
A Reliable Multicast Framework for Light-weight

Sessions and Application Level Framing

Sally Floyd, Van Jacobson, Ching-Gung Liu, Steven McCanne, and Lixia Zhang

To appear in IEEE/ACM Transactions on Networking

November 1996

Abstract| This paper1 describes SRM (Scalable Reliable
Multicast), a reliable multicast framework for light-weight
sessions and application level framing. The algorithms of
this framework are e�cient, robust, and scale well to both
very large networks and very large sessions. The SRM
framework has been prototyped in wb, a distributed white-
board application, which has been used on a global scale
with sessions ranging from a few to more than 1000 par-
ticipants. The paper describes the principles that have
guided the SRM design, including the IP multicast group
delivery model, an end-to-end, receiver-based model of re-
liability, and the application level framing protocol model.
As with unicast communications, the performance of a re-
liable multicast delivery algorithm depends on the underly-
ing topology and operational environment. We investigate
that dependence via analysis and simulation, and demon-
strate an adaptive algorithm that uses the results of pre-
vious loss recovery events to adapt the control parameters
used for future loss recovery. With the adaptive algorithm,
our reliable multicast delivery algorithm provides good per-
formance over a wide range of underlying topologies.

1 Introduction

Several researchers have proposed generic reliable multicast
protocols, much as TCP is a generic transport protocol for
reliable unicast transmission. In this paper we take a dif-
ferent view: unlike the unicast case where requirements for
reliable, sequenced data delivery are fairly general, di�erent
multicast applications have widely di�erent requirements
for reliability. For example, some applications require that
delivery obey a total ordering while many others do not.
Some applications have many or all the members sending
data while others have only one data source. Some applica-
tions have replicated data, for example in an n-redundant
�le store, so several members are capable of transmitting
a data item while for others all data originates at a single
source. These di�erences all a�ect the design of a reliable
multicast protocol. Although one could design a protocol
for the worst-case requirements, e.g., guaranteeing totally
ordered delivery of replicated data from a large number of

S. Floyd and V. Jacobson are both with the Network Research
Group, Lawrence Berkeley Laboratory, Berkeley CA, and S. McCanne
is with the University of California, Berkeley, CA (email:
oyd, van,
mccanne@ee.lbl.gov). S. Floyd, V. Jacobson, and S. McCanne were sup-
ported by the Director, O�ce of Energy Research, Scienti�c Computing
Sta�, of the U.S. Department of Energy under Contract No. DE-AC03-
76SF00098.

Ching-Gung Liu is with the University of Southern California, Los An-
geles, CA (email: charley@carlsbad.usc.edu), and was supported in part
by the Advanced Research Projects Agency, monitored by Fort Huachuca
under contract DABT63-94-C-0073.

Lixia Zhang is with UCLA, Los Angeles, CA (email:
lixia@parc.xerox.com).

1An earlier version of this paper appeared in ACM SIGCOMM 95.

sources, such an approach results in substantial overhead
for applications with more modest requirements. One can-
not make a single reliable multicast delivery scheme that
simultaneously meets the functionality, scalability, and ef-
�ciency requirements of all applications.
The weakness of \one size �ts all" protocols has long

been recognized. In 1990 Clark and Tennenhouse proposed
a new protocol model called Application Level Framing
(ALF) which explicitly includes an application's semantics
in the design of that application's protocol [CT90]. ALF
was later elaborated with a light-weight rendezvous mech-
anism based on the IP multicast distribution model, and
with a notion of receiver-based adaptation for unreliable,
real-time applications such as audio and video conferenc-
ing. The result, known as Light-Weight Sessions (LWS)
[J93], has been very successful in the design of wide-area,
large-scale, conferencing applications. This paper further
evolves the principles of ALF and LWS to add a framework
for scalable reliable multicast (SRM).
ALF says that the best way to meet diverse application

requirements is to leave as much functionality and
ex-
ibility as possible to the application. Therefore SRM is
designed to meet only the minimal de�nition of reliable
multicast, i.e., eventual delivery of all the data to all the
group members, without enforcing any particular delivery
order. We believe that if the need arises, machinery to en-
force a particular delivery order can be easily added on top
of this reliable delivery service.
It has been argued [XTP92, PS93] that a single dynam-

ically con�gurable protocol should be used to accommo-
date di�erent application requirements. The ALF argu-
ment is even stronger: not only do di�erent applications
require di�erent types of error recovery,
ow control, and
rate control mechanisms, but further, these mechanisms
must explicitly account for the structure of the underlying
application data itself.
SRM is also heavily based on the group delivery model

that is the centerpiece of the IP multicast protocol [D91].
In IP multicast, data sources simply send to the group's
multicast address (a normal IP address chosen from a re-
served range of addresses) without needing any advance
knowledge of the group membership. To receive any data
sent to the group, receivers simply announce that they
are interested (via a \join" message multicast on the local
subnet) | no knowledge of the group membership or ac-
tive senders is required. Each receiver joins and leaves the
group individually, without a�ecting the data transmission

1

to any other member. SRM further enhances the multicast
group concept by maximizing information and data sharing
among all the members, and strengthens the individuality
of membership by making each member responsible for its
own correct reception of all the data.
Finally, SRM attempts to follow the core design prin-

ciples of TCP/IP. First, SRM requires only the basic IP
delivery model | best-e�ort with possible duplication and
reordering of packets | and builds reliability on an end-
to-end basis. No change or special support is required from
the underlying IP network. Second, in a fashion similar to
TCP adaptively setting timers or congestion control win-
dows, the algorithms in SRM dynamically adjust their con-
trol parameters based on the observed performance within
a session. This allows applications using the SRM frame-
work to adapt to a wide range of group sizes, topologies
and link bandwidths while maintaining robust and high
performance.
Wb, the distributed whiteboard tool designed and imple-

mented by McCanne and Jacobson [J92, M92], is the �rst
application based on the SRM framework. In this paper
we discuss wb in some detail, to illustrate the use of SRM
in a speci�c application.
The paper proceeds as follows: Section 2 discusses gen-

eral issues for reliable multicast delivery. Section 3 de-
scribes the SRM framework, and discusses the wb instan-
tiation of this framework. Section 4 discusses the perfor-
mance of SRM in simple topologies such as chains, stars,
and bounded-degree trees, and Section 5 presents simula-
tion results from more complex topologies. Section 6 ex-
amines the behavior of the loss recovery algorithm in SRM
as a function of the timer parameters. Section 7 discusses
extensions to the basic reliable multicast framework, such
as adaptive algorithms for adjusting the timer parameters
and algorithms for local recovery. Section 8 discusses both
the application-speci�c aspects of wb's implementation of
SRM, as well as issues concerning the general applicability
of SRM. Section 9 discusses related work on reliable mul-
ticast. Section 10 discusses future work on SRM. Finally,
Section 11 presents conclusions.

2 The design of reliable multicast

2.1 Reliable data delivery: adding the word

\multicast"

The problem of reliable unicast data delivery is well under-
stood and a variety of well-tested solutions are available.
However, for the reliable transmission of data to a poten-
tially large group of receivers, multicast transmission o�ers
the most promising approach. If a sender were to open N
separate unicast TCP connections to N di�erent receivers,
then N copies of each packet might have to be sent over
links close to the sender, making poor use of the available
bandwidth. In addition, the sender would have to keep
track of the status of each of the N receivers. Multicast
delivery permits a much more e�cient use of the available

bandwidth, with at most one copy of each packet sent over
each link in the absence of dropped packets. In addition,
IP multicast allows the sender to send reliably to a group
without having to have any knowledge of the group mem-
bership. At the same time, adding \multicast" to the data
transport problem signi�cantly changes the solution set for
reliable delivery.
For example, in any reliable protocol some party must

take responsibility for loss detection and recovery. Because
of the \fate-sharing" implicit in unicast communication,
i.e., the data transmission fails if either of the two ends fails,
either the sender or receiver can take on this role. In TCP,
the sender times transmissions and keeps retransmitting
until an acknowledgment is received. NETBLT [CLZ87]
uses the opposite model and makes the receiver responsible
for all loss detection and recovery. Both approaches have
been shown to work well for unicast.
However, if a TCP-style, sender-based approach is ap-

plied to multicast distribution, a number of problems oc-
cur. First, because data packets trigger acknowledgments
(positive or negative) from all the receivers, the sender is
subject to the well-known ACK implosion e�ect [ES87].
Also, if the sender is responsible for reliable delivery, it
must continuously track the changing set of active receivers
and the reception state of each. Since the IP multicast
model deliberately imposes a level of indirection between
senders and receivers (i.e., data is sent to the multicast
group, not to the set of receivers), the receiver set may be
expensive or impossible to obtain. Finally, the algorithms
that are used to adapt to changing network conditions tend
to lose their meaning in the case of multicast. E.g., how
should the round-trip time estimate for a retransmit timer
be computed when there may be several orders of magni-
tude di�erence in propagation time to di�erent receivers?
What is a congestion window if the delay-bandwidth prod-
uct to di�erent receivers varies by orders of magnitude?
What self-clocking information exists in the ACK stream(s)
if some receivers share one bottleneck link and some an-
other?
These problems illustrate that single-point, sender-based

control does not adapt or scale well for multicast delivery.
Since members of a multicast group have di�erent com-
munication paths and may come and go at any time, the
\fate-shared" coupling of sender and receiver in unicast
transmissions does not generalize to multicast. Thus it is
clear that receiver-based reliability is a far better building
block for reliable multicast [PTK96].
Another unicast convention that migrates poorly to mul-

ticast has to do with the vocabulary used by the sender
and receiver(s) to describe the progress of their communi-
cation. A receiver can request a retransmission either in
application data units (\sector 5 of �le sigcomm-slides.ps")
or in terms of the shared communication state (\sequence
numbers 2560 to 3071 of this conversation"). Both models
have been used successfully (e.g., NFS uses the former and
TCP the latter) but, because the use of communication
state for naming data allows the protocol to be entirely in-
dependent of any application's namespace, it is by far the

2

most popular approach for unicast applications. However,
since multicast transmission tends to have much weaker
and more diverse state synchronization than does unicast,
using shared communication state to name data does not
work well in the multicast case.
For example, if a receiver joins a conversation late and

receives sequence numbers 2560 to 3071, it has no idea of
what's been missed (since the sender's starting number is
arbitrary) and so can neither do anything useful with the
data nor make an intelligent request for retransmission. If
receivers hear from a sender again after a lengthy network
partition, they have no way of knowing whether \2560" is
a retransmission of data they received before the partition
or is completely new (due to sequence number wrapping
during the partition). Thus the \naming in application
data units (ADUs)" model works far better for multicast.
Use of this model also has two bene�cial side e�ects. As

[CT90] points out, a separate protocol namespace can im-
pose delays and ine�ciencies on an application, e.g., TCP
will only deliver data in sequence even though a �le transfer
application might be perfectly happy to receive sectors in
any order. The ADU model eliminates this delay and puts
the application back in control. Also, since ADU names
can be made independent of the sending host, it is possible
to use the anonymity of IP multicast to exploit the redun-
dancy of multiple receivers. E.g., if some receiver asks for
a retransmit of \sigcomm-slides.ps sector 5", any member
who has a copy of the data, not just the original sender,
can carry out the retransmission.

2.2 Reliable multicast requirements

While the ALF model says that applications should be
actively involved in their communications and that com-
munication should be done in terms of ADUs rather than
some generic protocol namespace, we do not claim that
every application's protocol must be completely di�erent
from every other's or that there can be no shared design or
code. A great deal of design commonality is imposed sim-
ply because di�erent applications are attempting to solve
the same problem: scalable, reliable, multipoint commu-
nication over the Internet. As Section 2.1 pointed out,
just going from unicast to multicast greatly limits the vi-
able protocol design choices. In addition, experience with
the Internet has shown that successful protocols must ac-
commodate many orders of magnitude variation in every
possible dimension. While several algorithms meet the con-
straints of Section 2.1, very few of them continue to work
if the delay, bandwidth and user population are all varied
by factors of 1000 or more.
In the end we believe the ALF model results in a frame-

work that is then �lled in with application speci�c details.
Portions of the SRM framework are completely determined
by network dynamics and scaling considerations and apply
to any application. So, for example, the scalable request
and repair algorithms described in Sections 3 through 7 are
completely generic and apply to a wide variety of reliable
multicast applications. Each di�erent application supplies

this reliability framework with a namespace to talk about
what data has been sent and received; a policy and machin-
ery to determine how much bandwidth is available to the
group as a whole; a policy to determine how the available
bandwidth should be apportioned between the participants
in the group; and a local send policy that a participant
uses to arbitrate the di�erent demands on its bandwidth
(e.g., locally originated data, repair requests and responses,
etc.). It is the intent of this paper to describe the frame-
work common to scalable, reliable multicast applications.
In particular, this paper focuses on reliability rather than
on congestion control. We believe that for multicast ap-
plications, the congestion control mechanisms will have to
take into account application-speci�c needs and capabili-
ties.
To make the SRM framework concrete, we �rst describe

a widely used application | wb, the LBNL network white-
board | that has been implemented according to the SRM
framework. One component of wb is an application-level
reliable multicast protocol that is the precursor to SRM.
However, the goal of this paper is not to explore the speci�cs
of wb, but to use wb to illustrate the underlying reliable
multicast framework. After mentioning some details of
wb's operation that are direct results of the design consid-
erations outlined in Section 2.1, we then factor out the wb
speci�cs to expose the generic SRM framework underneath.
The remaining sections of this paper are an exploration of
that framework.

2.3 Wb's assumptions about reliable mul-

ticast

This section brie
y describes wb, a network conferencing
tool that provides a distributed whiteboard, and explores
some of the assumptions made in wb's use of reliable mul-
ticast.
Wb separates the drawing into pages, where a new page

can correspond to a new viewgraph in a talk or the clear-
ing of the screen by a member of a meeting. Any member
can create a page and any member can draw on any page.
There are
oor control mechanisms, largely external to wb,
that can be used if necessary to control who can create or
draw on pages. These can be combined with normal Inter-
net privacy mechanisms (e.g., symmetric-key encryption of
all the wb data) to limit participation to a particular group
and/or with normal authentication mechanisms (e.g., par-
ticipants signing their drawing operations via public-key
encryption of a cryptographic hash over the data). The
privacy, authentication and control mechanisms are com-
pletely orthogonal to the reliability machinery that is the
subject of this paper and will not be described here. For
further details see [MJ95, J94].
Each member is identi�ed by a globally unique identi�er,

the Source-ID, and each page is identi�ed by a Page-ID con-
sisting of the Source-ID of the initiator of the page and a
page number locally unique to that initiator. Each member
drawing on the whiteboard produces a stream of drawing
operations, or \drawops", that are timestamped and as-

3

signed sequence numbers, relative to the sender. Each se-
quence of drawops is sent with the Page-ID of the relevant
page. An example would be a drawop to draw a blue line
at a particular set of coordinates on a page. Most drawing
operations are idempotent and are rendered immediately
upon receipt; out of order drawops are sorted upon arrival
according to their timestamps. Each member's graphics
stream is thus independent from that of other sites.
The following assumptions are made in wb's reliable mul-

ticast design:

� All data has a unique, persistent name.
This global name consists of the end host's Source-ID
and a locally-unique sequence number.
� The name always refers to the same data.
It is impossible to achieve consistency among di�er-
ent receivers in the face of late arrivals and network
partitions if, say, drawop \
oyd:5" initially means to
draw a blue line and later means to draw a red circle.
This does not mean that the drawing can't change,
only that drawops must e�ect the change. E.g., to
change a blue line to a red circle, a \delete" drawop
for \
oyd:5" is sent, then a drawop for the circle is
sent.
� Source-ID's are persistent.
A user will often quit a session and later re-join, ob-
taining the session's history from the network. By
ensuring that Source-ID's are persistent across invoca-
tions of the application, the user maintains ownership
of any data created before quitting.
� IP multicast datagram delivery is available.
� All participants join the same multicast group; there
is no distinction between senders and receivers.

Wb has no requirement for ordered delivery because most
operations are idempotent. Operations that are not strictly
idempotent, such as a \delete" that references an earlier
drawop, can be patched after the fact, when the missing
data arrives. A receiver uses the timestamps on the draw-
ing operations to determine the rendering order. Assume
that member B draws a line across some text from mem-
ber A. Member C renders the line from member B upon
receiving that drawop. If member C later receives mem-
ber A's text, which has an earlier timestamp that member
B's line, then the page is redisplayed for member C, this
time with the line on top of the earlier-timestamped text.
This coarse synchronization mechanism captures the tem-
poral causality of drawing operations at a level appropriate
for the application, without the added complexity and de-
lay of protocols that provide guaranteed causal ordering.
The issue of mechanisms to satisfy applications' ordering
requirements is discussed further in Sections 8 and 9.

