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Abstract

 

Leave-in-Time is a new rate-based service discipline for
packet-switching nodes in a connection-oriented data network.
Leave-in-Time provides sessions with upper bounds on end-to-end
delay, delay jitter, buffer space requirements, and an upper bound
on the probability distribution of end-to-end delays. A Leave-in-
Time session’s guarantees are completely determined by the
dynamic traffic behavior of that session, without influence from
other sessions. This results in the desirable property that these
guarantees are expressed as functions derivable simply from a sin-
gle fixed-rate server (with rate equal to the session’s reserved rate)
serving only that session. Leave-in-Time has a non-work-conserv-
ing mode of operation for sessions desiring low end-to-end delay
jitter. Finally, Leave-in-Time supports the notion of 

 

delay shifting

 

,
whereby the delay bounds of some sessions may be decreased at
the expense of increasing those of other sessions. We present a set
of admission control algorithms which support the ability to do
delay shifting in a systematic way.

 

1   Introduction

 

Real-time applications generate network traffic that requires
stringent performance guarantees in terms of throughput, end-to-
end delay, and packet loss rate. These performance guarantees are
generally not provided by conventional window-based flow con-
trol and first-come-first-served (FCFS) service disciplines. In fact,
this is a primary motivation for rate-based flow control and rate-
based service disciplines. With rate-based flow control, each ses-
sion has a guaranteed minimum data rate without being affected by
the traffic behavior of the other sessions sharing the same server.
This guaranteed data rate generally requires some admission con-
trol mechanism to allocate the finite link capacity of the servers.

Several rate-based service disciplines have been proposed:
Delay-EDD [5], Jitter-EDD [22], RCSP [26], VirtualClock [29],
PGPS [17, 18, 19, 20], Stop-and-Go [9, 10, 11], and Hierarchical
Round Robin [13]. All of these service disciplines provide an
upper bound on end-to-end delay (this includes VirtualClock for
which an upper bound on end-to-end delay was unknown until

recently proven in [7]). Jitter-EDD, RCSP, and Stop-and-Go also
provide an upper bound on delay jitter.

Providing an upper bound on delay has been a major point of
concern for previously proposed service disciplines; however,
even this is not enough. The

 

 

 

delay

 

 distribution 

 

of packets is likely
to be very useful for 

 

tolerant

 

 

 

applications [1]. Tolerant applica-
tions permit some brief interruptions in service; the level of toler-
ance might be defined as a maximum percentage of missing
packets over some period of time. For example, tolerant audio
applications allow some percentage of missing packets due to
excessive delay, i.e. packets that are late and are discarded by the
application, in exchange for working with a lower play-back delay.
Thus, while a service discipline that provides only an upper bound
on delay may not be adequate for tolerant applications, one that
provides a delay distribution 

 

even where there is no upper bound
on delay 

 

may be appropriate.
We describe a new service discipline called Leave-in-Time

which provides a session with upper bounds on delay, delay distri-
bution, and delay jitter, all end-to-end, and an upper bound on
server buffer space. The only requirements are that a session
declare its minimum required bandwidth which must be reserved
for each link along the path carrying the session, and that the max-
imum length of the session’s packets be bounded. 

 

No additional
traffic characterization is required for Leave-in-Time

 

. The main
feature of this service discipline is that it provides sessions with
performance isolation: all the mentioned performance bounds for a
session depend only on the dynamic traffic behavior of that ses-
sion, and are not affected by the behavior of other sessions being
transported over the same links and servers. Thus, a session can
“know” what its performance bounds will be based on how it and
it alone behaves.

Leave-in-Time builds on ideas found in VirtualClock [29] and
Jitter-EDD [22]. The reader will see that Leave-in-Time exploits
the good properties of VirtualClock and Jitter-EDD while main-
taining efficiency and flexibility, and providing desirable perfor-
mance bounds. For the special case where Leave-in-Time operates
like VirtualClock, we will show that the upper bound on delay for
sessions conforming to a token bucket filter (also called leaky
bucket constrained sessions) is the same as the upper bound on
delay given by PGPS [17, 18, 19, 20]. PGPS is Parekh and Gallag-
er’s method for computing delay bounds under Weighted Fair
Queueing [4].

An important problem we address is that, in general, an upper
bound on delay will grow linearly with the connection length. For
example, in VirtualClock and PGPS, the value 

is part of the upper bound on delay of a session 

 

s

 

, where 

 

N

 

 is the
number of server nodes in the session’s connection,  is the

N 1–( ) Lmax s, rs⁄

Lmax s,
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maximum packet length of the session, and 

 

r

 

s

 

 is its reserved rate in
the network. For this reason primarily (but also for others), it is
useful to allow some form of adjustment to a session’s delay, e.g.
possibly trading off the delay of that session with those of others
that happen to share some of the same links and nodes. As part of
the Leave-in-Time service discipline we present a set of admission
control algorithms that support the notion of 

 

delay shifting

 

. Delay
shifting allows the delay bounds of some sessions to be decreased
at the expense of increasing those of other sessions. The admission
control algorithms are based on an intuitive framework of priority
classes within which delay shifting is done in a systematic way.

The remainder of this paper is structured as follows. The
Leave-in-Time service discipline is presented in Section 2. In Sec-
tion 3, the service guarantees of Leave-in-Time are analyzed
through simulated experiments. In Section 4, the Leave-in-Time
service discipline is compared with other service disciplines. Sec-
tion 5 is a summary of the paper’s contributions. All results are
presented without proof to simplify exposition and due to lack of
space. See [8] for all proofs.

 

2   The Leave-in-Time Service Discipline

 

The base packet scheduling algorithm of Leave-in-Time emu-
lates, for each session, the service provided by a fixed-rate server.
A session 

 

s

 

 reserves a rate 

 

r

 

s

 

 in a Leave-in-Time server, and the
server provides the session with service no worse (i.e. the emula-
tion error is bounded and small) than the service that would be pro-
vided by a fixed-rate server with rate 

 

r

 

s

 

. We call this fixed-rate
server the session’s 

 

reference server

 

.

 

The Reference Server

 

The Leave-in-Time service discipline requires explicit band-
width reservation at connection establishment time. Suppose that a
session reserves a rate 

 

r

 

s

 

 in a Leave-in-Time server, where 

 

s

 

 is an
identifier for the session. Define the 

 

reference server

 

 of this ses-
sion (see Figure 1) to be a work-conserving FCFS server with rate

 

r

 

s

 

 along with the restriction that the session is served alone (i.e. no
other session sharing the reference server).

