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Abstract

New distributed computing applications are driving the de-
velopment of more specialized protocols, as well as de-
manding greater control over the communication substrate.
Here, a network subsystem that supports modular, fine-
grained construction of high-level protocols such as atomic
multicast and group RPC is described. The approach is
based on extending the standard hierarchical model of the
x-kernel with composite protocols in which micro-protocol
objects are composed within a standard runtime framework.
Each micro-protocol realizes a separate semantic property,
leading to a highly modular and configurable implementa-
tion. In contrast with similar systems, this approach pro-
vides finer granularity and more flexible inter-object com-
munication. The design and prototype implementation run-
ing on Mach are described. Performance results are also
given for a micro-protocol suite implementing variants of
group RPC.

1 Introduction

Network protocols that are implemented at high levels of
the protocol stack and that provide rich functionality are
increasingly being used to simplify certain types of appli-
cations. For example, ordered atomic multicast provides
atomic and consistentlyordered message delivery to a group
of processes, which can be useful for writing real-time
and fault-tolerant distributed applications [6, 12, 27, 35].
Other high-level protocols of this type include group RPC
[8, 9, 10], membership [11, 25, 28], distributed transac-
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tions [3], and protocols related to multimedia applications
[24, 40]. All provide powerful abstractions that simplify
the task of writing applications that must handle uncer-
tainties involved with network communication, distributed
synchronization, and processor crashes.

Unfortunately, while such high-level protocols are use-
ful, they embed complex functionality and are therefore
difficult to design, debug, and modify. One option for ad-
dressing this problem is to implement the functionality as
a collection of smaller protocol objects (a protocol suite)
and then use a system like ADAPTIVE [37], Horus [38], or
the x-kernel [23] to combine the objects into a network sub-
system. Such systems allow the overall functionality to be
separated into more manageable modules, thereby accruing
advantages in the areas of incremental development, system
customization, and code reuse.

Despite their advantages over monolithic realizations,
current systems still have a number of deficiencies when it
comes to implementing high-level protocols. These include
inadequate support for fine-grained modules with complex
interaction patterns, limited facilities for data sharing, and
an orientation towards hierarchical protocol composition
at the expense of more flexible combinations. Experience
suggests that these limitations increase the difficulty of im-
plementing high-level protocols using these systems. For
example, problems of this type have been encountered with
the x-kernel, both in Consul, a protocol suite implementing
atomic multicast [29, 35], and xAMP, a real-time atomic
multicast protocol [39].

In this paper, we describe a new x-kernel-based struc-
turing approach that addresses these problems. With our
approach, a high-level network protocol is constructed
from a collection of micro-protocol objects (or just micro-
protocols) that implement individual semantic properties of
the target system.1 For example, with atomic multicast,
one micro-protocol might implement the consistent order-
ing requirements, while another might implement reliable

1Our use of the term micro-protocol should not be confused with the
x-kernel micro-protocols described in [33]. The differences are explained
more fully in section 5.



transmission. Micro-protocols can also be used to imple-
ment different semantic variants of the same property. For
example, with RPC, there may be multiple micro-protocols
implementing different policies for how the request is han-
dled if the server fails, such as exactly once, at least once,
or at most once semantics [34]. A system is then config-
ured based on the particular properties needed for the given
application.

This micro-protocol approach is realized by augment-
ing the x-kernel’s standard hierarchical object composition
model with the ability to internally structure protocol ob-
jects. The result is a two-level model in which selected
micro-protocols are first combined with a standard run-
time system or framework to form a composite protocol.
This composite protocol, whose external interface is in-
distinguishable from a standard x-kernel protocol, is then
composed with other x-kernel protocols in the normal hier-
archical way to realize the overall functionality required of
the network subsystem. Internally, the framework imple-
ments an event-driven execution paradigm, in which micro-
protocols are executed whenever events for which they are
registered—for example, message arrival or a timeout—
occur. Thus, when compared with standard x-kernel proto-
col objects, micro-protocols are typically finer-grain objects
that interact more closely and do so using mechanisms pro-
vided by the framework rather than the x-kernel Uniform
Protocol Interface (UPI).

Our approach has a number of benefits. For example, the
flexibility inherent in the two-level aspect of this model is
useful for dealing with dependencies among the constituent
properties implemented by these complex protocols. It also
offers the development benefits associated with modular
implementations, as well as an enhanced ability to tailor the
system to the specific characteristics of a given application
or architecture. Among other things, this configurability
makes the approach suitable for constructing adaptive sys-
tems, which alter their behavior based on changes in the
environment [5, 14]. Our approach is also related to re-
cent work in configurable operating systems [4, 18, 31].
In contrast with similar systems for constructing config-
urable protocols, our approach provides finer granularity
and more flexible inter-object communication, which is es-
pecially useful for configuring closely-related service vari-
ants of the same general type of high-level protocol (e.g.,
variants of atomic multicast).

Here, our focus is on describing the design and perfor-
mance of the prototype implementation, which is integrated
with x-kernel version 3.2 running on Mach. Below, we first
give further motivation and goals, followed by a summary of
the services provided by our system and a description of the
model. The prototype implementation is then described,
together with performance figures from a micro-protocol
suite capable of supporting multiple variants of group RPC.
Finally, related work is described and conclusions offered.