3 The SRM framework

SRM is the reliable multicast framework intended for a
range of applications that share wb's assumptions above,
including that of IP multicast datagram delivery. One as-
sumption central to SRM is that the data has unique, per-

sistent names; this name consists of the globally unique
Source-ID and a locally unique name de�ned by the ap-
plication. An open research challenge is to design a data
naming scheme that re
ects the
exibility of ALF yet al-
lows the SRM framework to manipulate names in a generic
fashion. A second assumption is that the application nam-
ing conventions allow us to impose a hierarchy over the
name space. For the rest of this paper, we assume that the
locally unique name is a simple sequence number with suf-
�cient precision to never wrap and that the data space is
subdivided into groups or containers that we call \pages".
(The term \page" refers to a general concept even though
it re
ects our whiteboard-biased design.) In this model,
each page is identi�ed by the Source-ID of the initiator of
that page coupled with a page number locally unique to
that initiator. A �nal assumption of SRM is that session
members have not only unique but also persistent Source-
IDs.
Whenever a member generates new data, the data is mul-

ticast to the group. Each member of the group is individ-
ually responsible for detecting loss and requesting retrans-
mission. Loss is normally detected by �nding a gap in the
sequence space. However, since it is possible that the last
object of a sequence is dropped, each member sends low-
rate, periodic, session messages that announce the highest
sequence number received from every member for the cur-
rent page. In addition to the reception state, the session
messages contain timestamps that are used to estimate the
distance (in time) from each member to every other (de-
scribed in Section 3.1).
To prevent the implosion of control packets sent from

receivers in a multicast group, Xpress Transport Protocol
(XTP) [XTP92] proposed that receivers multicast control
packets to the entire group. Using the slotting and damp-
ing mechanisms in the XPT design, receivers wait for a
random time before sending a control packet, and refrain
from sending a control packet if they see a control packet
from another receiver with the same information. SRM
uses similar mechanisms to control the sending of request
and repair packets, with the addition that in the SRM de-
sign, the random delay before sending a request or repair
packet is a function of that member's distance in seconds
from the node that triggered the request or repair.
When receiver(s) detect missing data, they wait for a

random time determined by their distance from the original
source of the data, then send a repair request. (The timer
calculations are described in detail in Section 3.2). As with
the original data, repair requests and retransmissions are
always multicast to the whole group. Thus, although a
number of hosts may all miss the same packet, a host close
to the point of failure is likely to timeout �rst and multicast
the request. Other hosts that are also missing the data
hear that request and suppress their own request. (This
prevents a request implosion.) Any host that has a copy of
the requested data can answer a request. It will set a repair
timer to a random value that depends on its distance from
the sender of the request message, and multicast the repair
when the timer goes o�. Other hosts that had the data

4

and scheduled repairs will cancel their repair timers when
they hear the multicast from the �rst host. (This prevents
a response implosion.) A lost packet ideally triggers only
a single request from a host just downstream of the point
of failure and a single repair from a host just upstream of
the point of failure. Section 5 explores in more detail the
number of requests and repairs in di�erent topologies.

3.1 Session messages

In SRM, each member multicasts periodic session messages
that report the sequence number state for active sources.
Session messages for reliable multicast [ES87] are been pro-
posed to enable receivers to detect the loss of the last packet
in a burst, and to enable the sender to monitor the status
of receivers. Members also use session messages in SRM
to determine the current participants of the session. The
average bandwidth consumed by session messages is lim-
ited to a small fraction (e.g., 5%) of the aggregate data
bandwidth, whether pre-allocated by a reservation proto-
col or measured adaptively by a congestion control algo-
rithm. SRM members use the algorithm developed for vat
and described in [SCFJ94] for dynamically adjusting the
generation rate of session messages in proportion to the
multicast group size.
In a large, long-lived session, the state would become

unmanageable if each receiver had to report the sequence
numbers of everyone who had ever sent data to the group.
To prevent this explosion, we impose hierarchy on the data
by partitioning the state space in a fashion that depends on
the underlying application. Under our the page-based se-
quence number model, each member only reports the state
of the page it is currently viewing. A receiver browsing
over previous pages may issue page requests to learn the se-
quence number state for that page. If a receiver joins late,
it may issue page requests to learn the existence of previous
pages. We omit the details of the page state recovery pro-
tocol as it is almost identical to the repair request/response
protocol for data.
In addition to state exchange, receivers use the session

messages to estimate the one-way distance between nodes.
All packets for that group, including session packets, in-
clude a Source-ID and a timestamp. The session packet
timestamps are used to estimate the host-to-host distances
needed by the repair algorithm.
The timestamps are used in a highly simpli�ed version of

the NTP time synchronization algorithm [M84]. Assume
that host A sends a session packet P1 at time t1 and host
B receives P1 at time t2. At some later time, t3, host B
generates a session packet P2, marked with (t1;�) where
� = t3�t2 (time t1 is included in P2 to make the algorithm
robust to lost session packets). Upon receiving P2 at time
t4, host A can estimate the latency from host B to host A
as (t4�t1��)=2, or equivalently, as ((t4�t3)+(t2�t1))=2.
Note that while this estimate does not assume synchronized
clocks, it does assume that paths are roughly symmetric.
We have not yet explored the performance of these algo-
rithms in topologies with strong asymmetry in the one-way

delays of forward and reverse paths.

3.2 Loss recovery

This section describes SRM's loss recovery algorithm, which
provides the foundation for reliable delivery. Section 7.1
describes a modi�ed version of this algorithm with an adap-
tive adjustment of the timer parameters. Section 7.2 dis-
cusses the local recovery algorithms that would be a critical
component of SRM for e�cient operation in large multicast
groups in a congested environment.
In SRM, members who detect a loss wait a random time

and then multicast their repair request, to suppress re-
quests from other members sharing that loss. These repair
requests di�er from traditional negative acknowledgements
(NACKs) in two respects: they are not addressed to a spe-
ci�c sender, and they request data by its unique, persistent
name. When a host A detects a loss, it schedules a repair
request for a random time in the future. When the request
timer expires, host A multicasts a request for the missing
data, and doubles the request timer to wait for the repair.
In SRM, the interval over which the request timer is set

is a function of the member's estimated distance to the
source of the packet. The request timer is chosen from the
uniform distribution on [C1dS;A; (C1 + C2)dS;A] seconds,
where dS;A is host A's estimate of the one-way delay to
the original source S of the missing data. The numbers C1

and C2 are parameters of the request algorithm that are
discussed at length later in the paper.
If host A receives a request for the missing data before

its own request timer for that data expires, then host A
does a (random) exponential backo�, and resets its request
timer.2 That is, if the current timer had been chosen from
the uniform distribution on

2i[C1dS;A; (C1 + C2)dS;A];

then the backed-o� timer is randomly chosen from the uni-
form distribution on

2i+1[C1dS;A; (C1 + C2)dS;A]:

2In the unicast case, it is easy for a receiver to decide when to back-o�
an already backed-o� timer but the multicast case requires more care.
Assume that member A has set a request timer, and has scaled back that
timer after seeing a request for the same data from another member. We
call a request message sent when an initial request timer expires a �rst-

try request. Several requests might be sent in the �rst iteration of loss
recovery, by di�erent members of the multicast group. Member A should
back-o� its request timer only once for these �rst-try requests. We call
a request message that a member sends after its backed-o� request timer
expires a second-try request. When member A sees a second-try request,
member A should back-o� its already backed-o� timer without sending a
duplicate second-try request.
One way to implement this would be to include the iteration number in

the request, indicating whether this is a �rst-try, second-try, or third-try
request. Instead of doing this in our simulator, we use a heuristic to detect
requests that belong to the same iteration of loss recovery. When mem-
ber A backs-o� the request timer, then member A sets an ignore-backo�

variable to a time halfway between the current time and the expiration
time, and ignores additional duplicate requests until ignore-backo� time.
Requests received before the ignore-backo� time are assumed to belong
to the same iteration of the loss recovery as the request that resulted in
the most recent backo�. A request received after the ignore-backo� time
is assumed to belong to the next iteration, and causes member A to again
back-o� its request timer.

5

When some other host B (where B may be S) receives a
request from A that host B is capable of answering, host B
sets a repair timer to a value from the uniform distribution
on

[D1dA;B ; (D1 +D2)dA;B]

seconds, where dA;B is host B's estimate of the one-way
delay to host A, and the numbers D1 and D2 are param-
eters of the repair algorithm discussed later in the paper.
If host B receives a repair for the missing data before its
repair timer expires, then host B cancels its repair timer.
Otherwise, when host B's repair timer expires host B mul-
ticasts the repair. In keeping with the philosophy that the
receiver is responsible for insuring its own correct reception
of the data, host B does not verify whether host A actually
receives the repair.
Due to the probabilistic nature of these algorithms, it is

not unusual for a dropped packet to be followed by more
than one request. When two or more hosts generate a
request for the same data at roughly the same time, we have
redundant control tra�c (i.e., wasted bandwidth) and the
colliding participants should increase the spread in their
retransmission distribution to avoid similar collisions in the
future.
Because there can be more than one request, a host could

receive a duplicate request immediately after sending a re-
pair, or immediately after receiving a repair in response to
its own earlier request. In order to prevent duplicate re-
quests from triggering a responding set of duplicate repairs,
host B ignores requests for data D for 3 dS;B seconds after
sending or receiving a repair for that data, where host S
is either the original source of data D or the source of the
�rst request.

3.3 Congestion control

The simplest congestion control mechanism for SRM would
be for all members of the multicast group to assume a
�xed bandwidth constraint over the aggregate session. This
would be appropriate, for example, if members of the mul-
ticast group used an out-of-band mechanism (e.g., explicit
bandwidth reservations, or the informal, consensus-based
procedures of the current Mbone) to verify bandwidth avail-
ability. However, di�erent congestion control mechanisms
are likely to be required for di�erent applications and dif-
ferent contexts. Congestion control mechanisms for SRM
are discussed further in Section 10.3.
Because data represents idempotent operations, loss re-

covery can proceed independently from the transmission of
new data. Similarly, recovery for losses from two di�erent
sources can also proceed independently. Since transmis-
sion bandwidth is often limited, a single transmission rate
is allocated to control the throughput across all these dif-
ferent modes of operation, while the application determines
the order of packet transmission according to their relative
importance.

3.4 Ordering, partition, and other consid-

erations

An application's
oor control, privacy, or authentication
requirements are orthogonal to the reliability machinery of
SRM, and can be met by separate
oor control, encryption,
or authentication mechanisms designed for those purposes.
Similarly, SRM does not provide guaranteed ordered deliv-
ery of data. Those applications with ordering requirements
could use a partial or total ordering protocol built on top
of SRM.
SRM does not include special mechanisms for the detec-

tion or recovery from network partitioning. Because SRM
relies on the underlying concept of an IP multicast group,
where members can arrive and depart independently, SRM
does not distinguish a network partition from a normal de-
parture of members from the multicast session. During a
partition, members can continue to send data in the con-
nected components of the partitions. Because pages are
identi�ed by the Source-ID of the initiator of the page,
along with the page number for that initiator, members
can continue creating new pages during the partition (e.g.,
\Floyd:3" in one half of the partition, and \Zhang:5" in the
other). After recovery each page will still have a unique
page ID and the repair mechanism will distribute any new
state throughout the entire group.

3.5 Wb's instantiation of SRM

This section describes both the design and the current state
of the implementation of reliable multicast for wb. Most of
the design of reliable multicast for wb is present in version
1.59 of wb. Aspects of the design that are not included,
and that are still pending implementation, include the rate-
contol mechanism and the estimates of one-way delays, as
discussed below.
In the present implementation of wb, members set a re-

quest timer to a random value from the interval [d, 7d],
where d is set to a �xed value of 30 msec. Thus, in the cur-
rent wb implementation members do not estimate the one-
way distances to other members, but instead use a default
value for all distance estimates. Similarly, after receiving
a request members set a repair timer to a random value
from the interval [d1, 2d1]. For the original source of the
data, d1 is set to a �xed value of 100 msec., and for other
members d1 is set to 200 msec. These �xed values for d
and d1 were chosen after examinations of traces taken over
several typical wide-area wb sessions. The current values
for d and d1 are su�ciently large to ensure that there is
generally only one request and one repair. When the orig-
inal source of the data is still on-line, the repair generally
comes from that original source.
The current implementation of wb relies on the informal,

consensus-based \admissions-control procedure" of the cur-
rent Mbone. The congestion control mechanism in the de-
sign for wb assumes a �xed maximum bandwidth alloca-
tion for each session. In this design, each wb session has
a sender bandwidth limit advertised as part of the session

6

announcement. With a bandwidth limit of 64 Kbps, for
example, the wb session would cost no more (and typically
considerably less) than the accompanying audio session.
In this design, individual members use a token bucket rate
limiter to enforce this peak rate on transmissions. This
peak rate is mostly relevant when a source distributes a
large data object like a postscript �le, or when a member
joins late and requests the past history of the whiteboard
session.
As of the writing of this paper, this rate control mech-

anism has not yet been added to the wb implementation.
In general, wb sessions use considerably less bandwidth
than their accompanying audio sessions. However, the need
for the rate control can at times be made painfully obvi-
ous. One such instance was during the Mbone broadcast
of a Rolling Stones concert in November 18, 1994, when
someone created a whiteboard session for the concert. The
whiteboard session accumulated a long back history, and
every time a new user joined, the wb protocol asked for the
entire session history (at startup, newer versions of wb ask
only for the current page). Consequently, signi�cant con-
gestion transients disrupted the entire broadcast (including
the audio and video channels) each time a new user joined
the session.
One application-speci�c issue concerns the relative pri-

orities between sending new data, requests, and repairs.
When a member of a wb session is able to send a packet,
the highest priority goes to requests or repairs for the cur-
rent page, middle priority to new data, and lowest priority
to requests or repairs for previous pages.
One issue that has been made obvious from implementa-

tion experience has been the persistence of the data. Wb
does not necessarily store all of the data on backup storage
on a disk; data for current pages is kept only in memory.
If data somehow becomes corrupt | either due to inter-
nal application bugs or because of external system failures
| it can spread like a virus throughout the wb session.
When the corrupted data is used to answer repair requests,
the corrupted data is distributed throughout the multicast
group, and persists for the life of the session. To avoid this,
each piece of data can be accompanied by a tag that not
only authenticates the source of the data but also veri�es
its integrity.

4 Request/repair algorithms for sim-

ple topologies

We now turn to a more detailed investigation of the loss
recovery algorithms in SRM. Because multiple hosts may
detect the same losses, and multiple hosts may attempt to
handle the same repair request, the goal of the request/repair
timer algorithms is to de-synchronize host actions to keep
the number of duplicates low. Among hosts that have di-
verse delays to other hosts in the same group, this di�er-
ence in delay can be used to di�erentiate hosts; for hosts
that have similar delays to reach others, we can only rely
on randomization to de-synchronize their actions.

This section discusses a few simple, yet representative,
topologies, namely chain, star, and tree topologies, to pro-
vide a foundation for understanding the loss recovery al-
gorithms in more complex environments. For a chain the
essential feature of a loss recovery algorithm is that the
timer value is a function of distance. For a star topology
the essential feature of the loss recovery algorithm is the
randomization used to reduce implosion. Request/repair
algorithms in a tree combine both the randomization and
the setting of the timer as a function of distance. This
section shows that the performance of the loss recovery
algorithms depends on the underlying network topology.

4.1 Chains

Figure 1 shows a chain topology where all nodes in the
chain are members of the multicast session. Each node in
the underlying multicast tree has degree at most two. The
chain is an extreme topology where a simple deterministic
loss recovery algorithm su�ces. In this section we assume
that the timer parameters C1 and D1 are set to 1, and that
C2 and D2 are set to 0. This results in request timers set
deterministically to dS;A, and repair timers set to dA;B .
For the chain, as in most of the other scenarios in this

paper, link distance and delay are both normalized. We
assume that packets take one unit of time to travel each
link, i.e. all links have distance of 1.

.

Lj L2 L1 R1 R2 RkL(j+1)
S

: source of dropped packet

: congested edge

Figure 1: A chain topology.