 

Figure 1:  

 

The reference server of session 

 

s

 

 is a work-conserving
FCFS server with rate 

 

r

 

s

 

.

 

Suppose that session 

 

s

 

 is being served by its reference server,
and that packets of the session are numbered in increasing order as
they arrive (the first packet being packet 1). The following defini-
tions apply:  is the arrival time of packet 

 

i

 

 in the reference

server, where a packet has arrived only after its last bit has arrived,
 is the length of packet 

 

i

 

 of the session,  is the finishing

transmission time of packet 

 

i

 

 in the reference server (i.e. the time

the last bit of packet 

 

i

 

 leaves the reference server), and  is the

delay of packet 

 

i

 

 in the reference server, i.e. .

 is related to  and  by the following equation (proof in

[7]):

, 

 

i

 

 

 

≥

 

 1, (1)

where .
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The Leave-in-Time Service Discipline

 

We present the Leave-in-Time service discipline as a con-
struction in three steps: a base server algorithm based on the refer-
ence server, and two generalizations that result in the final version.

 

Base Algorithm

 

: Consider a service discipline that assigns to
each received packet a 

 

transmission deadline

 

, and serves packets
from all sessions in increasing order of transmission deadline (ties
are ordered arbitrarily), where the transmission deadline  of

packet 

 

i

 

 of session 

 

s

 

 is assigned a value equal to the finishing trans-
mission time this packet would have if session 

 

s

 

 were served by its
reference server. Thus, the transmission deadline  of packet 

 

i

 

of session 

 

s

 

 can be calculated using equation (1), that is:

, 

 

i

 

 

 

≥

 

 1, (2)

where .

The reader will note that this is identical to VirtualClock’s
packet-scheduling time calculation. This service discipline is
work-conserving, since it is always busy (i.e. transmitting packets)
when there are queued packets at the server.

 

First Generalization

 

: The base algorithm is generalized by
allowing it to work in a non-work-conserving mode. Non-work-
conserving service disciplines can generally provide lower vari-
ance in delay (or delay jitter) than with work-conserving ones [28].
Thus, packets are not necessarily immediately available for trans-
mission upon arrival, and thus arrived packets may be delayed
before being queued for transmission. The time a packet joins the
server transmission queue is called the 

 

eligibility time

 

 of the
packet. Although the server is non-work-conserving, it is never
idle when there are eligible packets to serve.

The non-work-conserving service discipline has two compo-
nents (see Figure 2): a set of delay regulators that hold packets
until their eligibility times, and a server transmission queue. The
use of delay regulators to shape the traffic pattern to reduce delay
jitter is based on Jitter-EDD [22]. A session desiring delay jitter
control (i.e. delay jitter reduction) is assigned a delay regulator. A
session not desiring delay jitter control has all of its packets sent
directly to the server queue upon arrival, i.e. the eligibility time
equals the arrival time.

The non-work-conserving service discipline calculates the
transmission deadline  of a packet as:

, 

 

i

 

 

 

≥

 

 1, (3)

where , and  is the eligibility time of packet 

 

i

 

 of

session 

 

s

 

.  is defined in the final version of the Leave-in-Time

service discipline.

 
Figure 2:  

 

A Leave-in-Time server has an outgoing link with capac-
ity  C  and a set of delay regulators (one for each session desiring
delay jitter control). A delay regulator delays packets of a session in
order to shape its traffic pattern. A session will use a delay regulator
only if delay jitter control is desired.
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Second Generalization

 

: The next generalization is obtained
by allowing  to be replaced by  (a delay for packet 

 

i

 

 at

a server node, which can be customized according to a session’s
service needs), which splits equation (3) into the following:

,

 

 i

 

 

 

≥

 

 1, and (4)

,

 

 i

 

 

 

≥

 

 1, (5)

where  allows the partitioning of equation (3) into equations

(4) and (5), and .

As discussed before, the term  is part of

the upper bound on delay of VirtualClock and PGPS. In Virtual-
Clock, this term originates from the term  of equation (2)

(the upper bound on delay for VirtualClock is given in [7]). The
second generalization replaces  by  which allows some

reduction of the upper bound on delay, i.e. by allowing a smaller
value than  to be assigned to . Thus, this generalization

allows control over the upper bounds on the end-to-end delays that
sessions experience.

A session's route is composed of Leave-in-Time servers in
tandem. Without loss of generality, consider that the path of serv-
ers traversed by a session 

 

s

 

 is numbered from 1 to 

 

N

 

 (see Figure 3).
Since some measures vary with the server node, we need to extend
our notation. Thus, , , , , and  are written as

, , , , and , respectively, where 

 

n

 

 identifies the

server node.

 

Figure 3:  

 

The route of session 

 

s

 

 traffic is composed of 

 

N

 

 Leave-in-
Time servers in tandem. The path of servers traversed by session 

 

s

 

is numbered from 1 to 

 

N

 

.

 

Final Version

 

: We are now ready to present the Leave-in-
Time service discipline which works as follows:

(1) Each received packet is assigned an eligibility time and a
transmission deadline. The eligibility time of packet  i   of session  s  
at server node 

 
n

 
 is defined as:

 (for sessions without delay jitter control), and (6)

 (for sessions with delay jitter control), (7)

where  is the 

 

holding time

 

 of packet 

 

i

 

 of session 

 

s

 

 in a delay

regulator.  is defined as:

, (8)

,

 

 n

 

 > 1, (9)

where  is the actual finishing transmission time of packet 

 

i

 

 of
the session at server node 

 

n

 

 - 1,  is the maximum packet

length allowed in the network,  is equal to

, and  is the capacity of the outgoing

link of server node 

 

n

 

 - 1. As in Jitter-EDD [22], the holding time
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 calculated at server node 

 

n

 

 - 1 is transmitted in the packet’s

header to node 

 

n

 

. Note that  is always positive, and that

 (both proven in [8]). Thus, the term

 in (9) tries to eliminate the delay jit-

ter caused by the variation in the finishing transmission times of
packets at server node 

 

n

 

 - 1. We will see later that Leave-in-Time

allows  to vary according to the packet’s length. Thus, the

term  in (9) tries to eliminate the delay jitter caused

by the variation in the values  of packets.

The transmission deadline of packet 

 

i

 

 of session 

 

s

 

 at server
node 

 

n

 

 is calculated as (these are just equations (4) and (5) with the
identification of the server node):

,

 

 i

 

 

 

≥

 

 1, and (10)

,

 

 i

 

 

 

≥

 

 1, (11)

where .

(2) Eligible packets from all sessions are served in increasing
order of transmission deadline (ties are ordered arbitrarily).

