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Abstract

Integrated Layer Processing (ILP) is an implementation concept
which "permit[s] the implementor the option of performing all the
[data] manipulation steps in one or two integrated processing
loops" [1]. To estimate the achievable benefits of ILP, a file trans-
fer application with an encryption function on top of a user-level
TCP has been implemented and the performance of the application
in terms of throughput and packet processing times has been mea-
sured. The results show that it is possible to obtain performance
benefits by integrating marshalling, encryption and TCP checksum
calculation. They also show that the benefits are smaller than in
simple experiments, where ILP effects have not been evaluated in
a complete protocol environment. Simulations of memory access
and cache hit rate show that the main benefit of ILP is reduced
memory accesses rather than an improved cache hit rate. The
results further show that data manipulation characteristics may sig-
nificantly influence the cache behavior and the achievable perfor-
mance gain of ILP.

1  Introduction

During the last few years the performance of processors has been
increasing faster than the performance of memory. The memory
bottleneck can be reduced by avoiding access to memory as much
as possible, e.g. by eliminating copy operations from protocol
implementations. If avoiding memory access is not further possi-
ble another solution is to use caches, which are extremely fast but
expensive. Usually, fast caches on the processor chips have limited
sizes in the range of a few kbytes (e.g., 16 kbyte data cache and 20
kbyte instruction cache on a SUN SuperSPARC processor, 8 kbyte
data and instruction cache on a DEC Alpha 21064). To get benefits
from a cache memory it is necessary to keep as much useful data
as possible within the cache memory.

The concept of Integrated Layer Processing (ILP) tries to gain
from both sides, namely avoiding memory access and using cache
memories. ILP allows the implementor to perform all manipula-
tion steps in one or two integrated processing loops [1]. This inte-
grated processing of data is commonly called "ILP loop".
Theoretically, an ILP protocol stack implementation reads once
from main memory, keeps the read data within registers or cache
memory, and performs all the data manipulations for several proto-
col layers within the ILP loop (Figure 1). Processed data are finally

written to the destination memory. In this ideal case, ILP requires
only one read and one write access to the main memory for each
processing unit, which is usually a 32-bit or a 64-bit word. All the
other operations should work on registers, and possibly on the
cache memory.

The non-ILP implementation reads a complete packet or data unit
and performs one function after the other (Figure 1). The interme-
diate packets are always written to the main or to the cache mem-
ory. The number of memory accesses are significantly higher than
in the ILP case. However, it is shown in the paper that also without
ILP a good cache behaviour can be achieved and the cache hit rate
of ILP may be even lower than in the non-ILP case.

Figure 1. Concepts of ILP and non-ILP

By applying ILP to simple data manipulations like data copying
and TCP checksum calculations, Clark and Tennenhouse achieved
performance gains of up to 50% [1]. We carried out a similar
experiment which yields nearly the same results. The XDR mar-
shalling routine obtained from a stub compiler for an array of 20
integer values has been combined with the TCP checksum routine.
The throughput is 70 Mbps for executing the two routines sequen-
tially in contrast to 100 Mbps for integrating both functions into a
single loop. The performance comparison shows over 40% gain in
favor of the ILP implementation.

The achievable performance improvements gained by ILP depend
on various parameters. The ILP benefits may increase with the
number of integrated data manipulations as shown by Abbott and
Peterson [2]. Partridge and Pink showed that performance gains by
combining checksum calculation and copy operations may differ
on different machines [3]. Experiments by Gunningberg, Partridge,
and others proved that ILP is also sensitive to the complexity of
data manipulation functions. They show that the integration of the

processing
unit

. . .

ILP loop

function 1

ILP

non-ILP

packet function N

packet packet

packet



DES (data encryption standard) algorithm into the ILP loop can
reduce the performance gains significantly [4].

In this paper we demonstrate that benefits obtained from ILP not
only depend on the data manipulation function complexity, but
also on other characteristics of these functions such as the number
and the size of required memory tables, and the necessary interac-
tion between data manipulations and control functions. Therefore,
experiments involving only data manipulations cannot show the
real advantages of an ILP implementation. To get realistic perfor-
mance results visible to applications, it is essential to perform ILP
experiments with a real application on top of a protocol suite
embedded into a complete system environment. The paper also
describes ILP implementation concepts and experiments per-
formed using a bulk data transfer application over a layered proto-
col suite.

