha 3000/400, and as a result, the more efficient
single-copy stack results in higher communication through-
put.

Note that for both systems, the efficiency of the unmodi-
fied stack is slightly higher for intermediate read/write sizes
(64KByte) than for the larger sizes. We believe that this is a
cache effect, i.e. with smaller writes, there is some reuse of
data in the cache. On the Alpha 3000/4000, we also observed
that reducing the TCP window increases efficiency slightly,
even though the throughput is lower. This is probably also a
cache effect.

10

Operation Cost

Pin 35+ 29∗ n
Unpin 48+ 3.9 ∗ n
Map 6 + 4.5 ∗ n

Table 2: Cost in microseconds of virtual memory operations
as a function of the number of pagesn

7.3 Analysis

Using estimates of the per-byte, per-page, and per-packet
overheads on an Alpha 3000/400, we can estimate the ex-
pected efficiency of both stacks on that system. These esti-
mates can be used to clarify the measurements.

In the unmodified stack, data that is sent by the appli-
cation is copied once (socket layer) and read once (during
the checksum calculation) by the CPU. For large writes, we
expect no locality for the copy (user space to kernel buffers)
and little locality for the read. We can estimate the cost of
these operations by repeatedly copying/reading regions of an
appropriate size; the size of the region will determine the
degree of locality in the cache. Copies of a 1 MBytes (no lo-
cality) run at 350 Mbit/second, while a read of a 512 KByte
region (window size) runs at 630 Mbit/seconds. The per-
packet overhead was measured at about 300 microsecond per
packet. These estimates add up to a an efficiency of 180
Mbit/second, which is somewhat high, but still reasonably
close to the measured efficiency (Figure 5).

We can make a similar estimate for the single-copy stack.
The copy and checksum overheads have been replaced by
the overheads to pin, unpin and map the host memory pages
holding the send and receive buffers. Using a microsecond
timer on the CAB, we measured the overheads of these oper-
ations on the Alpha 3000/400 - the mean results are shown in
Table 2. Using these measurements and a 300 microsecond
per-packet overhead, the efficiency of the modified stack for
32 KBytes packets is 490 Mbit/second, which is very close
to the measured values in Figure 5.

The only difference between the two stacks is the per-
byte/per-page overhead. For the original stack, the estimated
per-byte cost accounts for 80% of the overhead, while for the
single-copy stack, this number drops to 43%. This means
that for the single-copy stack, the per-packet overhead for 32
KByte packets is now more significant than the per-byte cost.

8 Conclusion

We described how a single-copy path can be added to a typ-
ical Unix protocol stack that provides a socket API and uses
the TCP and UDP internet protocols. The implementation
uses the external mbuf mechanism to pass data descriptors
through the stack, thus making it possible to combine all data-

touching operations in the bottom of the stack. New mbuf
types are used to describe data in the user’s address space
and in the outboard memory. Our measurements on a DEC
Alpha workstation running OSF/1 v2.0 show that for large
reads and writes, the single-copy stack is almost three times
more efficient than the original stack.

One of the more difficult issues when implementing the
single-copy path is maintaining compatibility with in-kernel
applications and other network devices. We achieve this by
using a single stack that supports both single-copy commu-
nication, plus communication based on traditional mbufs.
When passing data into a driver for an existing device or
into an in-kernel application, it is sometimes necessary to
change the data format from an mbuf holding a descriptor to
an mbuf holding a the actual data. The format change is re-
quired because we do not or cannot modify the code of these
applications or drivers to deal with the new mbuf types.

Acknowledgements

We would like to thank B.J. Kowalski and Somvay Boualouang
from Network Systems Corporation. They worked very hard
on providing us with a reliable CAB. We would also like to
thank Kevin Cooney, who improved both the performance
and stability of the microcode, and Garth Gibson, who made
the Alpha 3000/300 available on short notice. Finally, we are
very grateful to Jeffrey Mogul for his help in improving the
quality of the paper.

References

[1] D. Borman, R. Braden, and V. Jacobson. Tcp extensions
for high performance. Request for Comments 1323,
May 1992.

[2] Jose Brustoloni. Exposed buffering and subdatagram
flow control for ATM LANs. In Proceedings of the
19th Conference on Local Computer Networks, pages
324–334. IEEE, October 1994.