 

Service Commitments Provided by Leave-in-Time

 

This section summarizes the service commitments, i.e. per-
formance guarantees, provided by the Leave-in-Time service dis-
cipline.

 

Upper Bound on End-to-End Delay

 

, 

 

N

 

 

 

≥

 

 1, (12)

where  is the upper bound on end-to-end delay that packets

of session 

 

s

 

 experience in a route composed of 

 

N

 

 Leave-in-Time

servers,  is the upper bound on delay that packets of ses-

sion 

 

s

 

 would experience if session 

 

s

 

 were served by its reference

server (i.e. a fixed-rate server),  is a constant equal to

, 

 

N

 

 

 

≥

 

 1, (13)

where  is the propagation time for the outgoing link of server 

 

n

 

,

and  is a constant equal to

.

Note that an upper bound on end-to-end delay exists if the
session has an upper bound on delay in its reference server. For a
session conforming to a token bucket filter (

 

r

 

s

 

, 

 

b

 

0,s

 

),

 

1

 

. (14)

 

1.  A token bucket filter is characterized by two parameters, a rate 

 

r

 

 and the maximum
number of tokens (

 

b

 

0

 

) the bucket can store. Initially, the bucket has 

 

b

 

0

 

 tokens (a full
bucket). New tokens are continuously filling up the bucket at rate 

 

r

 

. All tokens
exceeding the maximum bucket capacity are discarded. A session’s traffic conforms
to a token bucket filter (

 

r

 

s

 

, 

 

b

 

0,

 

s

 

) (here we adopt a notation similar to the one used in
[1], adding an identifier for the session with the subscript 

 

s

 

) if, for every generated
packet, 

 
L

 
i

 
,

 
s

 
 tokens are removed from the bucket, where 

 
L

 
i
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s

 
 is the length of the packet,

and the bucket size is never negative (i.e. there are always enough tokens to be
removed when a packet is generated).
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Thus,

, 

 

N

 

 

 

≥

 

 1, (15)

for a session conforming to a token bucket filter (

 

r

 

s

 

, 

 

b

 

0,s

 

). This
result is the same as that found using PGPS [17, 18, 19, 20] (see
equation (4.36) in [17], or equation (23) in [19]) and for Leave-in-
Time with admission control procedure 1 (which we define later)

with one class and , since in this case  is zero

and .

 

Upper Bound on the End-to-End Delay Distribution

 

, 

 

N

 

 

 

≥

 

 1, (16)

where  denotes the probability that delay  is

larger than 

 

d

 

,  is the end-to-end delay packet 

 

i

 

 of session 

 

s

 

experiences in the connection,  denotes

the probability that delay  is larger than , and

 is the delay of packet 

 

i

 

 in the reference server of the session.

This inequality is a function of the probability distribution of
delays of packets of the session in its reference server, i.e. a fixed-
rate server, which is well-studied [14, 23]. This inequality says that
an upper bound on the probability distribution of delays is
obtained by shifting the probability distribution of end-to-end
delays of the session in a fixed-rate server to the right by the con-

stant  (see Figure 4).

 

Figure 4:  

 

The upper bound on the probability distribution of end-to-
end delays is obtained by shifting the probability distribution of
delays of the session in a fixed-rate server to the right by a constant.

 

Upper Bound on End-to-End Delay Jitter

 

Define the end-to-end delay jitter  of session 
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 traversing

servers 1 to  N   as the maximum difference between the delays
experienced by any two packets from session 

 
s

 
 (this is the same

definition as the one used in [22]). This definition implies that

 must be finite (i.e. the session has an upper bound on end-

to-end delay). If  is finite,
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for sessions without delay jitter control, and
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 1, (17)

for sessions with delay jitter control, where
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Thus, the end-to-end delay jitter of sessions is composed of
the upper bound on delay of the session in a fixed-rate server

( ) and the delay jitter contribution of individual server

nodes which depends on the kind of connection, i.e. with delay jit-
ter control or not. The end-to-end delay jitter of sessions without
delay jitter control grows with the connection’s length, which does
not happen for sessions with delay jitter control.

Upper Bound on Buffer Space Requirements

 If  is finite, the upper bound on the buffer space used

by a session at server n is

, n ≥ 1,

for sessions without delay jitter control, and

, n ≥ 1,

for sessions with delay jitter control, where

.

As with all the other service commitments of Leave-in-Time,
the upper bound on buffer space is a function of the delay of the
session in a fixed-rate server, the session’s reference server. This
delay is completely determined by the dynamic traffic behavior of
the session. See [6] for an upper bound on the buffer space proba-
bility distribution.

The Admission Control Procedures
In order for the Leave-in-Time service discipline to provide

sessions with service commitments that are independent of the
traffic behavior of other sessions, sessions must satisfy some traffic
requirements as verified by admission control tests. A session’s
connection is established if the admission control tests are satisfied
in all the nodes along the session’s route.

Since the following discussions apply to all the nodes in a
session’s connection, we drop the identification of the server node

n. Thus,  and  will be written as  and , respectively.

The value assigned to  is not part of the traffic character-

ization of a session, but is a service parameter. Inequality (12)
shows that the values assigned to  along a session’s route are

responsible in large part for the upper bound on the end-to-end
delay of the session. Thus, one would prefer to assign the lowest
possible value to . Unfortunately, assigning arbitrary values to

 may lead to scheduler saturation. This happens when a server

is not able to provide an upper bound on the interval of time
between the transmission deadline of a packet and its actual end of
transmission. Therefore, an admission control procedure must reg-
ulate the minimum values that can be assigned to  in order to

avoid scheduler saturation, i.e. the admission control procedure
limits how short the upper bound on end-to-end delay of a session
can be. For this reason, we present a set of admission control pro-
cedures which allow some flexibility on the assignment of values
to . Flexibility is obtained by allowing some sessions to have

assigned lower values to  at the expense of other sessions that

must be assigned higher values. We define here only the admission
mechanism. The decision of which sessions should be granted
lower delays is a policy decision.

δmax s,
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We developed three admission control procedures which dif-
fer in degree of flexibility and computational complexity. Admis-
sion control procedures 1 and 2 support the assignment of sessions
to delay classes, where sessions assigned to lower numbered
classes get lower  values than sessions in higher numbered

classes. The differences between admission control procedures 1
and 2 are discussed later, since they depend on details not yet
defined. Admission control procedure 3 allows the assignment of
arbitrary values to , which makes it the most flexible of the

three procedures. This flexibility has a cost, however. In order to
avoid scheduler saturation, a server may not be able to commit all
its available bandwidth.