2 Motivation and Goals

Early protocol systems were designed as monolithic entities,
and their implementations reflected this. Even as the lay-
ered model gained acceptance as a conceptual tool to view
protocol composition, implementations still tended to be ad
hoc, reflecting a concern that implementing each protocol
as a distinct entity would result in significant performance
penalties. It is only recently, in fact, that software support
for protocol composition has reached a level where hierar-
chical collections of protocol objects can be combined into
a system whose performance is competitive with monolithic
implementations.

Constructing a network service from collections of pro-
tocol objects has a number of advantages. Perhaps the most
important is that it allows, at least in theory, reuse to con-
struct new services. In other words, a new service can be
constructed by writinga new object that implements just the
new aspect of the service, and then combining it with ex-
isting, well-tested objects that provide the other necessary
functionality. Over time, a comprehensive library of objects
can be developed, thereby simplifying the development ef-
fort, facilitating performance comparisons between protocol
implementations, and allowing experimentation with new
protocol concepts.

While this hierarchical approach has worked well for a
large class of protocols, a persuasive case can be made that
it lacks the flexibility needed to implement certain types
of protocols. For example, in designing and implementing
Consul using the x-kernel, a number of inherent problems
with the model were discovered [30]. These include the
following:

� Provisions for communicating between protocol ob-
jects on the same machine are insufficient to implement
the necessary complex interactions. In the x-kernel, the
specific problem is that the UPI lacks sufficient flex-
ibility, thus requiring the programmer to use control
operations as a workaround.

� Lack of communication support leads to implicit de-
pendencies between objects, where one object “ex-
pects” another to realize some functionality. When
compared to an explicit dependency caused by an in-
vocation, implicit dependencies make the software dif-
ficult to debug and modify.

� Multiple protocol objects may need to coordinate their
actions or synchronize relative to a given message or
set of messages. Such coordination is difficult in the
current model.

A remarkably similar experience has been reported inde-
pendently by the developers of xAMP [13].



While these limitations are directly relevant only to
atomic multicast protocols, there are several reasons to be-
lieve the lessons are applicable to other types of protocols
as well. First, increasingly sophisticated services are being
implemented as network protocols, in part because of the ad-
vent of protocol-oriented kernels such as the x-kernel. These
services, like atomic multicast, are the type most likely to
stretch or break the current model. Second, as distributed
applications become more common, the demand for new
types of specialized protocols very different from current
protocols will increase. Doing such specialization in a hier-
archical model—especially fine-grained specialization—is
likely to be difficult. Finally, applications are demanding
more control over their execution environment, including
the communication substrate, in order to achieve the best
possible performance. Such configurability will further in-
crease the complexity and variety of protocols that must be
supported.

This research is based on the premise that the construction
of network services through the composition of protocol ob-
jects is the appropriate paradigm. Our objective, however,
is to relax the restrictions on communication among objects
on a single host imposed by the hierarchical approach. In
our approach, protocol objects performing unrelated tasks
are located in adjacent layers and communicate normally
using the standard UPI of the x-kernel. However, protocol
objects that need to communicate more often or cooperate
more fully—our micro-protocols—are co-located within a
structure that provides richer facilities for this type of in-
teraction. Micro-protocols have no direct knowledge of
each other; communication is achieved indirectly through
an event mechanism.

This structure, described in detail in the next section, has
a number of benefits, including:

� Expressibility. The micro-protocol execution environ-
ment provides a new, more general model for structur-
ing protocol objects. Micro-protocols can communi-
cate with an arbitrary number of other micro-protocols,
can synchronize when necessary, and can operate on
collections of messages. The environment also sup-
ports multiple threads of execution.

� Configurability. A network service is constructed out
of modular micro-protocols,each of which implements
a specific semantic property. The result is an approach
that supports a high degree of configurability and the
construction of services that are customized to the
needs of the application.

� Efficiency. Since a network service can be customized,
the application avoids execution overhead that can re-
sult from the inclusion of unnecessary properties. For
example, it is easy to build an atomic multicast that

includes no consistent ordering of messages, thereby
avoiding the delay inherent in doing such ordering.

� Reusability. Micro-protocols implementing various
semantics can be used in multiple services. For ex-
ample, a liveness micro-protocol that checks that all
processes have sent a message within some given time
interval can be used in a variety of protocol suites.

� Ease of debugging and maintenance. Since a service
is constructed from small micro-protocols, each can
be debugged and maintained independently. Although
the compatibility of combinations of micro-protocols
must still be verified, this process is simplified since
interactions between micro-protocols are largely ex-
plicit.

� Explicit dependencies. Dependencies between micro-
protocols are explicit since “back door” communica-
tion channels are unnecessary. This makes understand-
ing the micro-protocols easier and the interactions ob-
vious.

� Future opportunities for optimization. Explicit depen-
dencies create the potential for code optimization. For
example, it may be possible to in-line code using tech-
niques similar to [1] to yield a system with efficiency
competitive to monolithic implementations.

� Availability of x-kernel protocols. Since our system
is incorporated in the x-kernel, all existing and future
x-kernel protocols can be used without modification.

In summary, then, our goal is to extend current technology
to encompass more fine-grained composition of protocol
objects, both to simplify development and to increase the
configurability of the network subsystem.

3 Constructing Composite Protocols

In the standard x-kernel model, a hierarchical graph of pro-
tocol objects is used to realize a communication service.
A thread shepherds each message along a path through the
graph executing the x-kernel operations call, push, pop, and
demux to route the message on the correct path from the
application to the network or vice versa. Messages can be
modified, destroyed or created as they traverse the graph.