In Figure 1 the nodes in the chain are labeled as either to
the right or to the left of the congested link. Assume that
source Lj multicasts a packet that is subsequently dropped
on link (L1, R1), and that the second packet sent from
source Lj is not dropped. We call the edge that dropped
the packet, whether due to congestion or to other problems,
the congested link. Let the right-hand nodes each detect
the failure when they receive the second packet from Lj .
Let node R1 �rst detect the loss at time t, and let each

link have distance 1. Then node R1 multicasts a request at
time t+ j. Node L1 receives the request at time t+ j + 1
and multicasts a repair at time t+ j+2. Node Rk receives
the repair at time t+ k + j + 2.
Note that all nodes to the right of node R1 receive the

request from R1 before their own request timers expire. We
call this deterministic suppression. The reader can verify
that, due to deterministic suppression, there will be only
one request and one repair. For example, node Rk detects
the loss at time t + k � 1, sets its request timer for time
(t+ k � 1) + (j + k � 1) = t+ 2k + j � 2, and receives the
request from node R1 at time (t+ j) + (k� 1), well before

7

its own request timer expires.
Had the loss repair been done by unicast, i.e. node Rk

sent a unicast request to the sourceLj as soon as it detected
the failure and Lj sent a unicast repair to Rk as soon as it
received the request, node Rk would not receive the repair
until time t + 2j + 3k. Thus, with a chain and with a
simple deterministic loss recovery algorithm, the furthest
node receives the repair sooner than it would if it had to
rely on its own unicast communication with the original
source. While both the original source and the furthest
node setting a request timer could be arbitrarily far from
the congested link, in the multicast repair algorithm both
the request and the repair come from nodes immediately
adjacent to the congested link.

4.2 Stars

For the star topology in Figure 2 we assume that all links
are identical and that the center node is not a member
of the multicast group. For a star topology, setting the
request timer as a function of the distance from the source
is not an essential feature, as all nodes detect a loss at
exactly the same time. Instead, the essential feature of the
loss recovery algorithm in a star is the randomization used
to reduce implosion; we call this probabilistic suppression.

N1

N2

N3

N4
N5

N6

. . .
Ng

: source of dropped packet

: congested edge

Figure 2: A star topology.

For the star topology in Figure 2 assume that the �rst
packet from nodeN1 is dropped on the adjacent link. There
are G members of the multicast session, and the other
members detect the loss at exactly the same time. For
the discussion of this topology we assume that the timer
parameters C1 and D1 are set to 0; because all nodes de-
tect losses and receive requests at the same time, C1 and
D1 are not needed to amplify di�erences in delay. The
only bene�t in setting C1 greater than 0 would be to avoid
unnecessary requests from out-of-order packets.
If C2 is at most 1, then there will always be G � 1 re-

quests. Increasing C2 reduces the expected number of re-
quests but increases the expected time until the �rst re-
quest is sent. For C2 > 1, the expected number of requests
is roughly 1 + (G � 2)=C2, and the expected delay until
the �rst timer expires is 2C2=G seconds (where one unit
of time is one second).3 For example, if C2 is set to

p
G,

then the expected number of requests is roughly
p
G, and

3The G � 1 nodes all detect the failure at the same time, and all set
their timers to a uniform value in an interval of width 2C2. If the �rst
timer expires at time t, then the other G � 2 receivers receive that �rst
request at time t + 2. So the expected number of duplicate requests is
equal to the expected number of timers that expire in the interval [t, t+2].

the expected delay until the �rst timer expires is 2=
p
G

seconds.
Note that if N2 was the source of the dropped packet,

then N1 would be the only node to send a request, and
the other session members would receive the request at the
same time. The same remarks as above would then apply
to D2 with respect to repairs.

4.3 Bounded-degree trees

The loss recovery performance in a tree topology uses both
the deterministic suppression described for chain topologies
and the probabilistic suppression described for star topolo-
gies. Consider a network topology of a bounded-degree
tree with N nodes where interior nodes have degree p. A
tree topology combines aspects of both chains and stars.
The timer value should be a function of distance, to enable
requests and repairs to suppress request and repair timers
at nodes further down in the tree. In addition, random-
ization is needed to reduce request/repair implosion from
nodes that are at an equal distance from the source (of the
dropped packet, or of the �rst request). In this section,
we show that the behavior of the request algorithms in a
tree topology depends principally on the distance of the
sender from the congested link, and on the ratio between
the timer parameters C2 and C1.
We assume that node S in the tree is the source of the

dropped packet, and that link (B,A) drops a packet from
source S. We call nodes on the source's side of the con-
gested link (including node B) good nodes, and nodes on
the other side of the congested link (including node A) bad
nodes. Node A detects the dropped packet at time t, when
it receives the next packet from node S. We designate node
A as a level-0 node, and we call a bad node a level-i node
if it is at distance i from node A.
Assume that the source of the dropped packet is at dis-

tance j from node A. Node A's request timer expires at
time

t+ C1j + U1[C2]j;

where U [C2] denotes a uniform random variable between 0
and C2. Assuming that node A's request is not suppressed,
a level-i node receives node A's request at time

t+ i+ C1j + U1[C2]j:

Node B receives node A's repair request at time

t+ 1 + C1j + U1[C2]j:

A bad level-i node detects the loss at time t+i, and such
a node's request timer expires at some time

t+ i+ C1(i+ j) + U2[C2](i+ j):

Note that regardless of the values of U1[C2] and U2[C2], a
level-i node receives node A's request by time t+ i+C1j+
C2j; and a level-i node's request timer expires no sooner
than t+ i+ C1(i+ j): If

t+ i+ C1j + C2j � t+ i+ C1(i+ j);

8

that is, if
C2

C1

j � i;

then the level-i node's request timer will always be sup-
pressed by the request from the level-0 node. Thus, the
smaller the ratio C2=C1, the fewer the number of levels
that could be involved in duplicate requests. This relation
also demonstrates why the number of duplicate requests or
repairs is smaller when the source (of the dropped packet,
or of the request) is close to the congested link.
Note that the parameter C1 serves two di�erent func-

tions. A smaller value for C1 gives a smaller delay for node
B to receive the �rst request. At the same time, for nodes
further away from the congested link, a larger value for
C1 contributes to suppressing additional levels of request
timers. A similar tradeo� occurs with the parameter C2.
A smaller value for C2 gives a smaller delay for node B
to receive the �rst repair request. At the same time, for
topologies such as star topologies, a larger value for C2

helps to prevent duplicate requests from session members
at the same distance from the congested link. Similar re-
marks apply to the functions of D1 and D2 in the repair
timer algorithm.

5 Simulations of the request and

repair algorithms

For a given underlying network, set of session members,
session sources, and congested link, it should be feasible to
analyze the behavior of the repair and request algorithms
with �xed timer parameters C1, C2, D1, and D2. How-
ever, we are interested in the repair and request algorithms
across a wide range of topologies and scenarios. We use
simulations to examine the performance of the loss recov-
ery algorithms for individual packet drops in random and
bounded-degree trees. We do not claim to be presenting
realistic topologies or typical patterns of packet loss.
We de�ne the density of a session as the fraction of nodes

that are members of the multicast session. The simula-
tions in this section show that the loss recovery algorithms
with �xed timer parameters perform well in a random or
bounded-degree tree for dense sessions, where many of the
nodes in the underlying tree are members of the multicast
session. The loss recovery algorithms perform somewhat
less well for a sparse session, where the session size is small
relative to the size of the underlying network, and the mem-
bers might be scattered throughout the net. This motivates
the development on the adaptive loss recovery algorithm in
Section 7.1, where the timer parameters C1, C2, D1, and
D2 are adjusted in response to past performance.
In these simulations the �xed timer parameters are set

as follows: C1; C2 = 2, and D1; D2 = log10G, where G is
the number of members in the same multicast session. The
choice of log10G for D1 and D2 is not critical, but gives
slightly better performance than D1; D2 = 1 for large G.
Each simulation constructs either a random tree or a

bounded degree tree withN nodes as the network topology.

Next, G of the N nodes are randomly chosen to be session
members, and a source S is randomly chosen from the G
session members.
We assume that messages are multicast to members of

the multicast group along a shortest-path tree from the
source of the message. In each simulation we randomly
choose a link L on the shortest-path tree from source S to
the G members of the multicast group. We assume that the
�rst packet from source S is dropped by link L, and that
receivers detect this loss when they receive the subsequent
packet from source S.

5.1 Illustrating the simulator

In this section we show one of the tools that we use to
verify that our simulator is implementing the loss recovery
algorithms correctly. The example in Figure 4 also serves
as a concrete illustration of the loss recovery algorithms in
operation.

: source of dropped packet

5 4

3 2 1

6

: congested edge

Figure 3: A simulation network for the �gure above.

Time

N
od

e

0 5 10 15

0
1

2
3

4
5

6

.

.

.

.

*

*

*

*

*

*[

[[

[[

[

[

[

]

]]

]

]

[]

*
.

: timer interval
: detecting loss
: sending requests
: receiving requests
: sending repairs
: receiving repairs
: timer expiration
: end ignoring requests

Figure 4: A request/repair exchange from a single dropped
packet.

Figure 4 shows a single request/repair exchange for the
network in Figure 3. This is one of a series of automated

9

tests that we run after each change we make to our simula-
tor. The underlying network shown in Figure 3 consists of
a randomly-created tree of six nodes. A packet takes one
unit of time to traverse each link.
In Figure 4 the x-axis shows time. The y-axis shows a

row for each session member, indicating when timers are
set and repair and request packets sent and received by that
member. This simulation uses the �xed timer parameters
C1; C2 = 2 and D1; D2 = 1.
For each member a�ected by the loss, we de�ne the loss

recovery delay as the time from when the member �rst
detects the loss until the member �rst receives a repair.
The simulator's summary statistics correctly report that
the loss recovery delay for the last node to receive the repair
is 0.65 RTT. This is for node 6, which detects the loss at
time 4, receives the repair at time 9.2, and has a RTT of 8
to the source of the dropped packet.
Note that with unicast communications the ratio of loss

recovery delay to RTT is at least one. For a unicast receiver
that detects a packet loss by waiting for a retransmit timer
to time out, the typical ratio of delay to RTT is closer
to 2. As the earlier discussion of chain topologies shows,
with multicast loss recovery algorithms the ratio of delay to
RTT can sometimes be less than one, because the request
and repair could each come from a node close to the point
of failure.
Figure 4 can be read in two ways to verify the correct-

ness of the algorithms implemented in the simulator. First,
a single row shows the history of a single member. We
leave the veri�cation of each row as an exercise for the
reader. Second, for each multicast request or repair, the
�gure shows when that message was received by each of
the other nodes.

5.2 Simulations on random trees

This section uses simuations to explore the behavior of the
loss recovery algorithms where the underlying networks are
tree topologies. We �rst consider networks of random la-
beled trees, where all nodes in the networks are session
members. We next consider large networks with nodes of
degree four, where only a fraction of the nodes are members
of the multicast group.
For the simulations on random labeled trees of N nodes,

the random labeled trees are constructed according to the
labeling algorithm in [Pa85, p.99]. These trees have un-
bounded degree, but for large N , the probability that a
particular vertex in a random labeled tree has degree at
most four approaches (approximately) 0.98 [Pa85, p.114].
Figure 5 shows simulations of the loss recovery algorithm
for this case, where all N nodes in the tree are members of
the multicast session (that is, G = N). For each graph the
x-axis shows the session size G; twenty simulations were
run for each value of G. For each simulation, a new ran-
dom tree was constructed, and session members, a source,
and a congested link were randomly chosen. Each simula-
tion is represented by a jittered dot4, and the median from

4A jittered dot is a dot for which some small random jitter has been

the twenty simulations is shown by a solid line. The two
dotted lines mark the upper and lower quartiles; thus, the
results from half of the simulations lie between the two dot-
ted lines. While there are not enough simulations to make
accurate predictions of the behavior of the loss recovery
algorithms, the simulations do illustrate the loss recovery
algorithms under a range of circumstances.

Session Size

N
um

be
r

of
 R

eq
ue

st
s

20 40 60 80 100

0
5

10
15

20

...................
.

.................

...
..................
..

...
.
.

..................

..
..

...
.

...
..................
.
.

Session Size

N
um

be
r

of
 R

ep
ai

rs

20 40 60 80 100

0
5

10
15

20
....................

.
.

....................
.

.
.

Session Size

D
el

ay
 (

in
 u

ni
ts

 o
f R

T
T

)

20 40 60 80 100

0
1

2
3

4
5

6

.

.

.......

........

.

.

.

.

...

....
.....
...
..
..

....
...
........
....
.

..

...

......
.....
...
.

...

....
.......
....
.

.

.
.....
....
.....
...
.

.

....

.
...
....
.......
.

.

..

......

..
.......
.
.

...
.
......
....
.....
.

..
...
...
......
.....
.

Figure 5: Random trees with a random congested link and
a single packet loss, where all nodes are members of the
multicast session.

The top two graphs in Figure 5 show the number of re-
quests and repairs to recover from a single loss. In these
graphs the median, lower quartile, and upper quartile lines
are the same; the y-axis was chosen for an easy visual com-
parison with other simulations later in the paper.
For each simulation, there is a dot in the bottom graph

in Figure 5 showing the loss recovery delay for the last
member of the multicast session to receive the repair. This
loss recovery delay is given as a multiple of the RTT, the
roundtrip time from that member to the original source of
the dropped packet. While this member has the largest loss
recovery delay in absolute terms, this member generally
does not have the largest delay when expressed in units of
RTT.
Figure 5 shows that the repair/request algorithm with

�xed timer parameters works well for a tree topology where
all nodes of the tree are members of the multicast session.
There is usually only one request and one repair. (Some
lack of symmetry results from the fact that the original

added to the x and y coordinates. In this way, the reader can di�erentiate
between a single dot, and multiple dots that have the same coordinates.

10

source of the dropped packet might be far from the point
of failure, while the �rst request comes from a node close
to the point of failure.) The average recovery delay for
the farthest node is less than 2 RTT, competitive with the
average delay available from a unicast algorithm such as
TCP. The results are similar in simulations where the con-
gested link is chosen adjacent to the source of the dropped
packet, and for simulations on a bounded-degree tree of
size N = G where interior nodes have degree four. (We do
not claim that this is the average degree for a router in the
Internet, in the current Mbone, or in the likely multicast
backbone of the foreseeable future. From looking at a map
of the current Mbone topology, choosing a degree of four
seemed as reasonable a choice as any other that we might
have made.)

5.3 Simulations on large bounded-degree

trees

The loss recovery algorithms with �xed timer parameters
perform less well for a sparse session in a large bounded-
degree tree. The underlying topology for the simulations in
this section is a balanced bounded-degree tree of N = 1000
nodes, with interior nodes of degree four. In these simu-
lations the session size G is signi�cantly less than N . For
a session that is sparse relative to the underlying network,
the nodes close to the congested link might not be members
of the session.

Session Size

N
um

be
r

of
 R

eq
ue

st
s

20 40 60 80 100

0
5

10
15

20

.................

..

.
..............
..
.

.

.
.

..................
.
.

....................
.
.

..................

.

.
...............
..
.
..

................

.

..

.

...................

.
...................
.

Session Size

N
um

be
r

of
 R

ep
ai

rs

20 40 60 80 100

0
5

10
15

20

......

.

.

...

.
....
...
.

......

...

..
.
.....
..

.

......

..

..

..

...

..

..

.

.....

.....

....

.

.

..
.

.

...
....
.

.
...
....
.
.
.

.

......

...

...

.

.

..
.
.

.

.

.....

......

..

.

..

...

.

.........

......

.

.

.

..

.......

..
....
...
..
.
.

.......
...
..
..
..
..
.
.

Session Size

D
el

ay
 (

in
 u

ni
ts

 o
f R

T
T

)

20 40 60 80 100

0
1

2
3

4
5

6

.

.....

.....

....

....
.

.......
......
....
..
.

.

....

........
..
.....

..
.......
....
....
..
.

....

....

....

....
...
.

.

.....

......
...
..
..
.

..

..........

.....

.

..

..

.....

.....

.....
..

.

..
.
.....
..
.....
...
.
.

..

.......

......

...
.
.

Figure 6: Bounded-degree tree, degree 4, 1000 nodes, with
a random congested link.

As Figure 6 shows, the average number of repairs for each

loss is somewhat high. In simulations shown in [FJLMZ95]
where the congested link is always adjacent to the source,
the number of repairs is low but the average number of
requests is high.
[FJLMZ95] shows the performance of the loss recovery

algorithm on a range of topologies. These include topolo-
gies where each of the N nodes in the underlying network
is a router with an adjacent Ethernet with 5 workstations,
point-to-point topologies where the edges have a range of
propagation delays, and topologies where the underlying
network is more dense that a tree. None of these variations
that we have explored have signi�cantly a�ected the per-
formance of the loss recovery algorithms with �xed timer
parameters.