All three admission control procedures share a common
admission control test: All sessions must reserve their required
lower bound on bandwidth at connection establishment time. The
rate reservation is constrained by the following inequality:

, (18)

where C is the capacity of the outgoing link of the Leave-in-Time
server, and  is the set of sessions traversing the server.

Admission Control Procedure 1: Suppose we divide the ses-
sions traversing a Leave-in-Time server into P classes numbered
from 1 to P. Class k is defined by a pair of values ( , ), where

 is the maximum bandwidth that may be allocated to sessions in

class k, and  is the base delay of class k (as defined below),

where  and , k > j, and . For a session sa to

be admitted into class j, the following tests must be satisfied:

(1.1) , for m = {j, j + 1,..., P},

(1.2) , for m = {j, j + 1,..., P-1}, and

(1.3) , (define ),

where  = {s: session s is in class l}, and  is a constant

(defined below) for session sa. Figure 5 shows how the classes
relate to each other.

Admission control procedure 1 also allows rule (1.3) to be
written as

(1.3a) ,

where  is the maximum length of a packet of session sa.

With this rule,  is independent of the length of individual

packets.
  is assigned by the admission control procedure, and in

general, will be set to zero since one gains nothing by arbitrarily
increasing delay. However, sometimes it is necessary that  be

greater than zero, e.g. if the admission control procedure uses rule
(1.3a) (in which case one can have a fixed delay  for all pack-

ets of a session) and is limited to selecting discrete values for ,

having the flexibility of selecting non-zero values is necessary.

di s,

di s,

r j C≤
j ϕ∈
∑

ϕ

Rk σk

Rk

σk

Rk R j≥ σk σ j≥ RP C=

Rm rs
s Ωl

l m≤
∪∈
∑≥

σm

Lmax s,
C

---------------
s Ωl

l m≤
∪∈
∑≥

di sa,

Li sa, R j⋅

rsa
C⋅

--------------------- σ j 1– εsa
+ += σ0 0=

Ωl εsa
0≥

di sa,

Lmax sa, R j⋅

rsa
C⋅

--------------------------- σ j 1– εsa
+ +=

Lmax sa,

di sa,

εsa

εsa

di sa,

di sa,

Since this constant must be the same for all packets in the same
session, we could not simply express rules (1.3) and (1.3a) as ine-
qualities.

Figure 5:  The class hierarchy in admission control procedure 1. A
session is in only one class. Class k has a maximum bandwidth of

 to be assigned to its sessions. The bandwidth of a class k is part

of the bandwidth of class k + 1. This means that class k may lend
spare bandwidth to class j > k.

Note that sessions allocated to higher numbered classes will
experience more delay than sessions in lower numbered classes,
and that  (i.e. the base delay of class P) is not used in rules (1.2)

and (1.3), which means that the value assigned to  is irrelevant.

Also note that, for P = 1, i.e. only one class, sessions may have
 (i.e. if ). In this case, equations (10) and

(11) can be reduced to

, i ≥ 1.

With admission control procedure 1, O(P) tests are performed
when a session is admitted. Note that  is inversely proportional

to rs. This means that sessions requiring low bandwidth may be

imposed with higher delays (i.e. higher values ) than sessions

requiring high bandwidth. However, with proper selection of val-
ues, a session allocated to a low numbered class may still be
assigned a reasonable value to . Consider an example in which

. A session allocated to class 1 could have

 (if we use rule (1.3a)), which would be

appropriate even if  is small since it is multiplied by a large

amount. Note that the ratio  (in rule (1.3)) defines how much

of  will be considered in the delay . Although this

admission control procedure has an undesirable coupling between
reserved rate and minimum , it allows the exploitation of the

entire bandwidth of the server.

Consider the following more specific example: A Leave-in-
Time server with C = 100Mbits/sec and a session with reserved
rate equal to 100Kbits/sec and packet length equal to 400bits.
Assume admission control procedure 1 with three classes, namely
(  = 10Mbits/sec,  = 0.2ms), (  = 40Mbits/sec,  =

1.6ms), and (  = C = 100Mbits/sec,  = 4ms). We could assign

this session to class 1, which would lead to  = 0.4ms, or we

could assign it to class 2 with  = 1.8ms, or to class 3, with

 = 5.6ms. This illustrates how admission control procedure 1

provides flexibility in the assignment of the values  (i.e.

delay).

• • •

Class 1
Class 2 Class 3 Class P - 1 Class P

Rk

σP

σP

di s, Li s, rs⁄= εsa
0=

Fi s, max Ei s,   F i 1– s , { , } 
L

 
i s

 
, 

r
 

s
 ---------+=

di s,

di s,

di s,
R1 C 100⁄=

di s, Lmax s, rs 100⋅( )⁄=

rs

Rk C⁄
Lmax s, rs⁄ di s,

di s,

R1 σ1 R2 σ2

R3 σ3

di s,
di s,

di s,
di s,
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Admission Control Procedure 2

 

: Admission control proce-
dure 2 uses the same scheme as admission control procedure 1,
with the exception that it changes rules (1.2), (1.3), and (1.3a) to: 

(2.2) , for 

 

m

 

 = {j, j + 1,..., P}, and

(2.3) , (consider ),

(2.3a) , (consider ),

respectively, where j is the class to which session sa is being

admitted, and  is a constant for session sa, as defined in

admission control procedure 1.
Note that  (i.e. the base delay of class P) is now used. As

in admission control procedure 1, O(P) tests are performed when a
session is admitted. In admission control procedure 2,  (i.e. the

base delay of class P) must be allocated a value large enough such
that all the bandwidth of the server can be exploited. This condi-
tion does not apply to admission control procedure 1, since it does
not enforce rule (1.2) on class P.

Consider admission control procedure 2 with the same condi-
tions we assumed for the example in admission control procedure
1, i.e. a Leave-in-Time server with C = 100Mbits/sec, a session
with reserved rate equal to 100Kbits/sec and packet length equal to
400bits, and three classes, namely (  = 10Mbits/sec,

 = 0.2ms), (  = 40Mbits/sec,  = 1.6ms), and

(  = C = 100Mbits/sec,  = 4ms). With admission control pro-

cedure 2 we could assign this session to class 1, which would lead
to  = 0.2ms, or we could assign it to class 2 with  = 2.0ms,

or to class 3, with  = 5.6ms. With admission control procedure

1, these values were 0.4ms, 1.8ms, and 5.6ms, respectively. With
the same conditions, consider a session with reserved rate equal to
10Kbits/sec and packet length equal to 400bits. This session would
have  = 4ms in class 1 with admission control procedure 1, and

it would have  = 0.2ms in class 1 with admission control pro-

cedure 2. This example shows a major difference between admis-
sion control procedures 1 and 2:  does not depend on

 in rule (2.3) (or  in rule (2.3a)) in class 1

with admission control procedure 2. This feature can be used to
reduce the delay of low rate sessions.