[3] David D. Clark, Van Jacobson, John Romkey, and
Howard Salwen. An analysis of tcp processing over-
head. IEEE Communications Magazine, 27(6):23–29,
June 1989.

[4] Jim Crapuchettes. TURBOchannel Interface ASIC
Functional Specification. TRI/ADD Program, DEC,
revision 0.6, preliminary edition, 1992.

[5] Chris Dalton, Greg Watson, David Banks, Costas
Calamvokis, Aled Edwards, and John Lumley. Af-
terburner. IEEE Network Magazine, 7(4):36–43, July
1993.

11

[6] Peter Druschel and Larry Peterson. Fbufs: A high-
bandwidth cross-domain transfer facility. InProceed-
ings of the Fourteenth Symposium on Operating System
Principles, pages 189–202. ACM, December 1993.

[7] Peter Druschel, Larry Peterson, and Bruce Davie. Ex-
perience with a high-speed network adaptor: A soft-
ware perspective. InProceedings of the SIGCOMM
’94 Symposium on Communications Architectures and
Protocols, pages 2–13. ACM, August 1994.

[8] Aled Edwards, Greg Watson, John Lumley, David
Banks, Costas Calamvokis, and Chris Dalton. User-
space protocols deliver high performance to application
on a low-cost Gb/s LAN. InProceedings of the SIG-
COMM ’94 Symposium on Communications Architec-
tures and Protocols, pages 14–23. ACM, August 1994.

[9] Ken Hardwick. Hippi world – the switch is the network.
In Thirty Seventh IEEE Computer Society International
Conference, pages 234–238. IEEE, February 1992.

[10] M. G. Hluchyj and M.J. Karol. Queueing in high-
performance packet switching.IEEE Journal on Se-
lected Areas in Communication, 6(9):1587–1597, De-
cember 1988.

[11] Van Jacobson. Efficient protocol implementation. ACM
’90 SIGCOMM tutorial, September 1990.

[12] Van Jacobson. pbufs. Personal communication, October
1992.

[13] Samuel J. Leffler, Marshall Kirk McKusick, Michael J.
Karels, and John S. Quarterman.The Design and Im-
plementation of the 4.3BSD UNIX Operating System.
Addison-Wesley Publishing Company, Reading, Mas-
sachusetts, 1989.

[14] J. Postel. Transmission control protocol. Request for
Comments 793, September 1981.

[15] K.K. Ramakrishnan. Performance considerations in
designing network interfaces.IEEE Journal on Se-
lected Areas in Communication, 11(2):203–219, Febru-
ary 1993.

[16] Richard F. Rashid, Robert V. Baron, A. Forin, David B.
Golub, Michael Jones, Daniel Julin, D. Orr, and
R. Sanzi. Mach: A foundation for open systems. In
Proceedings of the Second IEEE Workshop on Work-
station Operating Systems, pages 109–113, September
1989.

[17] Peter Steenkiste. Analyzing communication latency us-
ing the nectar communication processor. InProceed-
ings of the SIGCOMM ’92 Symposium on Communi-
cations Architectures and Protocols, pages 199–209,
Baltimore, August 1992. ACM.

[18] Peter Steenkiste, Michael Hemy, Todd Mummert, and
Brian Zill. Architecture and evaluation of a high-speed
networking subsystem for distributed-memory systems.
In Proceedings of the 21th Annual International Sym-
posium on Computer Architecture. IEEE, May 1994.

[19] Peter A. Steenkiste. A systematic approach to host inter-
face design for high-speed networks.IEEE Computer,
26(3):47–57, March 1994.

[20] Peter A. Steenkiste, Brian D. Zill, H.T. Kung, Steven J.
Schlick, Jim Hughes, Bob Kowalski, and John Mul-
laney. A host interface architecture for high-speed net-
works. InProceedings of the 4th IFIP Conference on
High Performance Networks, pages A3 1–16, Liege,
Belgium, December 1992. IFIP, Elsevier.

[21] Linda Walmer and Mary Thompson.A Programmer’s
Guide to the Mach System Calls. Carnegie Mellon Uni-
versity, 1989.

12