In addition to processing application messages, proto-
col objects can use messages to communicate with other
protocol objects to which they are connected in the graph.
Since this graph is hierarchical, however, communication
flexibility is limited, especially with regard to allowing
communication among protocol objects at the same level
of the graph. Thus, our scheme augments this model by
adding composite protocols, which essentially create new
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graph.

ways for protocol objects at the same level to communicate.
In addition, we have extended the one-thread-per-message
model to multiple-threads-per-message model and provided
an event-driven mechanism for protocol communication.

3.1 A Two-Level Model of Protocol Compo-
sition

In our model, the standard x-kernel hierarchical model is
augmented with the ability to include composite protocols
in the protocol graph in conjunction with simple x-kernel
protocols. Unlike simple protocols, each composite pro-
tocol has an internal structure formed of a collection of
micro-protocols executed in an event-driven manner. The
major components of a composite protocol are:

� Micro-protocols: A section of code that implements
a single well-defined property or provides some spe-
cific functionality. Consists of header information, pri-
vate data, initialization code, and a collection of event
handlers. May export data for use by other micro-
protocols.

� Events: An occurrence that causes one or more micro-
protocols to be invoked. Event handlers are invoked

micro-protocol name f
... Decl of exported events, message attributes,

data inspection, modification routines ...
... Decl of imported events, global variables ...
... Decl of private events, message attributes, variables ...
... Initialization code ...
... Event handlers ...
... Data inspection routines ...
... Local procedures ...

g end micro-protocol name

Figure 2: Micro-protocol schema

(logically) in parallel. Event types specify whether the
triggering micro-protocol is blocked until completion
or not. Some events of interest are predefined (e.g.,
message arrival); others are defined by micro-protocols
(e.g., change in group membership).

� Framework: A runtime system that implements the
event registration and triggering mechanism, and con-
tains shared data (e.g., messages) that can be accessed
by more than one micro-protocol.

An example of this model is shown in Figure 1. Above is an
x-kernel protocol graph that contains a composite protocol
CP implementing atomic multicast. Below is an expanded
view of CP illustrating the components of the model. In
the middle of CP is the runtime framework, which contains
a shared data structure—in this case a bag of messages—
and some event definitions. The boxes to the left represent
micro-protocols, while to the right are some common events
with the list of micro-protocols that are to be invoked when
the event occurs.

3.2 Micro-Protocols

A micro-protocol is structured as shown in Figure 2. Events
relevant to a micro-protocol are declared as either exported
or imported. An exported event is one that is raised by the
micro-protocol, while an imported event is one for which
the micro-protocol provides a handler. The micro-protocol
may also contain private events that are used for internal
communication and declare private data visible to all han-
dlers defined in the micro-protocol.

Data inspection routines are exported when a micro-
protocol maintains information and wants to make it avail-
able to other micro-protocols. For example, a membership
micro-protocol might export a routine that returns the cur-
rent membership list. In these situations, only the micro-
protocol declaring the data can alter it, so that changes by
other micro-protocols must be requested by raising an event
or calling an exported routine that modifies the data. When a
micro-protocol modifies its data, it will often raise an event
to notify other micro-protocols about the state change. For



example, the membership micro-protocol might react to a
“timeout” event by suspecting that a process has failed. If,
after further checking—for example, by running an agree-
ment protocol with the other processes—it determines that
a failure has indeed occurred, it would update the mem-
bership list and raise an event declaring a change to that
list.

We express micro-protocols in an informal protocol de-
scription language that supports the structure of micro-
protocol programming described above, and enforces vis-
ibility and modularity rules. An example micro-protocol
written in this pseudo-code is given in section 3.5.

Other aspects of micro-protocols shown in Figure 2 (e.g.,
message attributes) are described below.

3.3 Events and Handler Execution

Events are a general communication mechanism used to
inform micro-protocols that something of interest has hap-
pened. A micro-protocol requests notification from the
runtime system for a given event by declaring a handler
as shown above. Each event may have multiple handlers,
which can be useful when multiple micro-protocols need
to be notified that the event has occurred. For example,
the arrival of a message from the network may trigger one
handler involved with detecting host failures and another
that is involved with inserting the message into an ordering
graph.

Handlers are not necessarily known to the micro-protocol
raising the event. This property helps decouple micro-
protocols from one another, thereby simplifying the task
of writing micro-protocols that can be combined in a flex-
ible fashion with other micro-protocols. As an example of
this decoupling, one micro-protocol can be responsible for
detecting a situation, with another implementing the policy
for resolving it. This type of structure allows the policies for
each to be realized orthogonally based on the needs of the
application and the specific collection of micro-protocols
configured into the framework.

Events can also have parameters. For example, when
an event corresponding to the expiration of an acknowl-
edgment timer occurs, we might also want to communicate
which message is lacking the acknowledgment. Such func-
tionality can be realized by passing that information as an
argument to the registered event handlers. All parameters
are passed by value.

Events can either be user-defined or predefined by the
runtime system. A user-defined event, such as the one
related to timer expiration above, is exported (declared) by
a given micro-protocol and explicitly raised by invoking a
routine implemented by the framework. Predefined events,
on the other hand, are exported by the runtime framework
and implicitly raised when the framework detects that the

event has occurred. In both cases, the event can be imported
(handled) by any number of other micro-protocols.

The following list gives the predefined events currently
supported; here, xMsg refers to an x-kernel message and
CPMsg refers to a composite protocol message, both of
which are described in more detail in section 4.1 below:

� Message Popped To CP(xMsg): An x-kernel message
from a lower level x-kernel protocol has been popped
to the composite protocol.