Admission Control Procedure 3: , where  is a

constant, and

, for any non-empty set , (19)

where  is the set of sessions traversing the server.
Although feasible, this admission constraint requires a large

number of tests, since there are  sets  to be tested. Note
that admission control procedure 2 with one class (i.e. P = 1) and

 for all sessions is equivalent to admission control proce-

dure 3 when all sessions are assigned the same value to the con-
stant , since rule (2.2) in admission control procedure 2 implies

σm

Lmax s,
C

---------------
s Ωl

l m≤
∪∈
∑≥

di sa,

Li sa, R j 1–⋅

rsa
C⋅

---------------------------- σ j εsa
+ += R0 0=

di sa,

Lmax sa, R j 1–⋅

rsa
C⋅

----------------------------------- σ j εsa
+ += R0 0=

εsa
0≥

σP

σP

R1

σ1 R2 σ2

R3 σ3

di s, di s,
di s,

di s,
di s,

di sa,

Li sa, rsa
⁄ Lmax sa, rsa

⁄

di s, ds= ds

C

Lmax s,
s A∈
∑ rs

s A∈
∑⋅

rs ds⋅
s A∈
∑

----------------------------------------------≥ A ϕ⊆

ϕ

2
ϕ

1– A

εs 0=

ds

inequality (19) in this case.
Under admission control procedures 1 and 2, sessions may be

assigned  values that are larger or smaller than , which

is a value that may be assigned to  in admission control proce-

dure 1 with one class. However, some sessions must be assigned
values larger than  in order to allow others to receive lower

ones. Admission control procedures 1 and 2 allow complete
exploitation of the bandwidth of the server, since the values
assigned to  are implicitly “pre-allocated,” while admission

control procedure 3 may lead to incomplete usage of bandwidth,
since  may be assigned arbitrary small values.

3   Simulations of Leave-in-Time

In this section, we evaluate the service guarantees of the
Leave-in-Time service discipline through simulated experiments.
We evaluate here the following service guarantees: upper bound
on delay, upper bound on delay jitter (with and without delay jitter
control), upper bound on the probability distribution of delays, and
upper bound on buffer space.

Traffic Source Models

In this work, we chose three kinds of traffic sources to exem-
plify the performance guarantees of a Leave-in-Time network:
ON-OFF, Poisson, and Deterministic (i.e. fixed packet rate source
model) sources. ON-OFF sources have been used extensively in
recent studies [25, 29], since they can be used to model standard
voice sources. Poisson sources are used in our simulations to
examine the firewall property of Leave-in-Time, i.e. that the ser-
vice guarantees of a session are independent of the behavior of
other sessions traversing the network. Poisson sessions are also
used to show that the service bounds offered by Leave-in-Time are
not loose in the sense that they must predict a session’s guarantees
in the presence of any kind of traffic sharing the network. How-
ever, note that we are not implying that the behavior of the com-
bined traffic in a network link is Poisson. Deterministic sources are
used in experiments where we want to commit all the bandwidth of
a server. All traffic sources in our simulations have packet length
of 424bits, the length of an ATM packet.

ON-OFF Traffic Sources: An ON-OFF traffic source is
modeled here as a two-state Markov modulated process. In the ON
state, packets are generated at fixed intervals of time T. In the OFF
state, no packet is generated. The durations of the ON and OFF
states are exponentially distributed with means aON and aOFF,
respectively. The number of packets generated in the ON state is
approximated by a geometric distribution with mean aON/T.

We simulate ON-OFF sources with aON = 352ms and aOFF
varying from 6.5ms to 650ms (more specifically, we use 6.5, 18.5,
39.1, 88.0, 150.9, 288.0, and 650ms), which cover traffic sources
that resemble from fixed packet rate sources (which have aOFF =
0ms) to standard voice sources (i.e. when aOFF = 650ms). These
values are the same as the ones used in [25]. In our simulations, T
= 13.25ms, which implies that the generation rate is 32kbits/s in
the ON state (since the packet length is 424bits). All ON-OFF ses-
sions reserve a rate of 32kbits/s in the network.

Poisson Traffic Sources: The interarrival time of packets of
these traffic sources is exponentially distributed with mean aP
(specific values depend on the experiment). The reserved rate of a
Poisson session is at least 424/aP.

Deterministic Traffic Sources: The interarrival time of
packets of these traffic sources is a constant aD = 13.25ms. These
sessions reserve a rate of 32kbits/s.

di s, Li s, rs⁄
di s,

Li s, rs⁄

di s,

di s,
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Network Topology

Our simulations use the network topology of Figure 6. It has
five server nodes in tandem and links with a capacity of 1536kbits/
s (T1 capacity) and a propagation delay of 1ms (light takes approx-
imately this time to traverse 200km of optical fiber). In Figure 6,
numbers represent server nodes and letters identify entrance (i.e.
where traffic is generated) or exit (i.e. where traffic is consumed)
points in the network. Traffic flows left to right.

To simplify our discussions, we will use pairs of letters to
identify a session’s route. Thus, the route of a session traversing
server nodes 1 to 5 (five hops) will be identified as route a-j.

Figure 6:  Network Topology.

We simulated two basic traffic configurations which we call
MIX and CROSS. The MIX traffic configuration has 10 sessions in
each one of the routes a-j, b-g, c-h, and d-i, 16 sessions in each one
of the routes a-f and e-j, 8 sessions in each one of the routes a-h, c-
j, a-g, and d-j, and 6 sessions in each of the routes a-i and b-j,
which total 10 five-hop sessions, 8 four-hop sessions, 16 three-hop
sessions, 16 two-hop sessions, and 62 one-hop sessions. The
CROSS traffic configuration uses routes a-j, a-f, b-g, c-h, d-i, and
e-j, which are all one-hop routes with the exception of a-j, which is
a five-hop route. The number of sessions in each route of a CROSS
configuration will differ in some simulations.

A simulated experiment will be identified by the name of the
traffic configuration and the kinds of sessions in each route. When
possible, routes will be identified simply by their number of hops.
In the CROSS configuration, one-hop sessions will be called the
cross traffic. All the results we show in this section refer to five-
hop sessions, i.e. over route a-j.

Simulation Results

We simulated the Leave-in-Time service discipline to illus-
trate the various performance guarantees provided. Experiments
using admission control procedures 1 and 2 are presented. For
more detailed results, see [6].