Section 2 analyzes the general difficulties in integrating several
data manipulation functions of different protocol layers. The solu-
tions proposed in this section are applied to the implementation of
a file transfer application with (un)marshalling and de/encryption
on top of a user-level TCP implementation. Section 3 presents the
architecture for non-ILP an for ILP implementations. Section 4
shows performance results and comparisons with conventional
implementations.

2  Limitations of ILP and Possible
Solutions

2.1  Related work

Operations such as multiplexing, concatenation, and segmentation
that should be avoided in general according to [5] and [6] have
also to be avoided within the ILP loop to ensure that single data
units do not interfere with other data units and to preserve their
frame boundaries according to the ALF (Application Level Fram-
ing) concept [1]. Further problems with ILP are identified by Clark
and Tennenhouse [1] as well as by Abbott and Peterson [2]:

• Ordering constraints between different protocol functions
occur because protocol processing consists of interactions
between control functions (such as header and connection pro-
cessing) and data manipulation functions [1]. Control func-
tions often depend on the result of data manipulations. For
example, a TCP header can only be completed after calculating
the checksum over the TCP data. On the receiving side, data
can be passed to higher functions only after a successful
checksum evaluation. Furthermore, the results of the data
manipulations, which will be handed out to control functions
may even differ. For example, if the data passes function N
without error, but a failure is detected in function N+1, the fail-
ure result has to be indicated to functions N+1 and above,
while function N must assume that the data passed their tests
correctly.
A so-called three stage approach is proposed in [2] to manage
ordering constraints dividing protocol processing into initial
control operations, integrated data manipulations (or ILP
loop), and a final protocol stage. The initial operations can usu-
ally be very small, and possibly reduced to demultiplexing and
packet parsing operations. Messages are accepted or rejected
in the final stage.

• Integrating code from different protocol layers may violate the
modularity of the implementation. Preserving modularity in
ILP implementations may be achieved by an automatic synthe-
sis tool, e.g., based on a macro pre-processor [2], to generate
the ILP protocol code. Another approach studied by us is the
ILP extension of a stub compiler.

• The size of the processing unit to be manipulated may differ in
various layers; e.g. an XDR marshalling procedure usually
operates in 4-byte units, while encryption functions often
manipulate the data in 8-byte units. Word filters are used in [2]
to solve the mismatch which occurs when data passes from one
data manipulation function to another one. A word filter oper-
ates on words (commonly 4 bytes). It outputs a word each time
a word is input and indicates, in case of larger data units, the
position of the output word in this data unit using a flag.

• In a layered architecture, the content and the structure of mes-
sages differ in each layer. The header of layer N becomes the
data of layer N-1. Moreover, header content may depend on
the data part (e.g., TCP checksum calculation or size changing
data manipulations with length indicators in the header). The
dependencies of data and headers make it impossible to pro-
cess first the header part of layer N by a layer N-1 data manip-
ulation function, and then the data part of layer N by the N data
manipulation function. The solution proposed in [2] to avoid
this problem are so-called segregated messages, which create a
clear separation between protocol headers and application
data. ILP is only applied to user data. Headers added at various
layers in the protocol stack, which themselves become data,
are processed separately, in a non ILP way.

2.2  Remaining Problems and Solutions

The solutions proposed in [2] to overcome ordering constraints
and to preserve modularity are very general solutions, and we are
using similar approaches in our ILP implementation. This paper
will mainly focus on the two last problems mentioned in Section
2.1, namely the strategy to pass data across functions with different
data unit sizes and dependencies between header and data.

Passing data across functions

Word filters output data as soon as it is ready, but they do not take
into account whether it is more efficient for the next function to
process the data in larger size units, e.g. if an intermediate result
has to be written into the memory for each processing unit. Con-
sider a protocol stack, in which encryption is applied to 8-byte
units, and checksum calculation to 2-byte units, but where the
word filter mechanism always hands out data in 4-byte units from
encryption to checksum. This handout requires 2 write operations
to calculate the checksum of a 8-byte word. A more efficient solu-
tion is to pass data in 8 byte processing units from encryption to
checksum to reduce the number of write operations for checksum
calculation to 1.

We propose to adjust the length of the exchanged processing units
(Le) so that

Le = LCM(Lx, Ly)



where LCM(a,b) is the lowest common multiple of a and b, Lx is
the processing unit length of function fx, and Ly is the processing
unit length of function fy.