� Message Popped From CP(CPMsg): A message has
been popped from the composite protocol to the x-
kernel higher level protocol.

� Message Pushed To CP(xMsg): An x-kernel message
from a higher level x-kernel protocol has been pushed
to the composite protocol.

� Message Pushed From CP(CPMsg): A message has
been pushed from the composite protocol to the x-
kernel lower level protocol.

� Message Inserted Into Bag(CPMsg): A message has
been constructed and inserted into the shared bag of
messages.

� Message Deleted From Bag(CPMsg): A message has
been deleted from the shared bag of messages.

� Message Ready To Be Sent(CPMsg): All micro-
protocols are satisfied that the message can leave the
composite protocol, either to be popped or pushed.

In addition, there are provisions for timer events that are
generated after a specified amount of time has passed.

A micro-protocol can only handle events that it declares
as imported, or private events that are locally generated
and handled by the same micro-protocol. An event must
be exported by a micro-protocol to be imported by another
micro-protocol.

Handlers are scheduled for execution when an event is
raised. If there are multiple handlers registered for that
event, the order in which they are executed is indetermi-
nate. In fact, they may be executed in parallel given the
appropriate hardware.

Execution of a micro-protocol that raises an event can
either block until all handlers have completed (synchronous)
or proceed without blocking (asynchronous). The choice of
semantics is specified as an argument in the system call that
raises an event, implying that it can vary on a per-invocation
basis. These semantics extend as expected through multiple
levels of recursively raised events.



3.4 Framework

The framework is a runtime system that implements the
event mechanism and provides a shared bag of messages
on which micro-protocols operate. It also implements an
x-kernel compliant interface for the composite protocol,
which enables it to interoperate with other x-kernel pro-
tocols in the standard way.

The framework accepts messages from the x-kernel and
transfers control to micro-protocols by raising the appro-
priate events and executing the appropriate event handlers.
As already noted, in the x-kernel, one thread shepherds any
given message through the entire protocol graph, executing
code in various protocol objects on behalf of the message.
To handle the execution of potentially many event handlers,
however, we extend this model to allow multiple threads to
execute on behalf of the message during its residence in the
composite protocol.2 This model provides more flexibility
than the one thread per message in the context of composite
protocols, and also allows the possibility of true parallel ex-
ecution, as noted above. The one thread per message model
is restored when a message leaves a composite protocol and
is handed over to a standard x-kernel protocol object.

Messages that arrive at a composite protocol are placed
in an unordered bag of messages maintained by the frame-
work that functions as a global pool accessible to all micro-
protocols. This feature is intended to support two aspects
of programming that are common in the type of high-level
protocols for which this approach is intended. First, it
allows micro-protocols to make state changes based on in-
formation in an entire collection of messages, rather than
just a single message. This can be important, for example,
in an atomic multicast protocol that requires waiting for a
collection of messages to arrive and then deterministically
sorting the collection before presenting messages to higher
levels [29, 35]. Second, a shared bag of messages allows
multiple micro-protocols to access messages concurrently.
This can be important, for example, in a situation where
a message is acknowledged by one micro-protocol while
concurrently being ordered relative to other messages by a
second micro-protocol.

Prior to being placed in the bag, a verify micro-protocol
is executed to determine if the message is acceptable. For
instance, a message might be rejected if corruption is de-
tected or if it is destined for a process that no longer exists.
If the message is acceptable, the verifying micro-protocol
places the message in the bag using a routine provided by
the framework. A default version of the micro-protocol is
provided with the framework, although an alternative can
easily be substituted by the user to perform message screen-
ing and bag insertion under program control.

Each message in the bag has a collection of attributes

2This is optimized in the implementation to a series of procedure calls
on sequential hardware; see section 4.

that encode certain types of per-message information. Pre-
defined attributes are supplied by the framework. For exam-
ple, one such attribute is direction, which indicates whether
the message is being sent up or down the x-kernel graph.
Micro-protocol attributes contain micro-protocol-specific
information about the message. For example, a reliability
protocol may keep private state information about the mes-
sage indicating whether it was acknowledged or is being
retransmitted and by which hosts. Such attributes can be
declared either private or public; a private attribute is visi-
ble only to the micro-protocol that defines it, while a public
attribute can be read by all micro-protocols. In addition,
attributes are used to build headers for messages that are
pushed from the framework. This is done by an attribute-
to-header routine provided by the user and invoked by the
framework as a message is exiting the composite protocol.
Similarly, when a message is popped to the framework, a
header-to-attribute mapping routine is invoked that unpacks
the header and creates attributes using this information. As
with verify, default mapping routines are supplied, but can
be overridden by the user if desired.

As already noted, data defined within a micro-protocol
can also be shared by exporting appropriate inspection rou-
tines. Any necessary synchronization within these routines
is done explicitly using semaphores. With our prototype
implementation, such synchronization is only necessary if
the data is not written atomically and either a message push
or an explicit event triggering is done in the middle of the
code effecting the change.

3.5 Example: Micro-Protocols from a Group
RPC Suite

To illustrate the structure of micro-protocols and the event-
driven programming paradigm, we present two short exam-
ples of micro-protocols that might be part of a suite used
to implement a group RPC service. The first is a simple
membership micro-protocol that updates a membership list
whenever a host is suspected of having failed. Note that the
indication of this suspicion would most likely be in the form
of an event generated by another micro-protocol, such as a
liveness micro-protocol that tracks message arrivals. The
second is an acknowledgment micro-protocol that sends an
ACK message for each reply message received, sends a
“still working” message to a client if the reply from the lo-
cal server is slow, and raises the Suspect Host Dead event
if a server is suspected to have failed.