6 Exploring the parameter space

As the previous section showed, a particular set of val-
ues for the timer parameters C1, C2, D1, and D2 that
performs well in one scenario might not perform well in
another scenario. In this section we choose a few simple
topologies, and explore the behavior of the request/repair
algorithms as a function of the request timer parameter
C2. The only simulations in this section that give unac-
ceptably large numbers of requests are those with small
values for C2 on stars or for sparse sessions on trees. For
these scenarios, increasing C2 reduces the number of du-
plicate requests, accompanied by moderate increases in the
loss recovery delay.
For the simulations in this section, C1 is set to 2. As

Section 4.1 showed, for a chain with a deterministic loss
recovery algorithm, it is su�cient to set C1 to 1. However,
for a chain with a randomized loss recovery algorithm, a
higher value of C1 is needed to ensure that members further
from the congested link receive a request before their own
request timer expires. For the star topology, the number
of requests is completely insensitive to the value of C1.
In the following section we discuss adaptive algorithms

where the timer parameters are adjusted as a function of
the past performance of the loss recovery algorithms.
For a star topology, there is a clear tradeo� between the

delay and the number of duplicates. In contrast, with a
chain topology, setting C2 to zero gives the optimal behav-
ior both in terms of delay and in the number of duplicates.
For a dense session in a tree topology, a small value for C2

gives good performance in terms of both delay and dupli-
cates.
Figure 7 shows the tradeo�s between delay and dupli-

cates in a star topology of size 100, where the congested
link is adjacent to the source of the dropped packet. We
de�ne the request delay for a session member as the de-
lay from when the request timer is set until a request was
either sent by that member or received from another mem-
ber. The top graph in Figure 7 contains a dot for each
integer value of C2 from 1 to 100, for the star topology
described in Section 4.2. For each dot, the x-coordinate is
the expected request delay for that value of C2, and the

11

Star Topology
Expected Request Delay (in units of RTT)

E
xp

ec
te

d
N

um
be

r
of

 R
eq

ue
st

s

1.0 1.1 1.2 1.3 1.4 1.5

0
20

40
60

80
10

0 .

.

.
.
..

x

o

Star Topology
Simulation Results of Average Request Delay (in units of RTT)

A
ve

ra
ge

 N
um

be
r

of
 R

eq
ue

st
s

1.0 1.1 1.2 1.3 1.4 1.5

0
20

40
60

80
10

0 ..

.

.
.......

.

.

.. ...
.

.
. .

. ..
.

..

.
.

.
..

.. .
.. .

.
..

.
.. .

..

.
.

. ..

.
.

.
.. .

.
.

.
.
.

. ...

.
.. .

.
. .

...
.

. .
.. .
. ...

.

. ...
. .

.
..

.
..

.

.

..
. .

..
...
.

. .
.

.
.

.. . .
.

.

...
....

.
. .. .

.
.

... .. .
..

.
.. . ..
.

...
.

. . ..
. .

...
.

...
..

..

.... .
.

.
..

. ..
.

..

.
.

.
..

. . .
.. .

.
..

.
.. .

..

.
.

..
.

.
.

.
. ..

.
.

.
.

.
. ...

.
. . .

.
. .

...
.

..
.. .
. . ..

.

. .. .
. .

.
..

.
..

.

.

. ...
. .

...
.

. .
.
.

.
. . ..
.

.

...
....

.
. .. .

.
.

... .. .
..

.
... ..
.

...
.

.. . .
. .

...
.

..
..

. x

o

..

.

.
.......

.

x

o

..

.

.
.......

.

x

o

..

.

.
.......

.

x

o

Figure 7: Tradeo� between delay and duplicates in a star
topology.

Chain Topology
Simulation Results of Average Request Delay (in units of RTT)

A
ve

ra
ge

 N
um

be
r

of
 R

eq
ue

st
s

1 2 3 4 5 6

1.
0

2.
0

3.
0

4.
0

.
. . .

.
.

.

.

...

..

..

.

.. .

.

..

.

...

.

.

.

...

.

.

.

...

.

...

.

.

.

.

.

.

.

. .

.

..

.

.

.

.

.

.

.

. .

.

..

.

.

.

.

.

. ..

.

. .

.

..

.

.

.

. .

. .

. .

.

.

.

.

.

.

. .

. .

. .

.

.

.

.

.

.

.

.

.

.

. ..

.

.

.

.

.

.

.

.

.

. . .

.

...

.

. . .

.

..

.

..

.

. . .

.

..

. .

..

.

..

. .

..

.

...

..

..

.

.. .

.

..

.

...

.

.

.

...

.

.

.

...

.

...

.

.

.

.

.

.

.

. .

.

..

.

.

.

.

.

.

.

. .

.

..

.

.

.

.

.

. ..

.

. .

.

..

.

.

.

. .

. .

. .

.

.

.

.

.

.

. .

. .

. .

.

.

.

.

.

.

.

.

.

.

. ..

.

.

.

.

.

.

.

.

.

. . .

.

...

.

. . .

.

..

.

..

.

. . .

.

..

. .

..

.

..

. .

..x
o

. .
.

x o.x o.
x o

Figure 8: Tradeo� between delay and duplicates in a chain
topology.

y-coordinate is the expected number of requests.
More precisely, the x-coordinate is given by the expected

request delay for the bad member closest to the source of
the dropped packet, expressed as a multiple of the roundtrip
time from that member to the source of the dropped packet.
When there is not a unique bad member at the minimum
distance from the source, as in a star topology, then the x-
axis shows the expected smallest request delay from those
members at the minimum distance from the source. For
a star topology this is the request delay for that member
whose request timer expires �rst.
From the heuristic analysis in Section 4.2, the expected

request delay (in units of the RTT of 2D) is as follows:

C1D + C2D=G

2D

= C1=2 + C2=(2G);

where D is the distance in seconds from the source to a
session member. From Section 4.2, the expected number
of requests is estimated as 1 + (G � 2)=C2. The \x" in
Figure 7 shows the results for C2 = 0, and the circle shows
the results for C2 = 10. Thus the top graph of Figure 7
shows that increasing C2 in a star topology increases the
expected request delay slightly while signi�cantly decreas-
ing the expected number of requests.

The bottom graph in Figure 7 shows the results from
simulations, which concur with the analytical results in
the top graph. For each integer value of C2 from 0 to 100,
twenty simulations are run, and the request delay and total
number of requests is calculated for each simulation. Each
simulation is represented by a jittered dot, and the line
shows the average for each value of C2. Thus, the graph
shows that for C2 set to 100, the average number of requests
is 1.5 and the average request delay, as a multiple of the
RTT, is 1.42. The minimum request delay of 1 comes from
the �xed value of 2 for request parameter C1.
For each of the simulations with C2 set to one, there

were 99 requests, one from each member who set a request
timer. Because all of the request timers are set at the
same time, and all timers expire within half a RTT, then
regardless of when the �rst timer expires, all other request
timers will have expired before any of the members sees
the �rst request. For the simulations with C2 set to two,
there were between 41 and 59 requests; this matches well
with the expected number of requests of 50.
These results generally concur with those of [PSA96],

which investigates the relative bene�ts of using unicast or
multicast NACKs. [PSA96] concludes that for a scenario
similar to our star topology, where a message sent by any
member is received by all other members exactly r seconds
later, and for a multicast group with ten members, the ran-
dom interval over which NACK timers were set would have
to be at least 10 times r for the multicasting of NACKs to
result in bandwidth savings over a scheme of unicasting
NACKs to the source. [PSA96] concludes that unicasting
NACKs would be desirable in some scenarios, but for mul-
ticast groups that could have hundreds of members, and for
multicast groups where the receivers were somewhat toler-
ant of delay, multicasting NACKs would be quite e�ective
in reducing the unnecessary use of bandwidth.
Figure 8 shows the results from the chain topology dis-

cussed in Section 4.1. For a chain, with C2 set to zero there
will be exactly one request, with request delay C1=(2D).
Increasing C2 can increase both the expected request delay
and the expected number of duplicates. The four lines in
Figure 8 show the results for a chain topology with a failed
edge 1, 2, 5, or 10 hops, respectively, from the source of the
dropped packet. For the simulations with a failed edge one
hop from the source, the individual simulations are shown
by a dot. For each scenario C2 ranges from 0 to 10 in in-
crements of 1, and then from 10 to 100 in increments of 10.
While increasing C2 can increase the number of duplicates,
the magnitude of the increase is quite small.
Figures 9 and 10 show the results for a range of tree

topologies. Each line shows the results for a particular
�xed scenario, as C2 varies from 0 to 100. In all of the
scenarios the session size is at least 100. In each graph,
the lines represent scenarios that di�er only in the number
of hops between the source and the failed edge. The four
lines represent scenarios with failed edges that are one,
two, three, or four hops, respectively, from the source of
the dropped packet. For all of the topologies, the failed
edge closest to the source gives the line with the worst-case

12

(Tree Topology, Degree 4, Session Membership Density 1),
Simulation Results of Average Request Delay (in units of RTT)

A
ve

ra
ge

 N
um

be
r

of
 R

eq
ue

st
s

2 4 6 8 10

2
4

6
8

10
12

.
.

.
. .

.

.....................

.

... .

.

..

.

...

.

... .

.

..

.

...

..

.. .
.

..

.

...
.

... .

.

.. .

.

..
..

..

.

...

.

...

..

.. .

.

..

.

...

.

...

.

...

..

.. .

.

..

.

.

.

.

.
...

.

...

.

.

.. .

.

..

.

.

.

.

.
...

.

...

.

.

.. .

.

..

.

.

.

.

.
...

.

.

.. .

.

..

.

.

.

.

.

...

.

.

.. .

.

..

.

.

.

.

.

...

.

.

.. .

.

..

.

.

.

.

.

...

.

.

.. .

.
..

.

.

.

.
.

...

.

.
.. .

.

..

.

.

.
.

.

.

..

.

.

.. .

.

..

.

. ..

.

.

.. .

.

..

.

..

. .

.

..

.

. ..

.

.

.. .

.

..

.

..

. .
.

..

.

. ..

.

.

.. .

.

..

.

..
. .

.

..

.

. ..

.

.

.. .

.

..

.

.

.

. .

.

.
.

.

. ..
..

. .

.

.

.

.

..
.

.

.

.

.

. ..

. .

. .

.

.

.

.

..

.

.

.

.

.

. ..

.

.

. .

.

.

.

.

..

.

.

.

.

.

. ..

.

.

.. .

.

.

.

.

..

.

.

.

.

.

. ..

.

.

.. .

.

.

.

.

..

.

.

.

.

.

. ..

.

.

.. .

.

.

.

.

..

.

.

.

. ..

.

.

.. .

.

.

.

.

..

.

.

.

. ..

.

.. .

.

.....................

.

... .

.

..

.

...

.

... .

.

..

.

...
..

.. .

.
..

.

...

.

... .

.

.. .

.

..

..

..

.

...

.

...

..

.. .

.

..

.

...

.

...

.

...

..

.. .

.

..

.

.
.

.

.

...

.

...

.

.

.. .

.

..

.
.

.
.

.

...

.

..x
o

.
.

.
x

o

.
..

x

o
.. ..

..x
o

(Tree Topology, Degree 4, Session Membership Density 0.5),
Simulation Results of Average Request Delay (in units of RTT)

A
ve

ra
ge

 N
um

be
r

of
 R

eq
ue

st
s

2 4 6 8 10

2
4

6
8

10
12

.

. .
.

.
.

. . .
..

.

. .
.

....................

.

.

.... ...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

... ...
.

..

.

.

.

.

.

.

.

..

.

.

... ..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.
.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

..

.

.

.

. .

.

.

.

.
.

..

.
.

.

..

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

..

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

..

..

.

...

.

.
.

.

.

.

.

.
.

.

.

.

..

..

.

...

.

.

.

.

.

..

.

.

.

.

.

..
..

.

...

.

.

. .

.

.

. .

.

.

.

.

..

.

....................

.

.

.... ...

.
.

.

.

.

.

.

.

.

.

.
.

.

.

... ...

.

..

.

.

.

.

.

.

.

..

.

.

... ..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

..

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

. .

.
.

.

.

.

..

.

.
.

..

.

.
.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

..

.

.

.
.

.

.

.

.

.

.

.
.

.

.

.

.

..
..

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

..

..

.

...

.

.

.

.

.

.

.

.

.

.

.

.

..

..

.

...

.
.

.

.

.

..

.

.

.

.

.
..

..

.

...

.

.

. .

.

.

. .
.

.
.

.
..

.
x

o

.

.

.

. . ..
...

.
.

.

x
o.

.

.
.

.

x

o

.
. .

.

x

o

(Tree Topology, Degree 4, Session Membership Density 0.2),
Simulation Results of Average Request Delay (in units of RTT)

A
ve

ra
ge

 N
um

be
r

of
 R

eq
ue

st
s

2 4 6 8 10

2
4

6
8

10
12

.

. . .
. . .

. . . .
. .

.

....................

...
.

.

.

.

.

.

.

.

..

..
.

...

. ...

.

.

.

.

.

.

.

.

..

..

.

...

.

.

..

.

.

.

.

.

.

.

.

..

..

.

...

..

..

.

..

.

.

.

.

.

.

.

..

.

.

..

.

.

..

.

.
.

.

.

.
.

.

.

.

..

.

.

..

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

..

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

..

..

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

..

.

.

.

.

. .

.

.

.

..

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

..

.

. .

.

.

.

..

.

.

.

.

.

.

.

.

. .

..

.. .. .

.

. .

. . .

.

.

.

.

.

. .
..

.. .. .

.

.

.

.

. .

.

..

.

.

.

. ..

..
.

.

.

..
.

.
.

.

.

.

. .

.

..

.

.

.

..

.

.

.

.

..

.

.

.

. .. .

.

.

.

.

..

.

.

.

.

..
.

.

.

.

.
.

.

.

.

.

.

.. .

.

.

.

.

. .

.

.

.

.

.

.

.

.
.

.

.. .

.

.

.

.

. .

.

.

....................

...

.

.

.

.

.

.

.

.

..

..

.

...

. ...

.

.
.

.

.

.

.

.

..

..

.

...
.

.

..

.

.

.

.

.

.

.

.

..
..

.

...

..
..

.

..

.

.

.

.

.

.

.

..

.

.

..

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

..

.

.

..
.

.

.
.

.

.

.

.

.

.

..

.

.

..

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

..

..

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

. .

.

.

.

..

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

..

.

. .

.

.

.

..

.

.

.

.

.

.

.

.

. .

..

.. .. .

.

. .

. . .

.

.

.

.

.

. .

..

.. .. .

.

.

.
.

. .

.

..

.

.

.
. ..

..

.

.

.

..

.

.

.

.

.

.

. .

.

..

.

.

.

..

.

.

.

.

..

.

.

.

. .. .

.

.

.

.

..

.

.

.

.
..

.

.

.
.

.

.

.

.

.

.

.

.. .

.

.

.

.

. .

.

.

.
.

.
.

.

.

.

.

.. .

.

.

.
.

. .

.

.

x

o

.
.

x

o. .
.

x
o

.
x

o

(Tree Topology, Degree 4, Session Membership Density 0.1),
Simulation Results of Average Request Delay (in units of RTT)

A
ve

ra
ge

 N
um

be
r

of
 R

eq
ue

st
s

2 4 6 8 10

2
4

6
8

10
12

.

. .
.

.
.

.

....................

.

.

.

..

..

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

.

..

..

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
..

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

... .

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

... .

.

.

.

..

.

.

..

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

..

.

.

..

.

.

.
.

.

.

.

.

.

.

.

.

.

.

..

. .

..

. .

.

.

.

.

.

.

.

.

.

.

.

.

..

. .

..

. .

.

..

.

.

.

.

.

.

.

.

.

..

. .

. .

. .

.

..

.

.

..

.

.

.

. .

.

.

.

.

. .

.

.

.
.

.

.

.

.

.

.

. ..

.

.
.. .

.

.. .

.

.

. .

.

.

.

.

. ..

.

.

.

. .

. .

.

.

.

...

.

.

.

.

. ..

.

.

.

.

.

.

...

.

.

.

.

. ..

.

.

.

.
.

.

...

.

.

.

.

. ..

.

.

.

.

.

.

...

.

.

.

.

. ..

.

.

.

.

.

.

...

.

.

.

.

. ..

.

.

.
.

.
.

...

. ..

.

.

.

.

...

. ..

....................

.

.

.

..

..

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

.

..

..

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
..

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

... .

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

... .

.

.

.

..

.

.

..

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

..

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

. .

..

. .
.

.
.

.

.

.

.

.

.

.

.

.

..

. .

..

. .

.

..

.

.

.

.

.

.

.

.

.

..

. .

. .

. .

.

..

.

.

..

.

.
.

. .

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

. ..

.

.

.. .

.

.. .

.

.

. .

.

.

.

.

. ..

.

.

.

. .

. .

.

.
.

...

.
.

.

.

. ..

.

.
.

.

.

.

...

.

.

.

.