Le should also be chosen large enough to utilize the hardware
architecture efficiently. For example, in the case of a Ls byte wide
memory bus, it could be more efficient to set

Le = LCM(Lx, Ly, Ls.)

where Ls is the length dependent on system parameters.

Moreover, writing a packet of n bytes 1-byte-wise into a memory
area which is not cached before each write operation could result
in n cache misses, while writing it m-byte-wise could only cause n/
m cache misses if the caching blocks are m bytes or larger.

Header and data dependencies

The solution proposed in [1] for the problem of header and data
dependencies is to use segregated messages. This concept cannot
be used in many situations, e.g. for encryption if a higher layer
protocol header to encrypt is not aligned to the processing unit size
of the encryption function. For marshalling, the complete message
format including header and data is usually defined and marshalled
by a given procedure. It is then necessary to process the complete
message including data and higher layer headers such as RPC
headers. We solve this problem bydividing a packet into several
parts and by processing the part containing header fields depen-
dent on data after processing the data part.

This concept, which is a generalization of the approach of segre-
gated messages, is explained in more detail in Section 3.2.2 and
works only if the data manipulation functions are not ordering con-
strained. An ordering constrained function requires that data are
processed in a serial order to ensure a correct result [7]. Examples
of ordering constrained functions are the cyclic redundancy code
(CRC) calculation for error detection and stream cipher encryption
algorithms. The TCP checksum and block cipher encryption algo-
rithms are examples of non-ordering constrained functions.

Even with non-ordering constrained functions, ILP requires that
the number of bytes which have to be processed before a given
block is known, because both operations need to be aligned on cer-
tain boundaries (e.g., 2 bytes for TCP checksum and 8 bytes for
block cipher encryption). A major consequence is thatILP can be
applied only if the header size is known before entering the ILP
loop (i.e., the header size must be either constant or calculable
from available protocol state information).

3  User-Level ILP Implementation

3.1  Implemented Communication System

The communication system used for the ILP experiments consists
of two data manipulation functions, namely (un)marshalling and
en/decryption functions, on top of TCP (including checksum) run-
ning in user space. A file transfer application is located on top of
the protocol suite. The application has been developed in an UNIX
environment (SUN SPARCstation with SunOS 4.1.3) using the C
language. For additional experiments the program has been trans-
ferred to a DEC AXP workstation with OSF/1.

The file transfer application is based on the RPC model. A client
sends a request describing the file to receive, the number of copies
of this file to be received, and the maximum length of bytes to
receive within a single reply message. After receiving a file trans-
mission request, the server segments the file into smaller units and
sends these units as a set of reply messages back to the client. The
request and reply message formats have been described using
ASN.1. For sending a request or a reply message, the application
has to invoke the appropriate marshalling routine, which has been
generated using the MAVROS ASN.1 stub compiler [8]. The mar-
shalling routine generates the RPC header and the XDR format of
the message.

The encryption function encrypts the output of the marshalling
routine. Because most common encryption functions work on 8
byte boundaries, the complete message must be extended to a mul-
tiple of 8 bytes by adding alignment bytes at the end. The length of
the message before encryption is written into a length field, which
builds the encryption header. A fast encryption algorithm based on
the SAFERK64 algorithm [9] has been chosen because the pro-
cessing time spent in the more complex DES encryption algorithm
can hide totally the ILP performance gain [4]. Even a high-speed
implementation achieves only a 1 Mbps throughput on a SPARCs-
tation [10]. SAFERK64 that is extremely fast compared to other
standard algorithms such as DES (25 Mbps for SAFERK64 with 1
round compared to 0.5 Mbps for the system implementation of
DES on a SPARCstation 10 with a 30 MHz clock) is still too time
consuming for the ILP experiment. The encryption algorithm has
been simplified to achieve a throughput of 50 Mbps on a SPARCs-
tation 10 (100 times faster than DES). Of course, these simplifica-
tions lead to a less secure encryption. To keep the characteristics of
the algorithm unchanged, at least one operation of each type occur-
ring in the original algorithm is present in the simplified version.
The simplified algorithm consists of a set of add/xor operations on
each byte, followed by mixed logarithm/exponential operations on
each byte, and final operations called2-PHT(a 1,a 2)
=(2*a 1+a2,a 1+a2)  on each pair of bytes (PHT: Pseudo Had-
amard Transform). The add/xor operations require reading the key,
while the logarithm/exponential operations access tables of pre-
calculated values to avoid too costly run time calculations.