Membership Micro-Protocol. Figure 3 shows the code
for the membership micro-protocol. At the top is an ex-
ports section that specifies inspection routines, events, and
attributes that are exported for use by other micro-protocols.
Here, an event for membership change and a routine for ac-



micro-protocol MEMBERSHIP f

exportsf
event Membership Change(ch t type);
proc memList t GetGroup();

g

importsf
event Suspect Host Dead(mem t host);

g

privatef
memList t MemberList;

g

initializef
initMembershipList();

g

actionsf
Suspect Host Dead(mem t host) !

if (find(host, MemberList)) f
deleteMember(MemberList, host)
raiseEvent(Membership Change,

DELETION, ASYNC)
g

g

... code for deleteMember, GetGroup, and
initMembershipList ...

g end micro-protocol MEMBERSHIP

Figure 3: Simple membership micro-protocol

cessing the current group membership are provided. Note
that the event specification includes a parameter to indicate
whether the event of interest is the failure or recovery of
a host. The exports are followed by an imports section,
in this case an event corresponding to a suspected fail-
ure. This particular event is raised by the acknowledgment
micro-protocol below and fielded by an event handler in
MEMBERSHIP. Note that this specification also includes a
parameter, specifically, an indication of which host is sus-
pected to have failed. Next, the micro-protocol includes
declarations for any private data, attributes, and events. In
this case, the only private data is the membership list main-
tained by the micro-protocol.

The declarations are followed by the procedures that
make up the body of the micro-protocol. The first is an
initialization routine, which initializes the membership list
from some external source; for example, it may be read
from a file. This routine is executed, in x-kernel terms, at
initialization time prior to execution of the standard open or
openenable routines.

After the initialization code is the actions section, which
contains the event-handling code. The general form of an
action is:

event name [&& boolean-expr]* ! handler

The optional boolean expression is used to make the handler
execution conditional. The expression may reference event

parameters, message attributes, and micro-protocol vari-
ables. In MEMBERSHIP, there is one handler that deletes a
member from the list when the Suspect Host Dead event is
triggered. The parameters to the event are available to the
handler, as is any private data declared within the micro-
protocol.

The remainder of the micro-protocol contains inspection
routines for export, local procedures, etc. In this micro-
protocol, there are three such routines: deleteMember, Get-
Group, and initMembershipList. Their code is omitted here
for simplicity.

Acknowledgment Micro-Protocol. Figure 4 shows the
code for a simple acknowledgment micro-protocol ACK that
generates the Suspect Host Dead event when a message
has not been acknowledged after some interval of time.
This interval can be adjusted by a call to the setInterval
routine. The timer is started at the time the message is
pushed from the composite protocol (note the import of the
Message Pushed From CP event). The timer is set by the
setTimerEvent call, which gives the interval to wait and an
indication that this event is to be generated only once rather
than periodically. This Timeout event is declared in the
private section of the protocol and is therefore raised and
handled only by ACK.

The second set of tasks done by ACK involve acknowl-
edging any messages that are received. It accomplishes
this by handling the Message Inserted Into Bag event for
messages of type REPLY. The event is qualified so that
only reply messages are acknowledged. Request messages
are only acknowledged if the server is slow in respond-
ing, which is also handled using the Timeout event. The
server and client sides of the communication are handled
by the same micro-protocol, with the imported state vari-
ables server and client being used in the code to distinguish
between the two.

4 Implementation and Performance

Our prototype implementation is based on x-kernel version
3.2 running on Mach version MK82 and runs as a user-level
task. The prototype is written in C and is structurally a
collection of library routines that is linked with the user-
written micro-protocols to generate a composite protocol.
After such a protocol has been produced, it is included in
the x-kernel protocol graph in the normal way.

Here, we focus on describing the implementation details
of the runtime framework since much of the system’s func-
tionality is implemented there. Initial performance results
from a group RPC micro-protocol suite and a null protocol
test are also given.



micro-protocol ACK f

exports f
event Suspect Host Dead(mem t host);
proc SetInterval(int millisec);

g

imports f
event Message Pushed From CP(CP Msg t msg);
event Message Inserted Into Bag(CP Msg t msg);
boolean client, server;

g

private f

event Timeout(CP Msg t msg);
attribute serverList t servers ;
int interval;

g

initializef
InitTimerVal();

g

actions f
/� Set timer event to detect message loss�/
Message Pushed From CP(CP Msg t msg) &&

client && msg.attr.type == REQUEST !

setTimerEvent(Timeout, CP msg, interval,
ONCE);

/� Set timer event to ensure timely reply �/
Message Inserted Into Bag(CP Msg t msg) &&

server && msg.attr.type == REQUEST !

setTimerEvent(Timeout, CP msg, interval,
ONCE);

/� Send ACK message �/
Message Inserted Into Bag(CP Msg t msg) &&

client && msg.attr.type == REPLY !

sendAckToSender(msg,REPLY RECEIVED);

/� Send "still working" message if server slow.�/
Timeout(CP Msg t msg) && Server !

sendAckToSender(msg, STILL WORKING );

/� Suspect server failure �/
Timeout(CP Msg t msg, host) && Client !