. ..

.

.

.

.

.

.

...

.

.

.

.

. ..

.

.

.

.

.

.

...

.

.
.

.

. ..

.

.

.

.

.

.

...

.

.

.

.

. ..

.

.

.

.

.
.

...

. ..

.

.

.

.

...

. ..

x

o
. .

.

x

o

.

.
. . .

.

.
.

x

o

.x o

Figure 9: Tradeo� between delay and duplicates for dense
sessions in tree topologies.

number of duplicate requests. For this line, the individual
simulations are each shown by a jittered dot. The graphs
are sized for easy comparisons, and do not necessarily show
all of the dots.
As an example, the top graph in Figure 9 shows the

results for trees of density 1. For each of the lines the
average number of duplicates is minimized for C2 = 0, and
maximized for an intermediate value of C2. In particular,
for a failed edge adjacent to the source of the failed packet,

(Tree Topology, Degree 4, Session Membership Density 0.02),
Simulation Results of Average Request Delay (in units of RTT)

A
ve

ra
ge

 N
um

be
r

of
 R

eq
ue

st
s

2 4 6 8 10

0
5

10
15

20
25

30

.

.

.
.

.

....................

.

.

.

.

..

.

.
.

.

.

.

.

.

.

.

..

.

.

.
.

.

..
.

.

.
..

.

.

.
..

.

..

.

.

.

.
.

. .

.
. .

.
.

.

.
..

.

.

..

.

.

.

..

. .

.
. .

..

.

...
.

.

.
.

.

.

.

.
.

.
.

..
..

.

.

.
...

.

..
.

.

.

..

.
.

.. ...

.
. .
.

.

.

...

.

.
.

. .
.

..
..

.

.
.
...

.

.
..

.

.
.

.
.

.
.. ..

.
.

.. .
.

.

.
..

.

.
.

. .
.

..
.

.
.

.
. . ..

.

. .
.

.

.
.

. . .
..
..

.
.

.
..

.
.

. .
.

.

.
.. .. .

.
.

.
.

. .
...

.. ..
.

.
.

.
.... .

.

.

.
.. ..

.
. .

.
....

..

.

.
.

..... .
.

.

. ..
.

.
..

.

.

. .. .
.

..
.

.

. ..
.

.
.

.

. ..
.

.
..

.... ..

.

. ..
.

.
..

.
.

.... .
.

.

................... .

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

..
.

.
..

.

...

.

.

..
.

.

..

.

.

.

.
.

. .

.
.

.

..

.

.
...

.

..

.

.

.

.
.

. .

.
.

.

..

.

....

.

.
.

.

.

.

..

.
.

..
..

.

.

.

.
..

.

...

.

.

..

.
.

.. ...

.
..

..

.

. ..

.

.
.

.
.

.

..
..

.

.
....

.

. ..

.

.
.

.
.

.
.

. ..

.
.

. .
.

.

.

.
..

.

.
.

. .
.

.
. ..

.
.

. . ..

.

.
.

.

.

. .
..

.
..
..

.
.

. ..
.

.

. .
.

.

. ...
.

..
..
.

. . .
..

.. .. .

. ...
.

.
.

..
.

.
.

. ..

.

. ..
.

.
.

.
.

.

.
.

.
.

.... .
.

.

.
.

.

.

.
.

.

. ..
.

.
.

..... ..

.

. ..
.

.
.

.
. .

.

.

.
. .

....
.

.

.

x

o

.
.

.

x

o

.

.

.

.
.

.

x

o

.

.

.

.
.

.

x

o

Figure 10: Tradeo� between delay and duplicates for sparse
sessions in a tree topology.

C2 set to 40 gives an average number of duplicates of 4.1.

7 Extending the basic approach

7.1 Adaptive adjustment of random timer

algorithms

The results in the previous section suggest that the SRM
loss recovery algorithms with �xed timer parameters give
acceptable performance for sessions willing to tolerate a
small number of duplicate requests and repairs and willing
to accept a moderate request and repair delay (in terms
of the roundtrip times of the underlying multicast group).
However, there is not a single setting for the timer pa-
rameters that gives optimal performance for all topologies,
session memberships, and loss patterns. For applications
where it is desirable to optimize the tradeo� between delay
and the number of duplicate requests and repairs, an adap-
tive algorithm can be used that adjusts the timer parame-
ters C1, C2, D1, and D2 in response to the past behavior of
the loss recovery algorithms. In this section we describe an
adaptive algorithm that adjusts the timer parameters as a
function of both the delay and of the number of duplicate
requests and repairs in recent loss recovery exchanges.
For sparse sessions, which we expect to be the most com-

mon, there is a tradeo� between the delay and the number
of duplicates; increasing C2 decreases the expected number
of duplicate requests but increases the expected request
delay. However, the exact nature of the duplicate/delay
curve depends on the topology and on the (possibly chang-
ing) failure scenario and session membership. Thus, the
approach is to adjust C2 dynamically, as a function of the
past history of the request algorithms, to achieve the de-
sired tradeo� between duplicates and delay.
A related strategy to minimize the number of duplicate

requests is to rely on deterministic suppression, with mem-
bers closest to the point of failure sending requests �rst.
One mechanism for encouraging deterministic suppression
is for members to reduce C1 after they send a request.
Because members who frequently send requests are likely
to also be members who are close to the point of failure,
reducing C1 for those members aids the deterministic sup-

13

pression. In a star topology, where otherwise the loss recov-
ery mechanisms rely on probabilistic suppression, reducing
C1 in this fashion helps to break symmetry, encouraging
certain members to continue sending requests early.
A second mechanism for encouraging deterministic sup-

pression is for members who have sent requests to reduce
C2 if they have received duplicate requests from members
signi�cantly further from the source of the failed packet.
This mechanism for requests requires that requests include
the requestor's estimated distance from the original source
of the requested packet. The corresponding mechanism for
replies requires that replies include the replier's estimated
distance from the source of the request.

After sending a request:

decrease start of req. timer interval

Before each new request timer is set:

if requests sent in prev. rounds, and any

dup. requests were from further away:

decrease request timer interval

else if ave. dup. requests high:

increase request timer interval

else if ave. dup. requests low

and ave. req. delay too high:

decrease request timer interval

Figure 11: Dynamic adjustment algorithm for request
timer interval.

Figure 11 gives the outline of the dynamic adjustment al-
gorithm for adjusting the request timer parameters. A cor-
responding algorithm applies for adjusting the reply timer
parameters. This adaptive algorithm combines the general
adaptation performed by all members when they set a re-
quest timer with more speci�c adaptations performed only
by members who have recently sent requests. A member
determines if the average number of duplicate requests is
\too high" by comparing the observed average to a prede-
�ned threshold; in this paper the prede�ned threshold is
one duplicate request. If the average number of duplicate
requests is too high, then the adaptive algorithm increases
the request timer interval. Alternately, if the average num-
ber of duplicates is okay but the average delay in sending a
request is too high, then the adaptive algorithm decreases
the request timer interval. In this fashion the algorithm can
adapt the timer parameters not only to �t the generally-
�xed underlying topology, but also to �t a changing session
membership and pattern of congestion.
First we describe how a session member measures the

average delay and number of duplicate requests in previ-
ous loss recovery rounds in which that member has been a
participant. A request period begins when a member �rst
detects a loss and sets a request timer, and ends only when
that member begins a new request period. The variable
dup req keeps count of the number of duplicate requests
received during one request period; these could be dupli-
cates of the most recent request or of some previous re-
quest, but do not include requests for data for which that
member never set a request timer. At the end of each re-

quest period, the member updates ave dup req, the average
number of duplicate requests per request period, before re-
setting dup req to zero. The average is computed as an
exponential-weighted moving average,

ave dup req (1� �) ave dup req + � dup req;

with � = 1=4 in our simulations. Thus, ave dup req gives
the average number of duplicate requests for those request
events for which that member has actually set a request
timer.
When a request timer either expires or is reset for the

�rst time, indicating that either this member or some other
member has sent a request for that data, the member com-
putes req delay, the delay from the time the request timer
was �rst set (following the detection of a loss) until a re-
quest was sent (as indicated by the time that the request
timer either expired or was reset). The variable req delay
expresses this delay as a multiple of the roundtrip time to
the source of the missing data. The member computes the
average request delay, ave req delay.
In a similar fashion, a repair period begins when a mem-

ber receives a request and sets a repair timer, and ends
when a new repair period begins. In computing dup rep,
the number of duplicate repairs, the member considers only
those repairs for which that member at some point set a
repair timer. At the end of a repair period the member
updates ave dup rep, the average number of duplicate re-
pairs.
When a repair timer either expires or is cleared, indicat-

ing that this member or some other member sent a repair
for that data, the member computes rep delay, the delay
from the time the repair timer was set (following the receipt
of a request) until a repair was sent (as indicated by the
time that the repair timer either expired or was cleared).
As above, the variable rep delay expresses this delay as a
multiple of the roundtrip time to the source of the miss-
ing data. The member computes the average repair delay,
ave rep delay.
Figure 12 gives the adaptive adjustment algorithm used

in our simulator to adjust the request timer parameters C1

and C2. The adaptive algorithm is based on comparing the
measurements ave dup req and ave req delay with AveDups
and AveDelay, the target bounds for the average number
of duplicates and the average delay. An identical adjust-
ment algorithm is used to adapt the repair timer param-
eters D1 and D2, based on the measurements ave dup rep

and ave rep delay. Figure 13 gives the initial values used
in our simulations for the timer parameters. All four timer
parameters are constrained to stay within the minimum
and maximum values in Figure 13.
The numerical parameters in Figure 12 of 0.05, 0.1, and

0.5 were chosen somewhat arbitrarily. While this might
look like a multitude of constants, the exact value of these
constants is not important - all that matters is that they
represent small adjustments to the timer parameters C1

and C2 as a function of the past observed behavior of the
loss recovery algorithms. The adjustments of �0:05 and
+0:1 for C1 are small, as the adjustment of C1 is not the

14

Nonadaptive Timer Parameters.
Round Number

N
um

be
r

of
 R

ep
ai

rs

0 20 40 60 80 100

0
5

10
15

20
25

..

..

...

..

.

.

....

.

..

.

.

..

.....

.

.

.

.

..

..

.

.

.

.

.

.

....

..

.

..

..

..

..

.

...

.

..

..

.

..

.

.

.

..

..

...

..

...

..

..

..

.

...

..

.

..

..

...

..

...

.

.

.

..

..

.

.

..

.

..

..

..

..

.

.

.

.

..

.

...

.

.

...

.

.

.

.

..

.

.

..

.

..

..

.

.

...

..

..

.

.

.

..

...

..

.

..

.

..

.

.

..

..

.

.

..

..

.

.

..

.

.

..

.

.

.

...

.

.

...

.

.

...

.

..

...

...

.

.

..

.
.
.
..
.
.
.

.

..

.

...

.

..

.

..

..

..

.

..

.

.

....

..

.

.

.

...

.

..

.

..

..

.

..

..

..

.

.

..

..

...

..

.

...

..

..

..

...

.

..

..

..

.

..

....

.

.

.

.

....

.

...

.

.

...

.

.

.

...

...

.

..

..

.

.

.

..

..

...

..

..

..

.

..

.

..

.

.

..

...

..

.

.

...

.

..

.

.

.

...

..

..

.

..

..
..

..

..

..

.

..

....

.

.

.

..

.

..

..

.

.

.

....

...

..

.

....

..

.

.

.

.

.

.

..

..

..

..

.

.

..

..

..

..

..

...

.

.

.

.

.

.

..

..

.

.

..

.

...

..

..

.

.

.

.

...

..

.

.

.

.

.

...

..

.

..

.

...

..

...

..

..

...

...

.

.

...

..

.

.

.

..

..

...

..

.

..

.

..

.

..
.
.
.

.

..

....

.

.

.

.

.

..

..

..

.

.

.

.

..

.

..

.

.

.

.

.

..

..

..

.

.

.

....

.

..

..

.

..

...

..

.

.

.

..

..

.

...

.

.

.

....

.

..

..

...

..

.

.
..
.

.

.

..

..

..

.

.

.

.

.

...

.

..

.

.

..

..

..

..

.

...

.

.

..

.

.

.

..
..
..
.
.
.

.

.

......

..

.

..

...

...

.

.

.

.

....

...

.

.

...

...

.

..

..

.

..

.

..

.

.

..

..

.

.

.

.

.

.

..

.

.

.

...

.

.

....

..

.

.

.

.

.

.

...

..

..

.

.

.

.
..
...
.

.

...

.

.

..

.

.

.

.

...

....

.

.

...

...

.

.
.

.

.

.

.

.

....

.

.

.

..

..

...

.

.

..

.

.

.

..

.

.

.

.

..

...

.

.

.

.

.

..

..

..

..

.

..

..

...

.

.

.

..

..

.

.

.

..

.

.

...

.

..

.

.

.

.

..

..

..

.

..

.

..

..

..

..

.

.

..

.

..

..

.

.

.

.

...

..

.

.

.

.

..

..

.

.

.

.

.

..

....

.

.

..

...

..

...

..

Nonadaptive Timer Parameters.
Round Number

A
ve

ra
ge

 D
el

ay
 (

in
 u

ni
ts

 o
f R

T
T

)

0 20 40 60 80 100

0
1

2
3

4
5

6

..

..

....

..

......

.

...

......

....
...
.....
..

...

....

...

....

.....

.

...

...

...

.

..

.....

...

.....

..

...
...
.......

...

.......
..
.......
.

..

.......

.

...

..

.....

...
....
..
.

....

....
..

.

....

.....
..
......
.
.

....
..
...
.

..

...

.....

....

...

...

.....

..

.

..

...

...

..

..

...

...

....

.....

....

.

.....

...
..

.....

...

..

...

......

.
..
.....
...

.

......

...

....

...

...

.

......

...

...

...

....

...

......

.

...

......

.
....
......
...
..
...
..

.....

...

..

.....

...

..

..

...

...

.

.

...
....
...

.....

...

..
...
....
...

......

....
.....
....
.

..

....

...

.

...

....

...

...

..

....

.

....

.....

.

....

...

...

....

...

..

.

...

.....

..

...

....

...

...

.....

..

...

..

....

.

...

...

...

.

...

....

...

..

.......

.
.....
.....
..
....
....

....

...

..

.

....

...

...

......

...

.

....

.....

.

....

...

..

.

.......

..

.

....

.....

.

...

..

....

.

...
..
..
...

.

.....

..

..

.....
....
.

......

..

.

.

...

...

....

.....

..

...

...

.....

..
...
....
...

..

.....

..

.

...

.....

..

...

...

...

.

.

......

...

..

...

....

.

...

....

...
..
.....
..
.

......

...

.

..

......

..

..

......

..
..
....
....

..

....

...

.

..

...

.....
......
...
.

..

....

...

.

..

....

....

.

.....

..

..

...
.....
..

.....

..

..

.

..

.....

...

...

.....

..

..

....

...

.

.......

..

.

....
....
..

Figure 14: The non-adaptive algorithm.

Adaptive Timer Parameters: AveDups=1, AveDelay=1
Round Number

N
um

be
r

of
 R

ep
ai

rs

0 20 40 60 80 100

0
5

10
15

20
25

.

.

...

..

.

..

...

.

.

..

..

.

.

..

.

.

...

.

.

..

.

.

.

.

..

..

.

.

...

..

.
.
.

..

...

..

..

.

..

..

..

..

..

..

..

.
..
.
.

.

..

..

..

..

..

.

....

...

.

.

...

.

..

..

.

.

...

..

..

.

..

.

...

..

..

..

.....

..

.

..

..

...

..

...

.

..

..

.

..

.

.

..

.

..

...

..

...

.

....

..

.

.

......

.

.

...

..

...

.

.

.....

.

.

.

..

.....

..

...

...

..

...

.

.

.

.

.

...

...

.

...

....

.

.

.

.

..

...

..

..

.....

...

..

.

....

...

.

.

..

...

..

...

...

..

..

.

..

....

.

...

..

...

..

.

....

.....
..
.
.
.

....

...

...

..

..

...

..

.

.

....

..

..

.

.

...

.....

.

...

....

..

.

....

...

.

.

.

....
..
...
.

.....
.......
...
.
..
.
.

.....

..

...

.....

...

.

.

....

...

..

.

......

.

..

.

.

....

...

.

.

.

....

...

..

...

...

....
....
.
..
..
.

...

......

.

..

.....

..

.

.......

.

..

...

......

.
.....
..
.
..

......

.

...

.

...

..

..

.

.

....

..

...

.

....

.....

.
....
.
...
.
.

.......

..

.

...

....

.

.

.

...

...

.

...

......

...

.

........

......
..
...
.

....

..

...

.

......

.

..

.