Admission Control Procedure 1 with One Class

We simulated Leave-in-Time using admission control proce-
dure 1 with one class, i.e. with  = 1536kbits/s.

End-to-End Delay

Figure 7 shows the maximum delay and the delay jitter of an
ON-OFF five-hop session (without delay jitter control) in the MIX
traffic configuration in a 5 minute run of the network. All sessions
in this simulation are ON-OFF sessions with identical parameters:
average off period, aOFF, varying from 6.5ms to 650ms. This
experiment shows that this kind of traffic load exhibits low delay
(when compared to the calculated upper bound) and that the utili-
zation factor, which varies from 35.1% to 98.2% (for an average
off period from 650ms to 6.5ms, respectively), does not have
much influence on the maximum delay of the sessions.

1 2 3 4 5

a

f

b c d e

g h i j

R1

Figure 7:  The maximum delay and delay jitter of a five-hop ON-
OFF session in a MIX traffic configuration of ON_OFF sessions.

End-to-End Delay Jitter

Figure 8 demonstrates the effectiveness of delay jitter control.
This is a 10 minute run of the network for a CROSS traffic config-
uration. Figure 8 shows the delay distribution of two ON-OFF
five-hop sessions (one with delay jitter control and the other with-
out delay jitter control) with one Poisson cross traffic (i.e. one
Poisson traffic for each one-hop route in the CROSS configura-
tion). The ON-OFF sessions have aOFF = 650ms and the Poisson
sessions have aP = 0.28804ms and a reserved rate of 1472kbits/s.
This experiment shows a reduction in delay jitter from 59.7ms (the
upper bound is 66.25ms) for the session without delay jitter con-
trol to 12.4ms (the upper bound is 13.25ms) for the session with
delay jitter control. Note that delay jitter control increases the
average delay of packets, since the delay jitter control mechanism
reduces delay jitter by forcing packets to experience a delay closer
to the upper bound on delay.

Figure 8:  Delay distribution of two ON-OFF sessions with Poisson
cross traffic.

0

10

20

30

40

50

60

70

80

1 10 100 1000

Max Delay
Delay Jitter

Upper Bound on Delay

D
el

ay
 (

m
s)

Average OFF Period  (a
 OFF

) (ms)

10-5

10-4

10-3

10-2

10-1

100

0 10 20 30 40 50 60 70 80

s14.5.6

Jitter
Control

No Jitter
Control

F
ra

ct
io

n 
of

 P
ac

ke
ts

Delay (ms)

Upper Bound on
Delay = 72.6ms



Page 8

Probability Distribution of End-to-End Delays

Figures 9 to 11 compare the obtained probability distribution
of delays to the analytical upper bound on the probability distribu-
tion of delays. To make this comparison interesting, we needed
sessions that would provide an unbounded delay distribution, and
that would be amenable to analysis to be able to calculate the ana-
lytical upper bound. For these reasons, we chose Poisson sessions.

The analytical upper bound is calculated using inequality
(16). For this calculation, we need to know the probability distri-
bution of delays of the session in its reference server, which is
equivalent to a M/D/1 system in these experiments. We calculated
the probability distribution of delays in a M/D/1 system following
the results presented in [16, 21].

We also show in Figures 9 to 11 the upper bound on the prob-
ability distribution which is obtained when we use inequality (16)
with the results obtained with a simulation of a fixed-rate server
serving our traffic. This “simulated upper bound” is provided to
show how one can obtain an estimate for the upper bound on the
delay distribution in the network even for sessions that are not
amenable to analysis.

 Figure 9 shows the results of an experiment with a five-hop
Poisson session with ap = 1.5143ms and reserved rate of 400kbits/
s (which represents a utilization factor of 0.7) in a CROSS traffic
configuration with one Poisson cross traffic (i.e. one Poisson traffic
for each one-hop route in the CROSS configuration) in a 10 minute
run of the network. Each Poisson cross traffic has ap = 0.3929ms
and reserved rate of 1136kbits/s.

This experiment shows that the analytical upper bound can be
used to estimate percentiles. For example, using the analytical
curve, one can estimate that about 0.01% of all packets are delayed
by more than 26ms. From the experimentally obtained distribu-
tion, the delay is about 23ms for this case.

Figure 9:  Probability distribution of delays of a Poisson session
(utilization factor of 0.7) with Poisson cross traffic.

Figure 10 is an experiment similar to the previous one except
that the five-hop Poisson session has ap = 40ms and reserved rate
of 32kbits/s (which represents a utilization factor of 0.33) and each
Poisson cross traffic has a reserved rate of 1472kbits/s and ap =
0.28804ms.

This experiment shows that, for a low reserved rate, the ana-
lytical upper bound on the probability of delays can be loose (this
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happens in part because the constant  in (12) increases for a

low rate session). However, this is not always the case for a ses-
sion with low reserved rate. Consider an experiment in which each
one-hop cross traffic is a set of 47 32kbits/s Deterministic sessions.
The result of this experiment is shown in Figure 11.

 In general, the worst case bounds will often be somewhat
loose in a specific and limited time experiment, since worst case
bonds consider all possible scenarios (no matter how unlikely they
may be).

Figure 10:  Probability distribution of delays of a Poisson session
(utilization factor of 0.33 -- reserved rate of 32kbits/s) with Poisson
cross traffic.

Figure 11:  Probability distribution of delays of a Poisson session
(utilization factor of 0.33 -- reserved rate of 32kbits/s) with Determin-
istic cross traffic.

Buffer Space Requirements

Figures 12 and 13 show the distribution of buffer space used
by a session without delay jitter control and a session with delay
jitter control, respectively. These results were obtained from the
same experiment used to generate Figure 8, i.e. a 10 minute run of
the network for a CROSS traffic configuration with two ON-OFF
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five-hop sessions (32Kbits/s and aOFF = 650ms) and Poisson cross
traffic (1472kbits/s and ap = 0.28804). The buffer space measure-
ment in our experiment is always a multiple of 424 bits (the packet
length), since we measure the buffer space at the moment the last
bit of a packet arrives at a server node, and we consider the packet
under transmission in our total. This explains the staircase shape of
the obtained distributions.

Figures 12 and 13 show the buffer space and the calculated
upper bound at the first and last server nodes in the session’s route.
Note that the observed maximum value is below the calculated
upper bound by at most about 2 packet lengths for both sessions.

Figure 12:  Buffer space of an ON-OFF session without delay jitter
control with Poisson cross traffic.

Figure 13:  Buffer space of an ON-OFF session with delay jitter
control with Poisson cross traffic.