if ( hostNotResponding(msg, host)) f
RaiseEvent(Suspect Host Dead,

host, ASYNC);
g

g

... code for SetInterval, InitTimerVal, sendAckToSender,
and hostNotResponding ...

g end micro-protocol ACK

Figure 4: Simple acknowledgment micro-protocol

4.1 Framework

Uniform Interfaces. The framework encapsulates the
micro-protocols and delivers messages to and from other
x-kernel protocols. To accomplish this, the framework pro-
vides the standard x-kernel interface operations, such as
call, push, pop, and demux. These allow composite pro-
tocols to be added to an existing x-kernel protocol graph

without requiring changes to the existing protocols. The
framework can be configured to provide a synchronous call
interface or an asynchronous push interface, to accommo-
date both styles of x-kernel protocols. A call-style protocol
is blocked when doing a call operation and is unblocked
only after the reply message has been filled in. If the push
style is used, the caller is not blocked and the reply message
(if any) is returned asynchronously.

Thread Management. As noted in the previous section,
multiple threads of control may be spawned in the course
of executing event handlers. In the prototype, the x-kernel
thread facility based on Mach C-threads is used as the un-
derlying mechanism. The choice to use this facility rather
than spawn C-threads directly was made primarily for two
reasons. One is that this makes the threads visible to the
x-kernel, and, in particular, its built-in features for doing
execution monitoring and debugging. This allows the pro-
grammer to exploit these features, thereby simplifying the
programming process. The other reason is that it allows
us to exploit the x-kernel’s optimized thread management.
In particular, since the x-kernel preallocates a pool of C-
threads at initialization time and manages them directly, the
cost of performing thread creation at runtime is avoided.

Thread management is simplified even further in a second
version of the prototype in which handler invocations are
implemented by procedure calls rather than by explicitly
forkinga thread. This optimization is targeted for sequential
machines where a procedure call is typically more efficient
than spawning a thread. No changes are required in the
code for the micro-protocols. In fact, which version of the
runtime is used is transparent to both the x-kernel and the
protocol writer.

We also alter the x-kernel thread structure by assuming
control over a thread that enters the composite protocol. In
general, it will execute some sequence of event handlers
and then a push or pop to exit the composite protocol. Al-
ternatively, it can simply terminate within the protocol after
the last event has been handled. The thread behavior is
naturally different depending on whether handler execution
is implemented by threads or procedure calls. In the thread
implementation, the thread that enters the composite proto-
col returns to the caller after raising the first event. Once
the event is raised, other threads are activated to execute
the handlers. On the other hand, with the procedure-based
implementation, the entering thread executes each event
handler until all handlers are executed (recursively) and
then returns to the caller. Timing event are necessarily im-
plemented as threads and are based on the x-kernel timer
events.

Bag of Messages. A CP message is a structure that con-
tains an x-kernel message pointer, attributes, and send bits.



The attributes are created by combining the attribute dec-
larations from all micro-protocols into a “super structure”
of attributes. There is one send bit for each micro-protocol.
When all send bits are set, the CP Message is ready to be
sent and Message Ready To Be Sent event is raised.

The following operations are provided for manipulating
the shared bag of messages:

� Item = newItem(xMsg, direction): Allocates and initial-
izes a new bag item; returns a handle to the appropriate
structure. direction indicates if the message was trav-
eling up or down through the x-kernel protocol graph
when it entered the composite protocol.

� insertItem(CPMsg): Inserts CPMsg into the bag. Au-
tomatically triggers the Message Inserted Into Bag
event.

� deleteItem(CpMsg): Removes CPMsg from the bag,
but does not deallocate storage for the item. Dealloca-
tion is done under micro-protocol control, although a
message is usually deallocated as soon as it is deleted
unless needed for retransmissions, etc. Automatically
triggers the Message Deleted From Bag event.

� empty(): Removes all messages in the bag.

� n = count(): Returns a count of the number of items in
the bag.

� setSendBit(ProtocolID, CPMsg): Sets the send bit
for ProtocolID. When all bits are set, the Mes-
sage Ready To Be Sent event is triggered.

� sprintItem(string, CPMsg): The current state of CPMsg
(including attribute values) is placed into string. Useful
for debugging.

� printBag(): Prints the current contents of the bag to
stdout. Useful for debugging.

Micro-protocols written in the protocol description lan-
guage psuedo-code are currently translated by hand into C
files that are compiled using the standard C compiler. We
enforce visibility rules using C externs and static declara-
tions.

CP Messages. CP messages are based on x-kernel mes-
sages, which are optimized for message manipulations such
as header pushes and pops, fragmentation, and assembly.
The usual x-kernel message operations are still supported,
but we add additional information in the form of attributes
that are efficiently accessed. The scope of micro-protocol
attribute names is limited to the micro-protocol in which
they are declared, but public attributes must have globally
unique names.

Implementation Portability. The runtime framework re-
lies only on facilities provided by the x-kernel. As a result,
it it is automatically portable to another environment that
has a working x-kernel implementation. No Mach facilities
are used directly.

4.2 Performance

We present two sets of initial performance results. The first
is based on a group RPC micro-protocol suite that supports
multiple variations of the protocol, while the second is from
a null composite protocol in which a series of event handlers
are executed to test overhead. All measurements were done
on DecStation 5000/240s connected by a 10 Mb Ethernet.
The network was not completely isolated from other traffic,
but was separated from the main departmental network by a
bridge. Also, an effort was made to perform the tests during
periods of relatively low network activity.