The encrypted message is delivered to TCP, which calculates the
checksum over the pseudo header and the data. The user-level TCP
implementation [11] is divided into two parts: a kernel part and a
library to be linked to an application running in user space. The
kernel part provides a datagram oriented socket interface and is
activated for all connections, while there exists a separate user-
level part for each application. The kernel part has similar func-
tionality as UDP without checksum. For sending data, the main
task of the kernel part is to pass the messages received from the
user-level TCP to IP. On the receiving side, the kernel part demul-
tiplexes IP packets to the corresponding user-level TCP connec-
tion, i.e. to the corresponding application. The request and reply
messages received from TCP are decrypted and unmarshalled
before the data is delivered to the application. Each TCP user-level
connection receives only the packets of its associated application.
TCP header options are avoided to ensure fixed-size headers. Fur-
thermore, a single connection only supports uni-directional data
transfer. According to the ALF concept, TSDUs are mapped to
exactly one TPDU.

Figure 2 shows the packet format used by the three data manipula-
tion functions. Dependencies between the data part and protocol
headers are shown using dashed arrows. At the TCP level the



checksum field in the header depends on the contents of the data.
The encryption fields depend on the length of data delivered by the
marshalling function. Alignment bytes are added at the end, while
for reasons explained in Section 3.2.2, the length field is in the
header, although a length field at the end of the encrypted message
as done in other security protocols would simplify an ILP imple-
mentation. Generally, trailer fields for protocol information depen-
dent on user data could simplify ILP processing, although trailers
make parsing of protocol information more complex.

Figure 2. Data formats of the implemented protocol suite

The protocol suite has been tailored to specifically address the
problem which has been identified in Section 2.1, namely that data
has significant impact on the headers of all protocol functions.
Some data manipulations modify the data and may even change
the size of data (marshalling and encryption). The size of a mini-
mum processing unit for data manipulations differs at each level.

3.2  ILP Implementation

3.2.1  Macros versus function calls

An important issue is how to implement the different data manipu-
lation functions. To get efficient implementations, function calls
should be avoided. A much more efficient solution is macro
inlining. However, macros do not allow the dynamic adaptation of
data manipulation functions depending on varying application
needs or on quickly changing network characteristics such as con-
gestion situations. Using function calls and function pointers
instead supports a dynamically adaptable implementation, but
experiments have shown that substituting macros by function calls
results in the loss of all performance benefits gained by ILP in the
first place. The experiments also show that inling of data manipu-
lation functions increases the code size only by a few percent
(approximately 3% in the example application).

3.2.2  Sending path

The data flow of the sending path is shown in Figure 3. In the non-
ILP implementation the data is marshalled, encrypted, and copied
from the application buffer into the TCP buffer. These operations
require at least three write and three read accesses to the memory.
The checksum is calculated by another read operation before the
data is finally copied into a kernel buffer. Steps 1 (marshalling) and
2 (encryption) are called directly by the application program, while
step 3 (copying) is performed by the TCP interface procedure
tcp_send . The main TCP procedure for sending data
(tcp_output ) performs step 4 (checksum calculation) and
invokes step 5 (system copy). To increase the probability of cache
hits, the marshalling and encryption loops of the non-ILP imple-
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mentation follow each other. Avoiding the system copy in step 5
would require a modification of the operating system and the net-
work adapter architecture according to the proposals in
[12][13][14][15].

Figure 3. Data movements for sending data
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one copy procedure is necessary to copy data from application
memory to the TCP buffers due to the simultaneous existence of
encryption and retransmission.

The data manipulations have been integrated into this copy proce-
dure without additional costs. The ILP implementation marshals
and encrypts the data while being copied from the application to
the TCP buffer. Two copy operations and one read access have
been saved. Because TCP uses a ring buffer, to which the data is
transferred during the ILP loop, the structure of the TCP buffer
(i.e. the length and some buffer state information such as the actual
write pointer) must be known during the ILP loop. The ILP loop
also has the task to align the data to the ring buffer structure.