....

...

.

..

......

..

..

..

...

.....
.....
..
..
.

....

...

.

.

.

.

........

.

....

...

.

..

...

....

...
....
..
.
.
..

......

..

..

.....

....

.

....

...

...

......

...

.

....

.

...

.

.

.....

...

..

...

......

.

.......

.......
....
..
..
......
..

......
..
.
.

...

.....

..

..

......

..

....

.....

.

.....

...

..

....

..

...

.

...

...

....

....

.....

.

....

.....

.

...

...

....

.....

....

.

.....

.

....
.....
.
...
.

Adaptive Timer Parameters: AveDups=1, AveDelay=1
Round Number

A
ve

ra
ge

 D
el

ay
 (

in
 u

ni
ts

 o
f R

T
T

)

0 20 40 60 80 100

0
1

2
3

4
5

6

....

.

....

.

.....

...

..
....
....
..

.......
...

.

......

...
....
.....
.

......

...

.

....

.....

.
...
.....
..
......
....

...

...

...

.

.

.......

..

.....

....

.

...
...
...
.

.....

....

.

....

....

.

.

..

.....

...

....

...

...

...

....

..

.

.

..

......

.

..

....

...

.

....

....

..

.

......

..

.

..

.

.....

..

....

..

...

.
...
....
...

....

.

...

..

.

....

..

...

..

....

..

..

.

...

...

...

..

.

....

...

....

.....

.

...

....

..

.

.

....

.....

.

.....

..

..

....
...
..
.
......
....

.....

..

...

...

...

...

.

.

......

...

.

.....

...

.

..

....

...

.

...

....

..

.

.

....

..

...

....

....

..

...

..

..

..

.

.....

...

..

...

...

...

.

.

...

..

...

.

.

...

.....

.

..

..

.....

.

.....

..

...

.

...

..

...

.

....
..
..
..

...

...

...

.

.
...
....
..

..

.

....

..

.

...

....

..

.

.

..

.....

.

.

.
...
....
..

.

.

......

..

...

...

....

...

......

.

...

..

....

.

.....

.

...

.

.

...

..

...

.

......

..
..

.

..

...

...

.

.....

....

.

..

....

.

..

.

....

..
...
.

..

...

....

.

.

..

....

...

...

....

..

.

..

..

....

.

.

.

.....

...

.

...

...

....

...

...

.

..

.

.

...

.

...

.

.

..

..

.

..

..

.

..

.....

.

.

.

..

...

.

..

.

.

..

..

....

.

.

...

....

..

.

....

...

..

.

.

...

....

..

..

...

...

.

.

.

..

...

...

.

.

...

......

.

.

......

..

....

.

...

.

.

...

..

..

..

.

..

.....

...

.

...

....

.

.

..

....

..

..

..
...
.....

.

.

..

...

..

.

....

..

..

..

.

....

..

...

.

..

...

....

Figure 15: The adaptive algorithm.

After a request timer expires or is first

reset:

update ave req delay

After sending a request:

C1� = 0:1
Before each new request timer is set:

update ave dup req

if closest requestor on past requests:

C2� = 0:1
else if (ave dup req � AveDups)):

C1+ = 0:1
C2+ = 0:5

else if (ave dup req < AveDups��):
if (ave req delay > AveDelay):

C2� = 0:1
if (ave dup req < 1/4):

C1� = 0:05
else C1+ = 0:05

Figure 12: Dynamic adjustment algorithm for request
timer parameters. In our simulations � = 0:1

primary mechanism for controlling the number of dupli-
cates. The adjustments of �0:1 and +0:5 for C2 are su�-
ciently small to minimize oscillations in the setting of the
timer parameters. Sample trajectories of the loss recovery
algorithms con�rm that the variations from the random
component of the timer algorithms dominate the behavior
of the algorithms, minimizing the e�ect of oscillations.
In our simulations we use a multiplicative factor of 3

rather than 2 for the request timer backo� described in
Section 3.2. With a multiplicative factor of 2, and with an
adaptive algorithm with small minimum values for C1, a
single node that experiences a packet loss could have its
backed-o� request timer expire before receiving the repair

Initial values:

C1 = 2
D1 = log10G

C2 = 2
D2 = log10G

Fixed parameters:

MinC1 = 0:5; MaxC1 = 2
MinC2 = 1; MaxC2 = G

MinD1 = 0:5; MaxD1 = log10G

MinD2 = 1; MaxD2 = G

AveDups = 1
AveDelay = 1

Figure 13: Parameters for adaptive algorithms

packet, resulting in an unnecessary duplicate request.
We have not attempted to devise an optimal adaptive

algorithm for reducing some function of both delay and
of the number of duplicates; such an optimal algorithm
could involve rather complex decisions about whether to
adjust mainly C1 or C2, possibly depending on such fac-
tors as that member's relative distance to the source of the
lost packet. For a sparse session in a tree topology, in-
creasing C2 reduces the number of duplicate requests; our
adaptive algorithm relies largely on increases of C2 to re-
duce duplicates. Our adaptive algorithm also decreases C2

for members who have sent requests, if duplicate requests
have come from members further from the source of the
requested packet. (In our simulations \further from the
source" is de�ned as \at a reported distance greater than
1.5 times the distance of the current member".) Our adap-
tive algorithm only decreases C1 for members who have
sent requests, or when the average number of duplicates is
already small.
Figures 14 and 15 show simulations comparing adaptive

15

and non-adaptive algorithms. The simulation set in Fig-
ure 14 uses �xed values for the timer parameters, and the
one in Figure 15 uses the adaptive algorithm. From the
simulation set in Figure 6, we chose a network topology,
session membership, and drop scenario that resulted in a
large number of duplicate requests with the non-adaptive
algorithm. The network topology is a bounded-degree tree
of 1000 nodes with degree 4 for interior nodes, and the
multicast session consists of 50 members.
Each of the two �gures shows ten runs of the simula-

tion, with 100 loss recovery rounds in each run. For each
round of a simulation, the same topology and loss scenario
is used, but a new seed is used for the pseudo-random num-
ber generator to control the timer choices for the requests
and repairs. In each round a packet from the source is
dropped on the congested link, a second packet from the
source is not dropped, and the loss recovery algorithms are
run until all members have received the dropped packet.
The x-axis of each graph shows the round number. For
each �gure, the top graph shows the number of requests in
that round, and the bottom graph shows the loss recovery
delay. Each round of each simulation is marked with a jit-
tered dot, and a solid line shows the median from the ten
simulations. The dotted lines show the upper and lower
quartiles.
For the simulations in Figure 14 with �xed timer pa-

rameters, one round di�ers from another only in that each
round uses a di�erent set of random numbers for choosing
the timers.
For the simulations with the adaptive algorithm in Fig-

ure 15, after each round of the simulation each session
member uses the adaptive algorithms to adjust the timer
parameters, based on the results from previous rounds.
Figure 15 shows that for this scenario, the adaptive algo-
rithms quickly reduce the average number of repairs, along
with a small reduction in delay.

0

0.5

1

1.5

2

C1

0

0.5

1

1.5

2

C2

0

50

100

150

200

Round

0

0.5

1

1.5

2

C1

A

BB
B

Figure 16: Request timer parameters for three executions
of the simulation.

Figures 16 and 17 show the request and repair timer pa-
rameters for three 200-round executions of the simulations
in Figure 15. For this scenario, the loss neighborhood con-

0

0.5

1

1.5

2

D1

0

20

40

D2

0

50

100

150

200

Round

0

0.5

1

1.5

2

D1

A

B
B

Figure 17: Repair timer parameters for three executions of
the simulation.

sists of only two members, and the number of duplicate
requests can be at most one. For each execution of the
simulation, Figure 16 shows the request timer parameters
C1 and C2 for both session members in the loss neighbor-
hood. For each of the three simulations, a line marked \A"
shows the request parameters for the member closer to the
point of failure, and a line marked \B" shows the request
parameters for the member further away. Large dots mark
rounds 50, 100, and 150 of each simulation. For both nodes
the parameter C2 is slowly decreased to its minimum value,
while C1 is lower for the node closer to the point of failure.
Figure 17 shows the repair timer parameters D1 and D2

for two of the session members not in the loss neighbor-
hood, the one closest to the point of failure (represented by
the three lines marked \A"), and the other further away
(represented by the three lines marked \B"). After the
100th round, for the member further from the point of fail-
ure the parameter D2 has almost reached its maximum
value of 50, and D2 remains close to 50 for the remain-
ing rounds. The initial rapid increase of D2 results in a
decrease in the number of duplicate repairs. At the same
time, D2 remains small for the member closest to the point
of failure.
To explore the adaptive algorithms in a range of sce-

narios, Figure 18 shows the results of the adaptive algo-
rithm on the same set of scenarios as that in Figure 6. For
each scenario (i.e., network topology, session membership,
source member, and congested link) in Figure 18, the adap-
tive algorithm is run repeatedly for 40 loss recovery rounds,
and Figure 18 shows the results from the 40th loss recov-
ery round. Comparing Figures 6 and 18 shows that the
adaptive algorithm is e�ective in controlling the number of
duplicates over a range of scenarios.
Simulations in [FJLMZ95] show that the adaptive al-

gorithm works well in a wide range of conditions. These
include scenarios where only one session member experi-
ences the packet loss; where the congested link is chosen
adjacent to the source of the packet to be dropped; and
for a range of underlying topologies, including 5000-node

16

Session Size

N
um

be
r

of
 R

eq
ue

st
s

20 40 60 80 100

0
5

10
15

20

........

............
...........
.

......
..............

......
........
...........
.

.............

.......
.............
.......

.......
.........

........

Session Size

N
um

be
r

of
 R

ep
ai

rs

20 40 60 80 100

0
5

10
15

20

.............

....

..
.

......

...........

..

.

........

....

......

.

.

.............
..
...
.
.

......
....
.....
...
.
.

.........
......
.
...
.

..........
.....
.
..
..

..............

...

.
..

...........

....
...
.

.

............

....

.

..

.

Session Size

D
el

ay
 (

in
 u

ni
ts

 o
f R

T
T

)

20 40 60 80 100

0
1

2
3

4
5

6

..
..
.
.......
...
...
.

.

.

.....
....
.....
..
.

..

..
..
....
...
....
.....

.

....

..

...
....
...
.
.

.

...

..
....
.....
....
.

.

..

..
....
..
......
...
.

..

..

...
....
.....
..
..

.......
.....
..
...
..
.

...
...
......
..
..
..
.

.

.....

....

...

.....
..
.

Figure 18: Adaptive algorithm on round 40, for a bounded-
degree tree of 1000 nodes with degree 4 and a randomly
picked congested link.

trees, trees with interior nodes of degree 10; and connected
graphs that are more dense that trees, with 1000 nodes and
1500 edges.
In actual multicast sessions, successive packet losses are

not necessarily from the same source or on the same net-
work link. Simulations in [FJLMZ95] show that in this
case, the adaptive timer algorithms tune themselves to give
good average performance for the range of packet drops en-
countered. Simulations in [FJLMZ95] show that, by choos-
ing di�erent values for AveDelay and AveDups, tradeo�s
can be made between the relative importance of low delay
and a low number of duplicates.
In the simulations in this section, there is only one con-

gested link, and each packet that is dropped is dropped
on only that one link. More realistic simulations would
include scenarios with multiple locations for drops of a sin-
gle packet, and would use an extended SRM that incor-
porates local recovery mechanisms into the loss recovery
algorithms.
Similarly, in the simulations in this section, none of the

requests or repairs are themselves dropped. In more realis-
tic scenarios where not only data messages but requests and
repairs can be dropped at congested links as well, members
have to rely on retransmit timer algorithms to retransmit
requests and repairs as needed. Obviously, this will in-
crease not only the delay, but also the number of duplicate
requests and repairs in di�erent parts of the network. The
use of local recovery, described in the following section,

would help to reduce the unnecessary use of bandwidth in
the loss recovery algorithms.

7.2 Local recovery

With SRM's global loss recovery algorithm described above,
even if a packet is dropped on a link to a single member,
both the request and the repair are multicast to the entire
group. In cases where the neighborhood a�ected by the
loss is small, the bandwidth costs of the loss recovery algo-
rithm can be reduced if requests and repairs are multicast
to a limited area. In this section we sugest that local re-
covery can be quite e�ective in reducing the unnecessary
use of bandwidth.
Scenarios that could bene�t from local recovery include

sessions with persistent losses to a small neighborhood of
members and isolated late arrivals to a multicast session
asking for back history. Studies of packet loss patterns
in the current Mbone [YKT96] suggest that packet loss in
multicast tra�c is most likely to occur not in the \back-
bone" but in the \edges" of the multicast network. In
addition, the larger the multicast group, the more likely it
is that a packet will be dropped somewhere along the mul-
ticast tree, even in the absence of a particular persistent
point of congestion. In this case, local recovery is needed to
ensure that the fraction of bandwidth used for request and
repair messages scales well as the multicast group grows.
We are not at this stage proposing a complete set of

algorithms for implementing local recovery. We explore in
this section a set of mechanisms that can be used to limit
the scope of a request and of an answering repair. The
question of how a member decides the scope to use for a
particular request is an area for future research.
Local recovery assumes that the member sending the

request has some information about the neighborhood of
members sharing recent losses. We de�ne a loss neigh-

borhood as a set of members who are all experiencing the
same set of losses. End nodes should not know about net-
work topology, but end nodes can learn about \loss neigh-
borhoods" from information in session messages, without
learning about the network topology.
For each member, we call a loss a local loss if the number

of members experiencing the loss is much smaller than the
total number of members in the session. To help identify
loss neighborhoods, session messages could report a mem-
ber's loss rate, that is, the fraction of data for which a
request timer was set. In addition, session messages could
report a \loss �ngerprint", i.e., the names of the last few
local losses.
A member should send a request with local scope when

recent losses have been con�ned to a single loss neighbor-
hood, and when this local request seems likely to reach
some member capable of answering it. If no repair is re-
ceived before a backed-o� request timer expires, then sub-
sequent requests can be sent with a wider but still con�ned
scopes, until ultimately it is sent with global scope.

17

7.2.1 Administrative scoping

One simple and now widely available mechanism for local
recovery is the use of administrative scope in IP multi-
cast. If a member believes that both the loss neighbor-
hood and a potential source of repairs are contained in
the local administratively-scoped neighborhood, then both
the request and the repair can be sent with administra-
tive scoping, so that both messages are restricted to that
neighborhood.

7.2.2 Separate multicast groups

Another potential mechanism under investigation is the
use of separate multicast groups for local recovery. In this
scheme, the initial requestor creates a separate multicast
group for local recovery and invites other nearby members
to join that multicast group. The multicast group must
include some member capable of sending repairs. This
mechanism is appropriate when there is a stable loss neigh-
borhood that results from a particular lossy link, or when
an isolated member joins a group late and asks for past
history.
[KKT96] explores a somewhat-di�erent use of multiple

multicast groups for recovery, aimed primarily at reduc-
ing the costs of processing unwanted packets at receivers.
Given G+1 multicast groups, one group is used for the orig-
inal transmission of data, and the other G multicast groups
are used for retransmissions. All members of the session
share a single function for mapping unique data names to
multicast groups. For example, for the single-sender appli-
cations explored in the paper, retransmissions for data with
name i would be sent to the multicast group Gmod i, and
members missing a particular packet would join the appro-
priate multicast group. The possibilities for future work
in [KKT96] include studying better mechanisms to reduce
network bandwidth as well as reducing receiver processing
overhead.