The first set of performance experiments measure sev-
eral configurations of a group RPC composite protocol
Group RPC. These configurations were constructed from a
collection of micro-protocols implementing different prop-
erties of such a service:

� BOUNDED (BND): Provides for bounded termination
of the client’s request, i.e., either the request is executed
within some interval or an exception is returned.

� UNBOUNDED: No a priori bound is set on a client’s
request.

� FIFO: Forces FIFO ordering of client requests at a
server; if not included, the server may receive requests
from a given client in any order.

� MEMBERSHIP (MEM): Maintains a simple member-
ship list of active hosts; hosts are added as a result of
request messages to the CP, and deleted if they do not
respond within a given time interval.

� ACK: Acknowledges request messages and handles
timeouts.

� UNIQUE: Eliminates duplicate request or reply mes-
sages.

� ONE ACCEPT (1ACC): Implements a policy of ac-
cepting the first reply from any server as satisfying the
client’s request.

� ALL ACCEPT (AAC): Implements a policy of collect-
ing replies from all the servers.

� SYNC: Provides synchronous request/reply call-style
interface to CP.

� ASYNC: Provides asynchronous push-style interface
to CP.



System Configuration Servers avg

x-kernel Sun RPC one 4.38
GRPC,SYNC,1AC,MEM one 6.82

(same) two 8.90
GRPC,SYNC,AAC,MEM two 8.45
GRPC,ASYNC,FIFO,1AC one 6.22

MEM
GRPC,ASYNC,FIFO,1AC one 6.45

MEM,BND

Table 1: Time for Group RPC call (in msec)

� GRPC: Verifies incoming messages, initializes state at-
tributes, and maintains client and server state informa-
tion; required for any combination of micro-protocols.

The tests consisted of a client sending a 4-byte integer
to one or more servers, which respond with an integer.
Each test makes 1000 RPC calls and was run 10 times.
The roundtrip times are the average of the 10 test runs. To
provide a baseline, a version of Sun RPC implemented using
the standard x-kernel was also tested. Note, however, that
Sun RPC is a peer-to-peer rather than group protocol, and,
as a result, implements less functionality than Group RPC.

The tested configurations can be summarized as follows:

� GRPC, SYNC, 1AC, MEM: Implements a group RPC
service that provides a synchronous call interface and
returns when the first response is received (i.e., a one
accept policy). One client and one or two servers were
used.

� GRPC, SYNC, AAC, MEM: Identical to the above,
but with an all accept policy, which causes the client
to wait until responses from all servers are received.
Test data is given for two servers. Such a configura-
tion might be used, for example, in a simple replicated
database, where the application must know that each
group member has completed the request before con-
tinuing.

� GRPC, ASYNC, FIFO, 1AC, MEM: Implements an
asynchronous call with FIFO ordering. The ordering
micro-protocol ensures that the server executes all calls
from a given client in FIFO order, despite the possible
variations introduced by the asynchronous call inter-
face and network transmission.

� GRPC, ASYNC, FIFO, 1AC, MEM, BND: Identical
to the above, but with the addition of bounded termi-
nation. This micro-protocol ensures that the client call
returns within a bounded interval.

The average rountrip times for the various configura-
tions are given in Table 1. The relative ordering is what one
would expect: normal Sun RPC using the x-kernel is fastest,
while the two configurations requiring communication with
two servers are the slowest. Overall, we feel that the fig-
ures are reasonable, especially given the preliminary nature
of the prototype and the level of functionality provided to
the application. We also observed a low variance, ranging
between 8.7 and 35 microseconds.

As noted, the x-kernel Sun RPC is included only for
comparison. Such a protocol would naturally be used for
simple client/server communication, but does not provide
the multiple acceptance policies, group membership, mul-
tiple servers, or message ordering options needed for more
complex applications.

Additional micro-protocols are currently being imple-
mented, including other reply ordering policies, two differ-
ent policies for handling orphan computations, and provi-
sions for atomic execution of requests by the server. [21]
elaborates further on various abstract properties of RPC and
describes the different combinations that are possible using
our micro-protocol approach.

The second set of performance figures are from a null
composite protocol designed to measure the event mecha-
nism. Each of the tests measured roundtrip message trans-
mission times for two processes using the experimental
network described above. The first is a normal x-kernel
implementation of UDP without composite protocols; this
provides a baseline. In the second, a composite protocol
using the procedure call event implementation (CP-P) is
inserted between the UDP protocol and user program on
both the client and server sides. On the client side, CP-P
simply passes messages and acknowledgments to the UDP
protocol and user program, respectively, with no changes.
On the server side, CP-P generates an acknowledgment for
each message, as well as passing it through to the user pro-
gram. 19 events are generated for each message round trip,
and 19 handlers are invoked. The third test is identical, ex-
cept that a runtime framework with the thread-based event
mechanism is used. This composite protocol is called CP-
T. Figure 5 illustrates the structure and message flow of the
second and third configurations.

The results are shown in Table 2. Although these numbers
clearly indicate some overhead, the results are encouraging.
Based on the one byte test, each event handler activation
costs no more than 33.7 microseconds for procedure-based
event dispatching and 206 microseconds for thread based.
Note that this figure includes amortizing all execution costs
associated with a composite protocol over the handler ac-
tivations, not just the cost of the invocation itself. The
variance was again observed to be low.