A problem might occur if there is not enough space for a message
in the TCP buffer at the time the ILP loop is invoked. For example,
the retransmission buffer may contain many unacknowledged data
such that a packet of maximum size (= MTU size) cannot be
stored. Data manipulations can be performed as early as possible
to minimize delays [17]. Data above the TCP level is manipulated
in advance; the checksum calculation and the copy to the TCP
buffer are done when there is enough buffer space available again.
The delay saved by this approach is not significant (approximately
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100µs on a SUN SPARCstation 10-30) compared to the total delay
including driver processing and latency of the network, which is
usually in the millisecond range. Since the implementation itself
would become more complex, we decided to perform all data
manipulations within a single loop and to delay all manipulations
until they are all possible. If there is not enough TCP buffer, then
all data manipulations are delayed until there is enough buffer
space available again.

ILP Processing Steps

As mentioned in Section 2, it is not usually possible to process user
data independently from protocol headers. It is also not possible to
start the ILP loop at any byte in the data field, and then process the
following data in the original order. These problems are solved by
dividing a message into several parts as illustrated in Figure 4. The
resulting parts are processed consecutively, starting with part B
and finishing with part A.

Figure 4. ILP processing steps

1. The marshalling routine is invoked by the application for a
request or a response message. The implementor must know
the size of the encryption header, because encryption is aligned
to 8 bytes and the encryption header, which depends on the
length of the data, is also encrypted. The first byte of the data
part, which can be encrypted in the first step, is 8 bytes after
the start of the encryption header (positionβ), while marshal-
ling begins directly after the encryption header, that means 4
bytes after the start of the encryption header (positionα). The
problem that marshalling and encryption begin on different
positions could be avoided by moving the encryption header
field to the end of the message. The same problem would occur
for an intermediate layer between marshalling and encryption
with a header not aligned to the processing unit size of encryp-
tion (8 byte). Message part B beginning at positionβ is the first
one processed by the data manipulation functions.

2. Because the length of the message obtained by marshalling
(including the encryption header) is usually not aligned to 8
bytes, it may also happen that the last bytes of the marshalled
message cannot be passed from the marshalling procedure to
the data manipulation functions without adding the necessary
alignment bytes. The last 8 bytes (beginning at positionγ)
including the alignment bytes build part C of the complete
message.

3. After passing part C to the data manipulations, the length of
the marshalled message is known and the length field (encryp-
tion header) is completed. The first 8 bytes (part A: encryption
header and the first 4 bytes of the marshalled message) are
passed to the data manipulations.
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3.2.3  Receiving path

The non-ILP implementation evaluates the checksum after the sys-
tem copy (tcp_input ), decrypts the data, and unmarshalls the
decrypted data (Figure 5). The last two steps are invoked by the
application program. Compared to the sending side, one read and
one write access can be saved.

The fact that the size and the beginning of the application data is
usually unknown before unmarshalling requires an additional copy
besides the system copy procedure for receiving. The copy opera-
tion is performed together with unmarshalling in the non-ILP case,
while it is integrated with all the other data manipulations in the
ILP case.

Figure 5. Data movements for receiving data

There are two reasonable locations for manipulating the received
data in user space. The data can be manipulated very close to the
read system call, i.e. directly after the system copy, or it can be
manipulated very close to the application operations. Manipulating
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the higher probability that data is within the cache before applica-
tion processing. Experiments show that both approaches yield
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efit (5 µs on a SUN SPARCstation 10-30) for packet processing
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early during processing the receive functions has the advantage
that possible errors such as checksum errors or errors because of
an illegal data format for marshalling are known very early. Possi-
ble errors are known before TCP control processing so that the
TCP processing can proceed without a possible roll back later on.
If the data is manipulated close to the application, several TCP
control actions such as acknowledgment generation must be
delayed and other operations such as updating the connection state
must be taken back. Therefore, the data manipulation functions
have been implemented directly after the system copy operation.

ILP processing for receiving a message is easier than for sending.
After receiving a TCP message, the first 8 bytes containing the
encryption header are decrypted. Since this operation also decrypts
the first word of the marshalled message, an offset parameter must
indicate to the unmarshalling function that the next decryption
operation shall start one word after the first marshalled word. The
unmarshalling function is invoked bytcp_input  and is
enhanced by the other data manipulations. As soon as enough data
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is decrypted for unmarshalling, it performs the appropriate unmar-
shalling operations. At the end of the unmarshalling routine, the
application message is reconstructed. Before invoking the unmar-
shalling procedure the application has to decrypt the encryption
header.