7.2.3 TTL-based scoping

A third possible mechanism for local recovery is for mem-
bers to use time-to-live- or TTL-based scope to limit the
reach of request and repair messages. In the current Mbone,
each link (more precisely, each interface or tunnel) is as-
signed a threshold, with a default threshold of one. The
threshold is the minimum TTL required for an IP multi-
cast packet to be forwarded on that link, and is used to
control the scope of multicast packets. Every multicast
router decrements the TTL of a forwarded packet by one.
In order to limit the scope of a request or repair message,
the sender simply sets each packet's TTL �eld to an ap-
propriate value. By including the initial TTL in a separate
packet �eld, members receiving the request (or reply) mes-
sage explicitly learn the original TTL as well as the hop
count for the path from the source.
The simplest version of TTL-based local recovery is a

one-step repair algorithm. In this approach, a request sent
with TTL h might be answered with a repair sent with

TTL h+ k, where k is the number of hops to the original
requestor. In this way, the repair would be guaranteed to
reach all of the members reached by the original request (if
we optimistically assume that multicast routes and thresh-
olds are symmetric). However, simulations suggest that
this algorithm is not very e�ective | the repair packets
generally have too large a TTL and thus cause an other-
wise avoidable waste of bandwidth.
We show instead that a two-step repair message is ef-

fective in limiting the unnecessary use of bandwidth. In
the �rst step of the repair, a local repair is sent with the
same TTL used in the request. This TTL should be su�-
ciently large to reach the original requestor, given su�cient
symmetry, but not necessarily su�ciently large to reach all
of the members reached by the original request. The lo-
cal repair includes the name of the member whose request
triggered the repair. In the second step of the repair, the
requestor, upon receiving the �rst local repair naming it-
self as the original requestor, resends the repair using the
same TTL as in the original request. In this way the re-
pair is received by all of the members who saw the original
request.
We use simulations to explore the optimal behavior that

could be achieved from two-step local recovery. First we
examine networks were all links have a link threshold of
one, and next we examine networks with a range of values
for the link thresholds.
To explore the optimal possible performance, we assume

that the loss neighborhood is stable, and that members
have some method for estimating h1 and h2, where h1 is
the minimum TTL needed to reach all members in the loss
neighborhood, and h2 is the minimum TTL needed to reach
some member not in the loss neighborhood. Further, we
assume that for each loss recovery event, the request/repair
algorithms exhibit their optimal behavior. That is, we as-
sume that there is a single request and a single repair, and
that both come from the members closest to the point of
failure. We restrict attention to scenarios where the loss
neighborhood contains at most 1/10-th of the session mem-
bers.
Figure 19 shows the results of an optimal execution of

the two-step local recovery algorithms in a large bounded-
degree network of degree four, with link thresholds of one.
The x-axis in each graph shows the session size. For each
session size, twenty simulations are run, each with a di�er-
ent random tree (if applicable), session membership, and
source and congested link for the dropped packet. The re-
sults of each simulation are represented by a jittered dot.
The three lines indicate the �rst, second, and third quar-
tiles.
In the top graph of Figure 19, the y-axis shows the frac-

tion of session members reached by the repair. In the bot-
tom graph of Figure 19, the y-axis shows the number of
session members in the repair neighborhood, that is, the
number of session members reached by the repair, as a mul-
tiple of the number of members in the loss neighborhood.
Additional simulations not reported here show that local
recovery with two-step repairs can work well in networks

18

Session Size

F
ra

ct
io

n
of

 N
od

es
 R

ea
ch

ed

0 100 200 300 400 500

0.
0

0.
4

0.
8

..

..

..

..

.

.

.

...

..

..

..

.

.

.

..

.

.

.

..

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

...

.

.

.

..

...

.

.

.

.

.

.

...

.

.

.

..

..

.

.

..

.

.

.

.

.

.

.

...

..

...

...

.

..

..

.

.

.

..

.

.

.

..

.

.

.

....

.

..

.

.

.

.

.....

.

..

..
.
.

...

.

.

.

..

..

.

..

.

.

.

...

.

.

..

.

.

..

....

..

..

..

.

..

.

.

.

.

.

.

.

.

.

.

...

.

.

Session Size

R
ep

ai
r/

Lo
ss

 N
ei

gh
bo

rh
oo

ds

0 100 200 300 400 500

0
20

40
60

80

....

....
....
...
..

.....

....

..

......

.

.

.

.......

...

..

.

.

.....

...

.

.

.

......

...

.

.

.

.

.....

.

.

.

.......

..

..

.

.

.

......

..

.

..

.

.

.

........

..

.

.......

...

..

.

........

.

.......

..

.

..

....

....
....
...
..

.....

....

..

......

.

.

.

......

Figure 19: Local recovery with two-step repairs in
bounded-degree trees with 1000 nodes, thresholds of one.

with a range of topologies and link thresholds. [FJLMZ95]
shows that, in contrast to two-step repairs, one-step repairs
are fairly ine�cient in their use of bandwidth, even given
an optimal setting of the the TTL of the original request.

8 Application-speci�c and general

aspects of reliable multicast

Section 2 discussed some of the underlying assumptions in
the design of reliable multicast for wb. In this section we
explore some of the ways that the SRM framework could be
used and modi�ed to meet the needs of other applications
for reliable multicast.
A fundamental concept in SRM is a multicast group, i.e.

a set of hosts that (1) can be reached by a group address
without being identi�ed individually �rst, and (2) share
the same application data and thus can help each other
with loss recovery. This group concept is also appropri-
ate for applications such as routing protocol updates and
DNS updates, as well as for the group distribution of stock
quotes, Usenet news, or WWW-based mass media.
Let's take the routing protocol Border Gateway Proto-

col (BGP) as an example. The Internet is viewed as a
set of arbitrarily connected autonomous systems (AS) that
are connected through border gateways that speak BGP to
exchange routing information. One AS may have multiple
BGP speakers, and all BGP speakers representing the same
AS must give a consistent image of the AS to the outside,
i.e., they must maintain consistent routing information. In
the current implementation, this consistency is achieved by
each BGP router opening a TCP connection to every other
BGP router to deliver routing updates reliably. There are
several problems with this approach. First, achieving mul-
ticast delivery by multiple one-to-one connections bears a
high cost. Second, for an AS with N BGP routers, one has

to manually con�gure the (N � 1) TCP connections for
each of the N routers, and recon�gure whenever a change
occurs. Both of these problems could be solved by applying
SRM, perhaps with modi�cations to the data persistence
model.
The SRM framework could easily be adapted for the dis-

tribution of such delay-insensitive material as Usenet news.
Di�erent applications have di�erent tradeo�s between min-
imizing delay and minimizing the number of duplicate re-
quests or repairs. For an interactive application such as
wb, close attention must be paid to minimizing delay. For
reliably distributing Usenet news, on the other hand, min-
imizing bandwidth would be more important than mini-
mizing delay. Again some tuning to our request and repair
timer algorithms should make the SRM framework readily
applicable to news distribution.
As a third example, we consider applying SRM to data

caching and replication for web pages. Like wb, all objects
in the Web have a globally unique identi�er. With HTTP,
all requests for a speci�c object are handled by the origi-
nal source, even though in many cases, especially for \hot"
objects, a copy may be found within the neighborhood of a
requester. A global network of Web caches is currently be-
ing deployed in the Internet, using unicast communications
between servers, web caches, and clients. One possibility
would be to organize these web caches into overlapping
multicast groups of neighboring web caches, to use mul-
ticast to send a request for an object from a cache to the
other caches in the multicast group, and to use the random-
ized timer algorithms in SRM for answering that request
from the multicast group. Clients and servers could join lo-
cal multicast groups of web caches, or could communicate
with their nearest cache using unicast communications.
We believe that the SRM framework could be useful to

a wide range of applications based on multicast groups.
Even for applications that may require partial or total data
ordering, the SRM framework could be used to reliably de-
liver the data to all group members, and a partial or total
ordering protocol could be built on top that is speci�cally
tailored to the ordering needs of that application. Order-
ing is further complicated by disagreements about how the
ordering itself should be de�ned: [CS93] has argued (and
[B94] has rebutted) that for applications with ordering re-
quirements, preserving the ordering of messages as they
appear in the network can be an expensive and inadequate
substitute for preserving the \semantic ordering" of the
messages appropriate for the application.

9 Related work on reliable multi-

cast

The literature is rich with architectures for reliable mul-
ticast [MTC]. Due to space limitations, we will not de-
scribe the details of each solution. Instead, we focus on
the di�erent goals and de�nitions of reliability in the vari-
ous architectures, and the implications of these di�erences
for the scalability, robustness, handling of dynamic group

19

membership, and overhead of the algorithms.
The Xpress Transport Protocol (XTP) [XTP92, XTP95]

is designed for either unicast or one-to-manymulticast com-
munication. For one-to-many multicast, the transmitting
application is allowed to de�ne who may join the multicast
group. XTP reports changes in group membership option-
ally to the application, presupposing that the application
can best evaluate the side-e�ects of a member leaving the
group. Reliable communication is based on negative ac-
knowledgments. The sender may also initiate a synchro-
nizing handshake, to determine the status of the receivers.
In this case, receivers each use a \slotting" technique to
wait a random delay before sending their control packet,
to reduce a control packet implosion. The combined slot-
ting and damping techniques proposed in [XTP92] to re-
duce NACK suppression have been described earlier in the
paper. In XTP receivers or routers can impose a maximum
data rate and maximum burst size on the sender.
The Reliable Broadcast Protocol (RBP) of Chang and

Maxemchuk [CM84] is one of the pioneer works in many-
to-many reliable multicast protocols. RBP is a centralized
scheme that provides totally ordered delivery of data to all
group members. All the members are ordered in a logical
ring, with one designated the master \token site". The
token site moves to the next ring position after each data
transmission. Sources multicast new data to the group, and
the token site is responsible for acknowledging (by multi-
cast) the new data with a timestamp, as well as retrans-
mitting (through unicast) all missing packets upon requests
from individual receivers. The order of data reception at
all the sites is determined by the timestamp in the ACK.
Each ACK also serves to pass the token to the next mem-
ber in the ring. By shifting the token site among all the
members, with a requirement that a site can become the
token site only if it has received all the acknowledged data,
it is assured that after shifting the token site through all
the N members in the group, everyone will have received
all the data that is at least N smaller than the current
timestamp value.
Because the token site is responsible for all the acknowl-

edgments and retransmissions, it becomes the bottleneck
point whenever losses occur. The scheme also requires ref-
ormation of the ring whenever a membership change oc-
curs. Therefore it does not scale well with the size of the
group.
RMP (Reliable Multicast Protocol) [WKM95], based on

the Chang and Maxemchuk algorithm, provides an atomic,
totally ordered, reliable multicast service that runs on top
of IP Multicasting. RMP provides added QoS parameters
in each data transfer and better handling of membership
changes. The most recent version of RMP uses a modi�ed
SRM request/repair policy along with a sliding window

ow control scheme based on TCP [MWC95].
The reliable multicast protocol for ordered delivery de-

scribed in [KTHB89] is similar to, but simpler than, the
Chang and Maxemchuk protocol. Basically, all data is �rst
unicast to a master site, called a sequencer, which then
multicasts the data to the group. Therefore the sequencer

provides a global ordering of all the data in time; it is also
responsible for retransmitting, by unicast, all the missing
data upon requests. The sequencer site does not move un-
less it fails, in which case a new sequencer is elected. To
avoid keeping all the data forever, the sequencer keeps track
of the receiving state of all the members to determine the
highest sequence number that has been correctly received
by all the members.
MTP (Multicasting Transport Protocol) [AFM92] is again

a centralized scheme for totally ordered multicast delivery.
A master site is responsible for granting membership and
tokens for data transmission; each host must obtain a to-
ken from the master �rst before multicasting data to the
group, thus the total order of data packets is maintained.
A window size de�nes the number of packets that can be
multicast into the group in a single heartbeat and a re-
tention size de�nes the period (in heartbeats) to maintain
all client data for retransmission. NACKs are unicast to
the data source which then multicasts the retransmission
to whole group.
Compared to the above cited works, the Trans and Total

protocols described in [MMA90] are closer in spirit to our
work. These protocols assume that all the members in a
multicast group are attached to one broadcast LAN. Each
host keeps an acknowledgment list which contains identi-
�ers of both positive and negative ACKs. Whenever a host
sends a data packet, it attaches its acknowledgment list to
the packet, as a way to synchronize the state with all other
members in the group. Because the single LAN limits data
transmissions from all hosts to one packet at a time, partial
and total ordering of data delivery can be readily derived
from data and acknowledgment sequences.
Several proposals for reliable multicast use secondary

servers (also calledDesignated Routers orGroup Controllers
in di�erent proposals), to handle retransmissions within
a subgroup of the multicast group. One such protocol,
Log-based Receiver-reliable Multicast (LBRM) [HSC95],
was designed to support Distributed Interactive Simulation
(DIS). The receiver-based reliability is provided by primary
and secondary logging servers. Receivers request retrans-
missions from the secondary logging servers, which requests
retransmissions from the primary logging server. Both the
source and the secondary logging servers use either deter-
ministic or probabilistic requests to select between unicast
and multicast retransmissions.
LBRM uses a variable heartbeat scheme sends heartbeat

messages (e.g., session messages) more frequently immedi-
ately after a data transmission. In an environment when
the basic transmission rate is low, this variable heartbeat
enables receivers to detect losses sooner, with no penalty
in terms of the total number of heartbeat messages trans-
mitted. While the variable heartbeat scheme would not be
appropriate for an application such as wb, where the orig-
inal congestion could itself result from many senders send-
ing data at the same time, the variable heartbeat scheme
could be quite useful for an application with a natural limit
on the worst-case number of concurrent senders, and would
be easily implementable in SRM.

20

Like LBRM and SRM, the Reliable Multicast Transport
Protocol (RMTP) [LP96] also includes among its goals
scalability and receiver-based reliability. RMTP accom-
plishes this by using Designated Routers (DRs) in each
region of the multicast group, where the DRs receive in-
coming acknowledgements and perform retransmissions as
needed. RMTP uses windowed
ow control tuned to the
requirements of the worst-case receiver. Problems of dy-
namically choosing DRs for a given multicast tree and of
investigating congestion control tradeo�s for a heteroge-
neous environment with receivers of varying speeds are left
for continued research.
A Local Group Concept is proposed in [H96], where the

multicast group is divided into Local Groups, each repre-
sented by a Group Controller that handles retransmissions
for members in the Local Group. The Group Controller
is not a router or a separate server, but simply one of the
members of the multicast group. [H96] aims at the dynamic
generation of Local Groups and of Group Controllers, but
does not explore in detail the algorithms for �nding the
nearby Local Group, responding to the failure of a local
Group Controller, or choosing a new Group Controller.
Perhaps the most well-known work on reliable multicast

is the ISIS distributed programming system developed at
Cornell University [BSS91, ISIS]. ISIS provides causal or-
dering and, if desired, total ordering of messages on top of

a reliable multicast delivery protocol. Therefore the ISIS
work is to some extent orthogonal to the work described
in this paper, and further con�rms our notion that a par-
tial or total ordering, when desired, can always be added
on top of a reliable multicast delivery system. The reli-
able multicast delivery in existing ISIS implementations is
achieved by multiple unicast connections using a windowed
acknowledgment protocol similar to TCP [B93]. Horus, the
successor to ISIS, can optionally run on top of IP multicast.
There is also a growing literature on the analysis of re-

liable multicast schemes. As one example, [BMT94] con-
siders the performance of one-to-many reliable multicast
with a block-based ACK scheme. The paper investigates
the regime where transfer sizes are large and receivers have
limited bu�ering, and shows that in this case throughput is
signi�cantly higher if the transport layer can deliver pack-
ets to the application out-of-order. The paper also consid-
ers the number of retransmissions needed to deliver packets
to all members of the multicast group, in a scenario where
all retransmissions come from the original sender. In this
case, a topology that minimizes the bandwidth used (i.e., a
chain) is not the same as a topology that minimizes the to-
tal number of multicast retransmissions until all receivers
have received all of the packets (i.e., a star).
[PSA96] compares several retransmission schemes for mul-

ticast protocols for real-time media. The retransmission
schemes are intended for real-time media with playback
times, so that packets received after the playback time are
dropped. [PSA96] assumes that receivers unicast NACKs
to the sender, and retransmissions are done by the sender.
Note that these assumptions di�er from those of SRM,
which is intended for applications without �xed deadlines

by which packets have to be received, and which allows re-
transmissions from members other than the original source.

10 Future work

10.1 Future work on scalable session mes-

sages

The SRM framework outlined in this paper assumes that
all members of the multicast group will send session mes-
sages and estimate the distance to each of the other group
members. For larger groups, we are investigating a hierar-
chical approach for scalable session messages [S96], where
members in a local area dynamically select one of the local
members to be the representative, as far as session mes-
sages are concerned. The representatives would each send
global session messages, and maintain an estimate of their
distance in seconds from each of the other representatives.
All other members would send local session messages with
limited scope su�cient to reach their representative.

10.2 Future work on local recovery

Section 7.2 has shown that local recovery based on local-
recovery neighborhoods can be e�ective in limiting the
unnecessary use of bandwidth in loss recovery events, if
members can estimate the scope to use in sending local
requests. While [FJLMZ95] discusses some of the issues
in implementing TTL-based local recovery, there are many
open questions about which mechanisms should be used to
de�ne local-recovery neighborhoods, how individual mem-
bers should determine whether to send requests with local
or global scope, etc. For local recovery based on separate
multicast groups, there is ongoing research on algorithms
for initiating, joining, and leaving such multicast groups,
and for soliciting additional members to join such groups.
In many topologies, the e�ectiveness of local recovery

could be improved by adding members to the multicast
group in strategic locations. For example, consider the
known stable topologies discussed in [HSC95], where losses
are expected to occur mainly on the tail circuits, rather
than in the backbone or in the LANs, and the design pri-
ority is to keep unnecessary tra�c o� of the tail circuits.
The addition of a session member (i.e., cache) on a node
near the local end of the tail circuit, coupled with a local-
recovery neighborhood de�ned to include all members on
that end of the tail circuit, would allow local recovery to
continue for losses on the local area without adding any un-
necessary tra�c to the tail circuit itself. For losses on the
tail circuit itself, a larger local recovery area that spanned
the tail circuit just into the backbone would isolate indi-
vidual local recovery to independent tail circuits.