Although we have not yet profiled the system in detail,
our belief is that the vast majority of the time in both sets
of experiments is attributable to the overhead imposed by
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Figure 5: Experimental configuration

Packet Size x-kernel UDP +CP-P +CP-T

1 byte 1.57 2.2 5.48
1 K 4.18 4.84 8.19
2 K 7.39 7.89 11.38
4 K 12.65 12.93 16.96
8 K 23.77 23.78 27.63

Table 2: Roundtrip time for null CP (in msec)

executing as a user task on Mach. Our intent is to port
the system to the new Scout operating system [31], which
should yield more reliable estimates of the overhead of our
approach.

5 Related Work

A number of other papers have addressed areas related to
this work. Several are in the area of fault-tolerance, where
researchers have explored use of modularization or system
customization. Examples include the ANSA system [32]
and the work on multicast reported in [16]. In contrast
to these, our approach is more general and provides more
flexibility for the protocol designer. Also in the area of
fault-tolerance, [7] explores orthogonal properties of trans-
actions. Such characterizations are complementary to our
work since they suggest applications that might be suitable
for implementation using our model.

Another area of related work concerns development of
system support for constructing modular protocols. The x-
kernel itself is, of course, one such system. Our work is an
extension of the x-kernel model, with the goal of supporting
finer-grain protocol objects that require richer facilities for

communication and data sharing, while retaining the pro-
gramming and configurability advantages of the x-kernel.
As noted above, the need for such facilities has been di-
rectly motivated by earlier experience using the x-kernel to
construct the type of high-level protocols that are the target
of this research [30]. Many of our goals related to system
customization, code reuse, and protocol configurability are
adopted from the x-kernel.

Other x-kernel related work has explored the use of finer-
grain protocol objects [33], but the emphasis there is on
syntactic decomposition of higher-level protocols within a
hierarchical framework. This work, however, does lend
credence to the claim that such fine-grain modularity can
be introduced without sacrificing performance. System V
Streams [36] also supports modularization of protocols, but
its model is also hierarchical and relatively coarse-grained.
Horus [38] supports stack-line configurations of coarse-
grained protocols.

Somewhat closer to our work is the ADAPTIVE system
[37], which is also designed to support flexible combina-
tions of protocol objects. The goal of the system is to sup-
port efficient construction of transport services with differ-
ent quality-of-service (QoS) characteristics, especially for
multimedia applications using high-performance networks.
In contrast with our work, the designers of ADAPTIVE
emphasize runtime reconfiguration, automatic generation
of sessions—i.e., instances of protocol objects—from high-
level specifications, and support for alternative process ar-
chitectures and parallel execution. Moreover, the type of
protocol objects supported appear relatively coarse-grained
when compared to our objects—multicast rather than in-
dividual properties of multicast, for instance—and more
oriented toward hierarchical composition and limited data
sharing.

Several other efforts have also concentrated on sup-
porting parallel execution of modular protocols, including
[15, 26]. While similar to our work in the sense of decom-
posing protocols along semantic lines, these efforts differ
in their emphasis on using parallel execution to improve
throughput and latency for high-performance scientific ap-
plications. They also retain a single-level composition
model, which we believe does not offer enough flexibil-
ity for high-level protocols.

Finally, recent work on new generation operating sys-
tems has emphasized similar customization goals, but in a
more general context [4, 18, 31]. These projects attempt to
increase the ability of users to configure different types of
services, but for many aspects of operating system function-
ality rather than just network protocols. However, the con-
figurability they provide is typically more coarse-grained
than our approach, which emphasizes choice among spe-
cific semantic properties of high-level protocols.



6 Conclusions

High-level protocols such as those found in fault-tolerant
distributed systems are becoming increasingly prevalent in
a variety of application areas. In addition to being large
and difficult to construct, such protocols often have many
variants, each of which implements a slightly different se-
mantics. Here, we have described a system for imple-
menting configurable versions of these protocols in which
fine-grained micro-protocol objects are composed using a
runtime framework to yield an x-kernel compatible com-
posite protocol. With this approach, micro-protocols can
be written to realize individual semantic properties, with
interactions between micro-protocols confined primarily to
the raising and handling of events. This facilitates modu-
larization of the software needed to realize each property,
while still allowing the flexibility needed to implement the
necessary communication and synchronization. Such an
approach simplifies the construction of such protocols, as
well as allows the construction of customized services with
properties tailored to the needs of a given application. It also
encourages experimentation with different communication
substrates for a given application.

The topic of when and how micro-protocol variants can
be configured into a system is addressed in [19, 21, 22] for
different types of network services, including membership
and group RPC. The use of this approach for construct-
ing a customized atomic multicast protocol for a version of
the Linda coordination language with fault-tolerance exten-
sions [2] is described in [17].

The prototype implementation described in this paper il-
lustrates the feasibility of extending the x-kernel to support
this two-level model of composition. In the prototype, mes-
sages arrive at a composite protocol and generate events that
result in handlers in the appropriate micro-protocols being
invoked to deal with the message. These handlers are ex-
ecuted by separate threads, or, in a version optimized for
sequential machines, by a single thread using a series of pro-
cedure calls. Initial use of the prototype for implementing
different variants of group RPC demonstrates the feasibility
of our approach, as well as quantifies the overhead of the
event-driven execution model. These results suggest that
this approach will not only lead to improvements in the con-
figurability and system customization aspects of high-level
protocols, but also yield highly modular implementations
that are more than competitive with current monolithic im-
plementations.
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