Admission Control Procedure 2 With Two Classes

We now simulate admission control procedure 2 with two
classes: class 1 with  = 640kbits/s and  = 2.77ms, and class 2

with  = 1536kbits/s and  = 13.25.
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Figures 14 to 17 refer to a single experiment in which we
measure the maximum delay and the delay jitter of four five-hop
sessions: two sessions in class 1 (one with delay jitter control and
the other without delay jitter control) and two sessions in class 2
(one with delay jitter control and the other without delay jitter con-
trol). The sessions in class 1 have  = 2.77ms (10 sessions: 5

five-hop and 5 four-hop sessions), and the sessions in class 2 have
 = 18.8ms (all the other sessions). The experiment is a MIX

traffic configuration with ON-OFF sessions with aOFF varying
from 6.5ms to 650ms in a 5 minute run of the network.

Figures 14 to 17 show the advantage of the class hierarchy,
i.e. sessions in low numbered classes experience less delay (and
delay jitter) than sessions in high numbered classes.

Figure 14:  The maximum delay and delay jitter of a session without
delay jitter control in class 1 in a MIX traffic configuration of
ON_OFF sessions.

Figure 15:  The maximum delay and delay jitter of a session with
delay jitter control in class 1 in a MIX traffic configuration of
ON_OFF sessions.
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Figure 16:  The maximum delay and delay jitter of a session without
delay jitter control in class 2 in a MIX Traffic configuration of
ON_OFF sessions.

Figure 17:  The maximum delay of a session with delay jitter control
in class 2 in a MIX traffic configuration of ON_OFF sessions.

 These experiments were also done using admission control
procedure 1; we do not show the detailed results due to lack of
space. The main result is that admission control procedure 2 allows
class 1 sessions to have a lower upper bound on delay (and upper
bound on delay jitter) than class 1 sessions with admission control
procedure 1. But as explained earlier, this benefit comes with the
drawback of having to assign a large enough value to  such that

all the bandwidth of the server can be exploited, effectively caus-
ing an increase in end-to-end delay for session in class P. This
problem does not occur in admission control procedure 1.

4   Comparing Leave-in-Time to Other Schemes

Leave-in-Time is most related to VirtualClock [29] and Jitter-
EDD [22]. In VirtualClock, each packet is assigned a transmission
deadline and packets are served in increasing order of deadline.
The transmission deadlines are calculated by an equation equiva-
lent to equation (2). The Leave-in-Time service discipline builds
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on equation (2) through two generalizations. One generalization
allows a session to reduce its end-to-end delay jitter, and the other
allows a session to reduce its end-to-end delay. Many of the results
we presented for the Leave-in-Time service discipline can be
translated into results for the VirtualClock service discipline by
considering a special case of Leave-in-Time’s operation, i.e.
admission control procedure 1 with one class and no jitter control.
In this case, an upper bound on end-to-end delay for VirtualClock

is obtainable from inequality (12) with  and

 in . In exactly the same manner, upper

bounds on the end-to-end delay distribution, end-to-end delay jit-
ter, and buffer space requirements are obtained. Except for the
upper bound on end-to-end delay (presented in [7]), these results
are new for the VirtualClock service discipline.

In Delay-EDD [5], and its extension Jitter-EDD [22] (EDD
stands for earliest-due-date), packets are assigned deadlines and
transmitted in order of increasing deadline. The deadline of a
packet is not directly coupled to the reserved bandwidth of its ses-
sion as in the Leave-in-Time scheme (see equation (11)). This
leads to a schedulability test at connection establishment time [5]
to avoid scheduling saturation, which can occur even if bandwidth
is not overbooked [5, 28]. The schedulability test is then a compro-
mise on the looser coupling between reserved rate and delay
bound. The Leave-in-Time scheme needs an admission control
procedure for the same reason.

In order to provide performance guarantees, the input traffic
in Delay-EDD and Jitter-EDD (and RCSP, see below) must be
constrained to a scheme more restrictive than a token-bucket filter.
The traffic characterization specifies a minimum packet interar-
rival time xmin, a minimum average packet interarrival time xave
over an averaging interval of time I, and a maximum packet length
P. In [26], bandwidth is reserved at the peak rate implied by xmin.
This admission control is refined in [27], where both xmin and xave
are taken into consideration. In the Leave-in-Time scheme, band-
width may be reserved at the average rate, although a session may
need to reserve more bandwidth than its average rate in order to
reduce the end-to-end delay, due to the coupling between delay
bound and bandwidth allocation.

Stop-and-Go Queueing is proposed in [9,10,11] and uses a
framing strategy. Stop-and-Go guarantees a minimum and maxi-
mum delay for packets of a session traversing the network. Stop-
and-Go is a non-work-conserving service discipline, since arriving
packets must wait until the beginning of the next frame to be
served, even when the server is idle. The admission control of
Stop-and-Go requires that during any time frame of size T, the
arrived packets collectively have no more than rsT bits, where rs is
the bandwidth given to session s. In [9], a session is called (rs, T)-
smooth if it follows this traffic constraint. This is more restrictive
than a token bucket filter. The delay under Stop-and-Go is equal to
αHT ± T, where α is a constant in the interval [1, 2), and H is the
number of links traversed by a session. This creates a trade-off
between queueing delays and flexibility in bandwidth allocation.
Consider a session with all packets of fixed length L. For this ses-
sion, the incremental step of bandwidth allocation is L/T, since the
session must conform to the admission control. This means that
one cannot have a low upper bound on delay and fine granularity
of bandwidth allocation at the same time. Besides this, all sessions
must be classified according to a finite number of connection
types, since the set of possible frame sizes is generally predefined.
Consequently, Stop-and-Go offers less flexibility in bandwidth
allocation than the Leave-in-Time scheme.

The Leave-in-Time scheme also suffers from a coupling

αs
N

0=

dmax s,
n

Lmax s, rs⁄= βs
1 N,
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between delay bound and bandwidth allocation, since one has to
give more bandwidth to a session in order to reduce the value of

 (see inequality (12)) and the value of  when using

admission control procedures 1 or 2. However, the coupling is not
to the same extent as in Stop-and-Go. To see this, consider a ses-
sion that generates at most 10 packets of length 0.01TC in any
interval of T seconds, where C is the rate of the outgoing link of all
servers. The average rate of this session is then 0.1C, independent
of the value of T. Now, suppose that both schemes allocate a band-
width of 0.1C to this session. In Stop-and-Go, the delay will be
αHT ± T. In the Leave-in-Time scheme, the delay will be at most

 (from equation (12)), where ,

since this session conforms to a token bucket filter
(rs, b0,s) = (0.1C, 0.1CT) (see inequality (14)). If the Leave-in-
Time network uses admission control procedure 1 with one class

and , the upper bound on delay will be

, since . The per-link increase2 in the upper

bound on delay is αT for Stop-and-Go (where 1 ≤ α < 2) and

 (inequality (12) with  =  =

) for the Leave-in-Time scheme. This shows that the delay
bound in Stop-and-Go can be much larger than the delay bound in
the Leave-in-Time scheme.