10.3 Future work on congestion control

SRM's basic framework for congestion control assumes that
the members of the multicast session have an estimate of
the available bandwidth for the session, and constrain the

21

data transmitted to be within this estimated bandwidth.
This framework raises several somewhat separate issues,
such as how members determine this available bandwidth;
how to detect congestion or avoid potential congestion; and
given available bandwidth, which piece of data a member
should send �rst.
Multicast congestion control is a relatively new area for

research. For unicast tra�c, there is a single path from
source to receiver, with a feedback loop provided by re-
turning packets sent by the receiver. In contrast, in a mul-
ticast group there could be several sources, and the various
communication paths from an active source to the mem-
bers of the multicast group can have a range of bandwidth,
propagation delay, and competing congestion. In this case,
how does one de�ne and detect congestion?
With multicast tra�c, there are application-speci�c pol-

icy decisions about whether or not to tune the congestion
control procedures to the needs of the worst-case receiver;
these questions do not arise with unicast transmissions.
However, tuning the sending rate to the worst-case receiver
is only viable for a multicast group with a controlled mem-
bership; otherwise, the multicast group would be vulner-
able to denial-of-service attacks by members joining the
group from an extremely-low-bandwidth path. Given an
uncontrolled membership, and a group where the band-
width along di�erent paths in the multicast group di�ers
substantially, the sender could tune the sending rate to the
needs of the majority of receivers, requiring that receivers
on more-congested paths unsubscribe from the multicast
group. In this section we assume a scalable application
such as wb that is not necessarily tuned to the needs of the
worst-case receiver.
The most obvious possibility for multicast congestion

control would be for sources to respond to congestion by
slowing down their transmission rate. It is possible for
congestion to be detected collectively by the members in a
session, for example through observations of packet losses
or of the data reception rate. As in the Real-time Trans-
port Protocol RTP [SCFJ94], session messages can be used
to exchange information about observed performance. The
sender could tune the sending rate to the needs of the re-
ceiver on the most congested path.
An approach under investigation for the video tool vic

[MJ95] is to divide the total data transmission into several
substreams, with each being sent to a separate multicast
group [MJV96]. Members that detect congestion unsub-
scribe from higher-bandwidth groups. When this approach
is used for reliable multicast, then reliable delivery should
be provided separately within each group. This implies
that unsubscribing receivers would either not receive all of
the data, or would receive some of the data later, at a slower
rate than that used for the rest of the multicast group. In
either case, we can exploit this tradeo� through the use of
progressively re�nable or layered data representations.
While considerable research has been done on layering

techniques for video, layering techniques are application-
speci�c, and layering for wb data remains an area for fur-
ther research. As a simple example of layering for wb data,

a low-bandwidth multicast group could be limited to text-
based data, and a higher-bandwidth multicast group could
be used for graphics or for side-discussions. Wb members
behind low-bandwidth paths could still receive the text in
real time, with the rest of the group, and receive the im-
ages later, as bandwidth permits. Other possibilities would
be to encode embedded images using Progressive-JPEG or
some other layered scheme, or to tradeo� free-hand draw-
ing resolution for rate (i.e., one could send line drawings at
50 points/sec for good interactive performance over a high
rate channel but at 1 point/sec over a constrained, low-rate
channel).
As another approach to bandwidth adaptation, receivers

could reserve resources where such network services were
available; an example of such services are the guaranteed
and controlled load services currently being developed for
the Internet [BCS94]. Session members can decide individ-
ually whether to reserve resources or to rely on best e�ort
service for a session | the use of services other than best-
e�ort need not be uniformly imposed on all members of a
multicast group. Thus, resource reservation could comple-
ment other congestion control mechanisms of the multicast
session.

10.4 Future work on an SRM \toolkit"

Although we have proposed SRM as a framework that ap-
plies to many di�erent applications, we have developed just
one such application, wb. Further, because we based the
implementation on ALF and deliberately factored many
application semantics into the design of the wb transport,
it is relatively di�cult to extract and re-use wb's network
implementation in another application. However, this limi-
tation resulted from our lack of prior experience with ALF-
based design and we argue now that an ALF protocol ar-
chitecture does not necessarily preclude substantial code
re-use.
Based on our subsequent experience with another ALF

architecture | the Real-time Transport Protocol (RTP)
[SCFJ94] that underlies the MBone tools vic and vat |
we know that the core of an ALF based design can be
easily tailored for a range of application types. For ex-
ample, we developed a generic RTP toolkit as an object-
oriented class hierarchy, where the base class implements
the common RTP framework and derived subclasses imple-
ment application-speci�c semantics. Our RTP toolkit sup-
ports a wide range of applications including layered video,
traditional H.261-coded video, LPC-coded audio, generic
audio/video recording and playback tools, and RTP mon-
itoring and debugging tools. Each of these tools shares
most of its network implementation with all of the others,
yet each still re
ects its individual semantics through ALF
| RTP is not a generic protocol layer.
In current work, we are applying these same design prin-

ciples to both the next generation of the wb protocol as well
a new set of SRM-based applications. We are developing
a object-oriented SRM toolkit that in a base class imple-
ments the SRM framework described in Section 3 and in

22

a derived subclass re
ects application semantics like those
described in Section 2.3. For example, the application por-
tion of the SRM class hierarchy determines the packet gen-
eration order and priority, that is, whether to send answer
repairs before sending new data, or favoring repairs of one
source over another, etc. At the same time, the SRM base
class handles the more generic SRM functionality like the
timer adaptatation algorithms and the basic request/repair
event scheduling.

11 Conclusions

This paper described in detail SRM, a scalable reliable mul-
ticast framework that was �rst developed to support wb.
We have discussed the basic design principles as well as
extensions of the basic algorithm that make it more robust
for a wide range of network topologies.
Many applications need or desire support for reliable

multicast. Experience shows, however, that individual ap-
plications may have widely di�erent requirements of multi-
cast reliability. Instead of designing a generic reliable mul-
ticast protocol to meet the most stringent requirements,
this work has resulted in a robust and scalable reliable mul-
ticast framework that meets a minimal reliability de�nition
of delivering all data to all group members, deferring more
advanced functionality, when needed, to individual appli-
cations.
The work described in this paper is based on the funda-

mental principles of application level framing (ALF), mul-
ticast grouping, and the adaptivity and robustness in the
TCP/IP architecture design. Although the SRM frame-
work in currently only implemented in wb, we believe that
the SRM framework is generally applicable to a wide vari-
ety of other applications.

Acknowledgments

This work bene�ted from discussions with Dave Clark and
with the End-to-End Task Force about general issues of
sender-based vs. receiver-based protocols. We thank Peter
Danzig for discussions about reliable multicasting and web-
caching. We also thank Mark Allman, Todd Montgomery,
Kannan Varadhan, and the anonymous referees for useful
feedback on the paper.

References

[AFM92] S. Armstrong, A. Freier, and K. Marzullo, \Mul-
ticast Transport Protocol", Request for Comments

(RFC) 1301, Feb. 1992.
[B93] K. Birman, \The Process Group Approach to Re-

liable Distributed Computing", Communications of

the ACM, Dec. 1993.
[B94] K. Birman, \A Response to Cheriton and

Skeen's Criticism of Causal and Totally Or-
dered Communication", Operating Systems Re-

view, 28(1):11-21, January 1994. URL http://cs-
tr.cs.cornell.edu/Dienst/UI/2.0/Contents/ncstrl.cornell/TR93-
1390.

[BSS91] K. Birman, A. Schiper, and P. Stephenson,
\Lightweight Casual and Atomic Group Multicast",
ACM Transactions on Computer Systems, Vol.9, No.
3, pp. 272-314, Aug. 1991.

[BCS94] B. Braden, D. Clark, and S. Shenker, \Integrated
Services in the Internet Architecture: an Overview",
Request for Comments (RFC) 1633, IETF, June
1994.

[BMT94] Bhagwat, Mishra, and Tripathi, \E�ect of Topol-
ogy on Performance of Reliable Multicast Communi-
cation", Infocom 94, pp. 602-609.

[CM84] J. Chang and N. Maxemchuk, \Reliable Broadcast
Protocols", ACM Transactions on Computer Sys-

tems, Vol.2, No. 3, pp. 251-275, Aug. 1984.
[CS93] D. Cheriton and D. Skeen, \Understanding the

Limitations of Causally and Totally Ordered Com-
munication", Proceedings of the 14th Symposium on

Operating System Principles, ACM, December 1993.
[CT90] D. Clark and D. Tennenhouse, D., \Architectural

Considerations for a New Generation of Protocols",
Proceedings of ACM SIGCOMM '90, Sept. 1990, pp.
201-208.

[CLZ87] D. Clark, M. Lambert, and L. Zhang, \NETBLT:
A High Throughput Transport Protocol", Proceed-
ings of ACM SIGCOMM '87, pp. 353-359, Aug. 1987.

[D91] S. Deering, \Multicast Routing in a Datagram In-
ternetwork", PhD thesis, Stanford University, Palo
Alto, California, Dec. 1991.

[ES87] A. Erramilli and R.P Singh, \A Reliable and Ef-
�cient Multicast Protocol for Broadband Broadcast
Networks", Proceedings of ACM SIGCOMM '87, pp.
343-352, August 1987.

[FJLMZ95] S. Floyd, V. Jacobson, C. Liu, S. McCanne,
and L. Zhang, \A Reliable Multicast Framework for
Light-weight Sessions and Application Level Fram-
ing, Extended Report", LBNL Technical Report,
URL ftp://ftp.ee.lbl.gov/papers/wb.tech.ps.Z, Sept.
1995.

[H96] M. Hofmann, \A Generic Concept for Large-
Scale Multicast", Proceedings of International
Zurich Seminar on Digital Communications (IZS
'96), URL http://www.telematik.informatik.uni-
karlsruhe.de/�hofmann/paper-izs96.ps, Feb. 1996.

[HSC95] H. Holbrook, S. Singhal, and D. Cheriton, \Log-
Based Receiver-Reliable Multicast for Distributed
Interactive Simulation", Proceedings of ACM SIG-

COMM '95, August 1995.
[ISIS] ISIS and Horus WWW page, URL

http://www.cs.cornell.edu/Info/Projects/ISIS/ISIS.html.
[J92] V. Jacobson, \A Portable, Public Domain Network

`Whiteboard' ", Xerox PARC, viewgraphs, April 28,
1992. Unpublished document (cited for acknowledge-
ment purposes).

[J93] V. Jacobson, \Lightweight Sessions - A new
architecture for realtime applications and pro-

23

tocols (viewgraphs)." Networkshop '93, Mel-
bourne, Australia, November 30, 1993. URL
ftp://ftp.ee.lbl.gov/talks/vj-lwsarch.ps.Z.

[J94] V. Jacobson, \A Privacy and Security Architecture
for Lightweight Sessions", Sante Fe, NM, Sept. 94.
URL ftp://ftp.ee.lbl.gov/talks/lws-privacy.ps.Z.

[J93] V. Jacobson, Lightweight Sessions - A new architec-
ture for realtime applications and protocols", 3rd An-
nual Principal Investigators Meeting, ARPA, Santa
Rosa, CA, Sept. 1, 1993.

[J94c] V. Jacobson, \Administratively Scoped
IP Multicast", viewgraphs, 30th IETF,
Toronto, Canada, July 25, 1994. URL
ftp://ftp.ee.lbl.gov/talks/adminscope.ps.Z.

[KTHB89] M.F. Kaashoek, A.S. Tannenbaum, S.F. Hum-
mel, and H.E. Bal, \An E�cient Reliable Broadcast
Protocol", ACM Operating Systems Review, V. 23 N.
4, Oct. 1989, pp. 5-19.

[KKT96] S.K. Kasera, J. Kurose and D. Towsley, "Scal-
able Reliable Multicast Using Multiple Multicast
Groups," CMPSCI Technical Report TR 96-73, Oc-
tober 1996.

[LP96] J.C. Lin and S. Paul, \RMTP: A Reliable Multicast
Transport Protocol", IEEE INFOCOM '96, pp. 1414-
1424.

[M92] S. McCanne, \A Distributed Whiteboard
for Network Conferencing", May 1992,
UC Berkeley CS 268 Computer Networks
term project. Unpublished report. URL
http://www.cs.berkeley.edu/�mccanne/papers/mccanne-
wb92.ps.gz.

[MJ95] S. McCanne and V. Jacobson, \vic: A Flexi-
ble Framework for Packet Video", ACM Multimedia

1995, Nov. 1995, San Francisco, CA, pp. 511-522.
[MJV96] S. McCanne, V. Jacobson, and M. Vetterli,

\Receiver-driven Layered Multicast", ACM SIG-

COMM 96, August 1996, Stanford, CA, pp. 117-130.
[MMA90] P. Melliar-Smith, L. Moser, and V. Agrawala,

\Broadcast Protocols for Distributed Systems",
IEEE Transactions on Parallel and Distributed Sys-

tems, Vol. 1 No. 1, Jan. 1990, pp. 17-25.
[M84] D.L Mills, \Network Time Protocol (Version 3)",

RFC (Request For Comments) 1305, March 1992.
[MWC95] T. Montgomery, B. Whetten, and J. Callahan,

\The Reliable Multicast Protocol Speci�cation Flow
Control and NACK Policy", October 1995, URL
ftp://research.ivv.nasa.gov/pub/doc/RMP/RMP
ow.txt.

[MTC] Multicast Transport Protocols WWW page, URL
http://hill.lut.ac.uk/DS-Archive/MTP.html.

[Pa85] E. Palmer, Graphical Evolution: An Introduction to

the Theory of Random Graphs, John Wiley & Sons,
1985.

[PSA96] S. Pejhan, M. Schwartz, and D. Anastassiou, \Er-
ror Control Using Retransmission Schemes in Mul-
ticast Transport Protocols for Real-Time Media",
IEEE/ACM Transactions on Networking, vol. 4 no.
3, pp. 413-427, June 1996.

[SCFJ94] H. Schulzrinne, S. Casner, R. Frederick, and

V. Jacobson, \RTP: A Transport Protocol for Real-
Time Applications", RFC 1889, January 1996.

[PTK96] S. Pingali, D. Towsley, and J. Kurose,
\A Comparison of Sender-Initiated and
Receiver-Initiated Reliable Multicast Pro-
tocols", to appear in IEEE JSAC. URL
ftp://gaia.cs.umass.edu/pub/Tows96:Comparison.ps.Z.
An earlier version of this paper appeared in SIG-

METRICS '94, May 1994.
[PS93] Thomas F. La Porta and Mischa Schwartz, \The

MultiStream Protocol: a Highly Flexible High-speed
Transport Protocol", IEEE Journal on Selected Ar-
eas in Communications, vol. 11, pp. 519-530, May
1993.

[S96] Sharma, P., \Scaling Control Tra�c in Network
Protocols", quals proposal, unpublished manuscript
(cited for acknowledgement purposes), Sept. 18,
1996.

[XTP92] W.T. Strayer, B.J. Dempsey, and A.C. Weaver,
XTP: The Xpress Transfer Protocol, Addison-
Wesley, Reading, Mass 1992. URL http://heg-
school.aw.com/cseng/authors/dempsey/xtp/xtp.nclk.

[XTP95] Xpress Transport Protocol Speci�cation, XTP
Revision 4.0, XTP Forum, Mar. 1995.

[TD95] A. Thyagarajan and S. Deering, \Hierarchical
Distance-Vector Multicast Routing for the Mbone",
ACM SIGCOMM 95, pp. 60-65, August 1995.

[TS94] A. Thyagarajan and S. Deering, IP Multi-
cast release 3.3, Aug. 1994, available from
ftp://parcftp.xerox.com/pub/net-research
/ipmulti3.3-sunos413x.tar.Z.

[WKM95] B. Whetten, T. Montgomery, and S. Kaplan, \A
High Performance Totally Ordered Multicast Proto-
col", Theory and Practice in Distributed Systems,
K.P. Birman, F. Mattern, A. Schiper (Eds), Springer
Verlag LCNS 938, July 1995.

[YKT96] M. Yajnik, J. Kurose, and D. Towsley, \Packet
Loss Correlation in the MBone Multicast Net-
work", to appear in the IEEE Global Internet mini-
conference at Globecom '96.

24