4  Performance Results

4.1  Comparison of the ILP and the non-ILP
implementations

Figure 6 - Figure 10 compare the performance of the ILP and the
non-ILP implementations for different packet (TPDU) sizes on dif-
ferent workstations. To get these performance numbers, a 15 kbyte
file with varying message sizes has been transmitted several times
from a server (sender) to a client (receiver) on the same machine
using UDP in loop back mode. UDP without checksum is nearly as
fast as our TCP kernel part. Packet processing times include all
data manipulations within the application space, which are neces-
sary to send or to receive a message.

The measured results show that throughput increases with the mes-
sage size because of the lower number of messages required to
transmit a file. They also show that the performance gaps between
the ILP and the non-ILP implementations increase nearly propor-
tionally to the packet size. Clearly, the benefits gained by doing an
ILP implementation of the data manipulations are higher when
data manipulations dominate the total processing cost. We also
observe the impact of a second-level cache. The SS10-30 worksta-
tion does not include such a cache, and the throughput for 1280-
byte packets is lower than for 1024-byte packets. The performance
figures for other workstations (SS10-41, SS20-60, AXP3000/800)
with second-level cache show a throughput increase for 1280-byte
packets.

The integration of encryption and checksum calculation into mar-
shalling yields a decrease of 58µs (16%) for sending and of 56µs
(16%) for receiving a 1 kbyte packet on a SUN SPARCstation 10-
30 (Figure 6 and Figure 7). On a SUN SPARCstation 20-60, packet
processing for sending could be decreased by 50µs (24%) for
sending and by 41µs (20%) for receiving. The total difference of
packet processing (in terms ofµs) between ILP and non-ILP
decreases for the faster machine, but the relative benefits (in per-
centages) increase. See Section 4.2 for further explanation and the
Annex for the complete results.

The benefits of ILP on DEC AXP3000 workstations are smaller
than on the SUN SPARCstations. This is also explained in Section
4.2. For receiving 1 kbyte packets on an AXP3000/800 (200 MHz)
the difference of 12 µs (8%) for packet processing is relatively
small. Sending is 25µs (13%) faster.

Relative performance increase brought by an ILP implementation
in terms of throughput is always lower than the performance bene-
fit considering only the packet processing time (Figure 8 and Fig-
ure 9). There are also other operations besides data manipulations
which have significant impact on the total throughput, e.g., IP and
network driver processing, task switches, or workstation back-
ground load. Data manipulations of the ILP implementation con-
sume approximately the same time as the system operations.

Figure 6. ILP and non-ILP receive packet processing times

Figure 7. ILP and non-ILP send packet processing times

Figure 8. ILP and non-ILP throughput
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Figure 9. ILP and non-ILP throughput
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Figure 10. ILP and non-ILP packet processing times
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In particular, the operating system on DEC Alpha workstations
(specifically OSF/1 version 1.3 and 2.0) causes a very high over-
head in the experiment. The system overhead of the SPARCstation
20-60 running Solaris 2.3 is lower and ILP improvements are more
clearly visible there. Using more advanced systems, e.g. zero-copy
network adapters [13][14][15] and dedicated operating system
support with less system overhead, could raise the benefits from
ILP further. Therefore, we expect ILP benefits to become more
significant in systems with more efficient network adapters and
improved integration of communication systems into the operating
systems.

Another issue which has significant impact on the total throughput
is the complexity of the data manipulations. Replacing the encryp-
tion/decryption algorithm by a very simple algorithm similar to the
one used in [2] yields similar total improvements in packet pro-
cessing times (70µs less for sending a 1kbyte packet and 64µs
less for receiving a packet on a SPARCstation 10-30) compared
with the simplified SAFERK64 algorithm (Figure 11). The relative
improvements (32 and 40%) are significantly higher. Furthermore,
the throughput difference between ILP and non-ILP is higher than
with the more complex encryption function (Figure 12).