The delay jitter bound provided by the Leave-in-Time

scheme is  (inequality

(17)), while in Stop-and-Go it is 2T. A (rs, T)-smooth session con-
forms to a token bucket filter (rs, rsT). Thus, from (14),

, which is competitive with the

result of Stop-and-Go.
The reader is referred to [25] which compares the delay distri-

bution seen by sessions under FCFS multiplexing with the delay
bound computed with Cruz’s method [2, 3], the delay bound using
Stop-and-Go, and the delay bound using PGPS (presented later in
this section).

Hierarchical Round Robin (HRR) [13] also uses a framing
strategy and is a non-work-conserving service discipline. It offers
the same upper bound on delay as Stop-and-Go, but does not guar-
antee a lower bound on delay. The same arguments in the discus-
sion of Stop-and-Go also apply.

Rate-Controlled Static-Priority Queueing (RCSP) [26] is a
service discipline that avoids both framing strategies (as in Stop-
and-Go and HRR) and sorted priority queues (that are used in all
the other service disciplines studied here), by the separation of
rate-control and delay-control in the design of the server, which
allows it to provide throughput, delay, delay jitter, and loss free
guarantees. Leave-in-Time uses an approximate sorted priority
queue algorithm which runs in O(1) time with a small cost in emu-
lation error [6].

Weighted Fair Queueing (WFQ) is proposed in [4] and is a
service discipline that tries to emulate the service provided by a
bit-by-bit round robin server. Each packet is stamped with the fin-
ishing round number (or virtual time finishing time, as called by
Parekh in [17]) at which the packet would have finished transmis-
sion, had the server been doing a bit-by-bit round robin. Packets
are served in increasing order of finishing round number. Packet-
by-Packet Generalized Processor Sharing (PGPS) is the name
given in [17, 18, 19, 20] to a method for computing delay bounds

2.  Propagation delay is not considered here since it increases the delay by the same
amount for both disciplines.
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1 N,
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under WFQ when sessions conform to a token bucket filter. In Sec-
tion 2, the upper bound on end-to-end delay for sessions conform-
ing to a token bucket filter was presented, and it is the same as that
found using PGPS for Leave-in-Time with admission control pro-
cedure 1 with one class.

The most significant difference between PGPS and the
Leave-in-Time scheme is in the calculus of the transmission dead-
line of arrived packets. In the Leave-in-Time scheme, the trans-
mission deadline of a packet is a function only of the past behavior
of the session to which it belongs, while in PGPS, the finishing
round number of a packet depends on the set of sessions with
queued packets at the server at the time the packet arrives. The
transmission deadline in the Leave-in-Time scheme is expressed in
units of real time, while in PGPS, it is expressed in round units.
This makes the Leave-in-Time scheme easier to analyze, and eas-
ier to implement. However, the Leave-in-Time service discipline
does not conform to the notion of fairness attributed to PGPS.
PGPS is called a fair queueing scheme because it closely emulates
the service provided by a bit-by-bit round robin server. The reader
is referred to [12] for a relevant work on fair queueing systems.

Others have addressed the possibility of providing per-ses-
sion bounds on delay and delay distribution in a network setting
[2, 3, 15, 24]. In [2, 3], Cruz uses a non-probabilistic approach to
characterize each session entering the network -- the burstiness
constraint, which is in principle very similar to a token bucket fil-
ter. Under this assumption, a methodology is proposed to calculate
per-session upper bounds on delay and buffer requirements.
Kurose in [15], and Yaron and Sidi in [24] describe methods to
calculate bounds on the distribution of delay and buffer occupancy
when all sessions entering the network are stochastically bounded.
The work in [2, 3, 15, 24] differs from our work in that the Leave-
in-Time scheme provides a function to calculate an upper bound
on the delay distribution for a session, while the methodology in
[2, 3, 15, 24] provides the upper bound on the delay distribution
directly. However, the Leave-in-Time service discipline is able to
provide this function for sessions with any kind of dynamic traffic
behavior, and this function depends only on the session in ques-
tion, i.e. the dynamic traffic behavior of other sessions does not
enter into consideration (i.e. the Leave-in-Time service discipline
provides isolation between sessions), while the methodology in [2,
3, 15, 24] is based on the traffic characterization of all sessions
sharing network servers with the session in question, and the
dynamic traffic behavior of all sessions enters in the calculation of
the delay distribution.

5   Conclusions

We have presented the Leave-in-Time service discipline
which provides sessions with upper bounds on delay, delay distri-
bution, and delay jitter, all end-to-end, and an upper bound on
server buffer space. The requirements are that a session declare its
minimum required bandwidth which must be reserved for each
link along the path carrying the session, and that the maximum
size of the session’s packets be bounded. Leave-in-Time’s perfor-
mance bounds depend only on the dynamic traffic behavior of that
session, and are not affected by the behavior of other sessions
being transported over the same links and servers. The bound on
delay distribution is especially useful in supporting “tolerant”
applications as defined in [1].

A special case of Leave-in-Time’s operation reduces to that
of VirtualClock. Since the performance bounds we have presented
apply to the general case of Leave-in-Time’s operation, they also
apply to VirtualClock. In the case of bounds on end-to-end delay
jitter, end-to-end delay distribution, and server buffer space, these
bounds are new results for VirtualClock. Leave-in-Time extends
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VirtualClock by operating in a non-work-conserving mode similar
to Jitter-EDD that results in significantly reduced jitter. In effect,
Leave-in-Time exploits the good properties of VirtualClock and
Jitter-EDD while maintaining efficiency and flexibility, and pro-
viding desirable performance bounds.

Leave-in-Time goes beyond VirtualClock and Jitter-EDD by
supporting delay shifting. Delay shifting provides flexibility over
end-to-end delay bounds by allowing parts of the delays of some
sessions, on a per-server basis, to be traded off with those of oth-
ers. We presented a set of admission control procedures that pro-
vide an intuitive framework of priority classes such that delay
shifting is done in a systematic way. These admission control pro-
cedures represent different degrees of flexibility versus computa-
tional complexity.
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