Figure 11. Packet processing of ILP and non-ILP
implementation with different encryption functions

Figure 12. Throughput of ILP and non-ILP implementation
with different encryption function

Figure 12 compares the throughput performance of the user-level
implementations (ILP and non-ILP) and the non-ILP implementa-
tion with TCP in kernel space. In the experiment, 1 kbyte mes-
sages have been exchanged. As expected, the implementation
using the BSD TCP kernel version is faster than both user-level
implementations. Protocols in user space do not usually achieve
kernel performance, but nevertheless they have several advantages
[20][21][22][23]. However, the performance gap could be mini-
mized by optimizing the data path, which is usually the critical
path of protocol implementations. For receiving a packet the ILP
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implementation including TCP processing, decryption, and unmar-
shalling was even faster than only decryption and unmarshalling
on top of kernel BSD TCP. One reason for better BSD TCP kernel
throughput is that the code is more optimized and acknowledg-
ment packets do not cross the user/kernel domain as it does in a
user-level TCP implementation. A solution to this problem would
be to separate control processing and data manipulations supported
by different packets for control messages and data.

4.2  Analysis of memory and cache access

To understand the reasons for the performance gain illustrated in
Section 4.1, the memory access and cache behavior of the applica-
tion using the ILP stack and the non-ILP stack have been simu-
lated. These simulations have been performed using a cache
simulator called "cachesim", which is part of the shade analyzing
tools from SUN Microsystems [18]. The tool calculates the num-
ber of memory accesses and the number of cache misses. The
"atom" tool [19] has been used here to investigate the memory
behavior on DEC AXP workstations. It simulates the memory sys-
tem of AXP 3000/500 (150 MHz) models with 8 KB on-chip (first-
level) data (write-through), 8 KB instruction cache and 512 KB
external (second-level) cache.

The main reason for the performance gain on the SUN
SPARCstations is the significant reduction in the number of mem-
ory accesses (Figure 13). ILP reduces the number of memory
accesses by 25.7*106 (13.7*106 4-byte-reads and 12*106 4-byte-
writes less) for sending 10.7 Mbyte of data. This means that the
ILP implementation reads 55 Mbyte less and writes 48 Mbyte less
than the non-ILP implementation, which is equivalent to saving
more than 4 copy operations. For receiving the same amount of
data, ILP decreases the number of memory accesses by 17.6*106

because of the lower number of 4-byte-write (8.3*106 accesses
less) and 4-byte-read (8.4*106 accesses less) accesses. Here, ILP
writes and reads 33 Mbyte less data than the non-ILP implementa-
tion, which is equivalent to saving 3 copy operations.

ILP was initially thought as a technique which would benefit from
the presence of caches. A surprising result is that the relative
amount of first-level data cache misses is higher in the ILP case.
First-level instruction cache misses and second-level data cache
misses are negligible in the experiments on the SUN
SPARCstations. For sending, the cache miss ratio is slightly higher
in the ILP case. On the receiving side, the cache miss ratio
increased from 4.7% to 18.7% (Figure 14). The results show that
even with a careful implementation technique, a relative high rate
of cache hits can be achieved without integrating several functions
into a single loop, but only by processing the different loops close
to each other.

On the sending side, the cache miss ratio increase for ILP can be
explained by the fact that there are always a fixed number of write
cache misses for writing the data into the TCP retransmission
buffer, which cannot be avoided. The cache miss ratio increases
because ILP reduces the total number of memory accesses in a
more significant way than the number of cache misses.



Figure 13. ILP and non-ILP memory access

Figure 14. ILP and non-ILP cache misses
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The results show that the use of simpler but less realistic encryp-
tion algorithms results in a better performance and more ideal
cache behavior than more complex and more realistic ones. The
type of data manipulations (in this case: the encryption algorithm)
strongly influences the success of ILP. If possible, one should
therefore design data manipulation functions that are well fitted for
ILP, e.g. by avoiding single-byte cache misses.

Another surprising result is that the non-ILP implementation
achieves a relatively good cache behavior. Nearly all operations
operate on the first-level cache or on the second-level cache and do
not require access to the main memory. This is the reason for the
fact that the absolute difference of packet processing times
decreases with increasing processor speed, but the relative differ-
ence (in %) increases.

Similar effects have also been observed on the DEC AXP worksta-
tions. For sending the memory system time is 0.494s for ILP and
0.539s for non-ILP. The whole execution time for the application
program is 2.466s for ILP and 2.725s for non-ILP. For receiving
the difference for the memory system time was nearly the same for
the ILP (0.292s) and the non-ILP (0.295s) case. The application
program execution time for receiving is 2.335s for ILP and 2.427s
for non-ILP.

Similar to the SUN SPARCstations simulations, ILP improve-
ments on DEC AXP workstations are more significant for sending
than for receiving. The overhead for read cache misses could only
be reduced for sending. The additional memory system time
caused by writes decreases for sending and for receiving.

In contrast to the SUN SPARCstations, a significant number of
cache misses can be observed on the DEC AXP workstations
because of the smaller instruction cache. In the ILP case, the num-
ber of instruction cache misses is higher than in the non-ILP case
and it consumes 24-28% of the memory system time. The higher
instruction cache misses are an important reason for the lower ILP
benefits on the DEC Alpha workstations.

5  Conclusion

This paper presents an experimental ILP implementation of a three
level protocol suite based on a user-level TCP and its performance
evaluation. ILP reduces the number of memory accesses up to
30%, but the relative amount of cache misses could not be reduced
compared with a carefully designed non-ILP implementation. ILP
throughput improvements are limited and depend heavily on sev-
eral issues such as the complexity of data manipulations, the com-
munication subsystem architecture, and the host environment
characteristics. In our experiments, these issues decrease the
throughput gain to 10-20% in contrast to the 50% gain achieved
for simple loop experiments [1]. ILP is very sensitive to various
issues, which makes its use debatable in existing communication
systems and workstations.

The main limitation of ILP is that it is only applicable with certain
types of protocol functions (non-ordering constrained functions)
and protocol architectures (header size must be known before data
manipulation processing). Another major drawback of ILP is the
reduced flexibility, because the use of macros instead of function
calls is required to avoid performance loss. Macros do not allow a
protocol implementation to be adapted dynamically to changing
application requirements or to varying network characteristics.



The implementor has to decide depending on application and sys-
tem characteristics whether it is worth to apply ILP with all advan-
tages and drawbacks. Using advanced protocol features such as
non-layered architectures [24], fixed size headers, trailers for data
dependent fields, different packet types for control information and
data, uniform processing unit sizes for different data manipulation
functions could be advantageous for ILP. These features should be
studied in future protocol designs.
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Annex
TABLE 1. Packet processing and throughput of ILP and non-ILP implementation

system platform packet size ILP non-ILP ILP send ILP receive
non-ILP

send
non-ILP

receive

throughput packet processing time (µs)

SUN 256 1.74 1.58 128 118 124 141

SPARCstation 512 3.22 2.58 187 176 201 228

10-30 768 4.35 4.15 260 263 289 280

SunOS4.1.3 1024 5.43 4.95 311 300 369 356

1280 6.02 4.3 374 363 468 456

SUN 256 2.34 2.19 103 90 101 123

SPARCstation 512 4.35 3.67 149 144 169 182

10-41 768 5.53 5.27 192 194 248 241

SunOS4.1.3 1024 6.68 5.95 248 249 315 312

1280 8.39 6.88 304 300 379 379

SUN 256 3.02 2.64 77 72 91 88

SPARCstation 512 5.41 4.69 124 116 147 147

10-51 768 7.78 7.01 158 158 202 195

SunOS4.1.3 1024 9.23 8.35 194 206 241 240

1280 9.48 8.65 239 248 301 310

SUN 256 3.45 3.26 65 61 82 79

SPARCstation 512 7.17 6.52 98 96 112 110

20-60 768 9.05 8.09 130 141 159 155

Solaris 2.3 1024 10.44 8.86 162 163 212 204

1280 11.66 9.61 199 199 253 256

DEC 256 2.52 2.53 100 73 103 73

AXP 3000/500 512 4.43 4.30 135 109 149 120

150 MHz 768 6.07 5.72 174 156 195 163

OSF/1 1.3 1024 7.40 6.95 214 195 252 195

1280 8.59 8.07 252 227 302 237

DEC 256 2.57 2.59 85 74 86 73

AXP 3000/600 512 4.36 4.39 122 93 137 109

175 MHz 768 6.36 6.12 146 127 162 140

OSF/1 2.1 1024 7.83 7.52 187 160 214 167

1280 8.98 8.56 227 191 256 201

DEC 256 3.51 3.46 69 55 70 54

AXP 3000/800 512 5.98 5.90 100 85 107 80

200 MHz 768 8.02 7.46 127 110 150 114

OSF/1 2.1 1024 9.78 9.30 164 139 189 151

1280 11.44 10.72 193 165 244 183


